Carbon, oxygen and strontium isotope geochemical characteristics of the Qixiashan Pb-Zn polymetallic deposit, Jiangsu Province, and their indication significance
-
摘要:
以栖霞山铅锌多金属矿床深部找矿钻孔岩心为对象,开展碳-氧-锶同位素地球化学研究。结果表明,栖霞山矿床矿石样品δ13CV-PDB同位素值为-5.1‰~1.9‰,且由浅部至深部,矿石样品的δ13C、δ18O值处于增大的趋势,指示成矿流体中的碳起源于碳酸盐岩、源自地幔和岩浆的深源碳。对锶同位素的研究显示,栖霞山矿石87Sr/86Sr值为0.704816~0.71405,部分大于矿体围岩黄龙组灰岩的87Sr/86Sr值(0.708329~0.709685),部分小于矿体围岩黄龙组灰岩的87Sr/86Sr值,并与不同来源的Sr同位素对比,揭示栖霞山矿石中Sr兼具基底地层Sr和幔源Sr的混合来源特征,且在围岩蚀变过程中87Sr/86Sr的变化应主要由成矿流体引起。结合本区成矿地质特征认为,栖霞山矿床成矿流体可能来自花岗岩的期后热液,在热动力作用下,流经元古宇基底地层,形成具有混合物质来源的成矿流体,成矿作用过程主要为成矿流体与围岩碳酸盐岩发生水-岩反应所致。
Abstract:In this paper, the authors carried out the study of the carbon-oxygen-strontium isotope geochemistry of the samples from deep holes during the mineral prospecting work in the Qixiashan Pb-Zn polymetallic deposit. The results show that the δ13CV-PDB values for ore samples from the Qixiashan deposit vary from -5.1‰ to 1.9‰. From the shallow part downward, the δ13C and δ18O values of ore samples are in an increasing trend, which indicates that the carbon in the ore-forming fluids originated from the carbonate rocks and from the deep source of carbon in the mantle and magma. In the study of strontium isotope, the 87Sr/86Sr values of ore samples from the Qixiashan deposit vary from 0.704816 to 0.71405; a part is larger than the 87Sr/86Sr ratios (0.708329~0.709685) for limestone of the Huanglong strata, which is the surrounding rock of the orebodies, whereas the other part is less than 87Sr/86Sr ratios for limestone of the Huanglong strata. A comparison of the strontium isotopic compositions of different sources reveals that the strontium from the Qixiashan deposit has the characteristics of the mixed sources, i.e., the strontium of Proterozoic basement strata and the mantle source; the change of 87Sr/86Sr ratios in the surrounding rock alteration should be mainly caused by the ore-forming fluid, and the change of 87Sr/86Sr ratios in the process of wall rock alteration should be mainly caused by the ore-forming fluid. A comprehensive analysis of regional metallogenic geological characteristics shows that the ore-forming fluid in the Qixiashan deposit might have come from the granite hydrothermal period, and by the influence of thermal power, the ore-forming fluid flowed through the Proterozoic basement strata, forming the ore-forming fluid with mixed material sources. The mineralization process of the Qixiashan deposit was mainly caused by the fluid-rock reaction between the ore-forming fluid and the surrounding rock.
-
致谢: 成文过程中得到中国地质调查局发展研究中心姚晓峰、甄世民、杜泽忠博士,全球矿产资源战略研究中心李以科博士及中国地质科学院水环所甄世军工程师、中国地质大学(北京)姚翔博士,华东有色地质矿产勘查开发院叶水泉、桂长杰总工程师等、南京银茂铅锌矿业有限公司熊东全高级工程师等的大力帮助,在此一并表示诚挚感谢。
-
图 2 栖霞山矿区地质简图(A,据参考文献[9]修改)、栖霞山矿区虎爪山矿段地质平面图(B,据参考文献②修改)和虎爪山矿段联合剖面示意图(C,图例描述具体参考前文地层描述部分)
1—第四系;2—侏罗系火山岩;3—象山群;4—孤峰组;5—栖霞组第三段;6—栖霞组第二段;7—栖霞组第一段;8—船山组;9—黄龙组;10—和州组;11—高丽山组;12—金陵组;13—五通组第四段;14—五通组第三段;15—五通组第二段;16—五通组第一段;17—坟头组;18—构造角砾岩及破碎带;19—铁锰帽;20—实测断层及编号;21—推测断层及编号;22—勘探线及编号;23—铅锌矿体;24—黄铁矿体;25—锰矿体
Figure 2. Geological map of the Qixiashan deposit (A), geological plan view of Huzhuashan ore block (B) and schematic diagram of joint profile in Huzhuashan ore block (C)
表 1 栖霞山矿床KK4603钻孔样品C-O-Sr同位素测试结果
Table 1 Carbon, oxygen and strontium isotopes analytical result from deep hole KK4603 in the Qixiashan deposit
样品编号 采样位置 岩性 层位 δ13CV-PDB/‰ δ18OV-PDB/‰ δ18OV-SMOW/‰ 87Sr/86Sr 标准误差 QXP1-1 KK4603 0-20m 灰岩 C2h -1.7 -19.1 11.2 0.709399 0.000013 QXP1-2 KK4603 20-40m 灰岩 C2h 1.2 -10.8 19.8 0.708490 0.000009 QXP1-3 KK4603 40-60m 灰岩 C2h 0.9 -12 18.6 0.708562 0.000009 QXP1-4 KK4603 60-80m 灰岩 C2h -0.5 -16.3 14.1 0.708857 0.000019 QXP1-5 KK4603 80-100m 灰岩 C2h 2.1 -17.9 12.5 0.708329 0.000010 QXP1-6 KK4603 100-120m 灰岩 C2h 1.9 -18.7 11.6 0.708638 0.000017 QXP1-7 KK4603 120-147m 灰岩 C2h 2.3 -17.2 13.2 0.708352 0.000016 QXP1-8 KK4603 147-152m 铅锌矿石 C2h -4.4 -23.2 7 0.709514 0.000019 QXP1-9 KK4603 152-157m 铅锌矿石 C2h -5 -21.7 8.5 0.710061 0.000014 QXP1-10 KK4603 157-161m 铅锌矿石 C2h -2.7 -17.7 12.7 0.710086 0.000013 QXP1-11 KK4603 161-164m 褪色灰岩 C2h -1.7 -19.8 10.5 0.709372 0.000010 QXP1-12 KK4603 164-171m 黄铁矿石 C2h -4.3 -21.2 9.1 0.711351 0.000021 QXP1-13 KK4603 171-175m 黄铁矿化灰岩 C2h -0.4 -19 11.3 0.709685 0.000009 QXP1-14 KK4603 175-188m 灰岩 C2h -0.8 -18.9 11.4 0.708630 0.000009 QXP1-15 KK4603 188-192m 黄铁矿化灰岩 C2h -3.8 -19.4 10.9 0.710163 0.000011 QXP1-16 KK4603 192-198m 铅锌矿石 C2h -3.7 -18 12.3 0.710466 0.000018 QXP1-17 KK4603 198-214m 铅锌矿石 C2h -4.1 -20.7 9.5 0.710109 0.000011 QXP1-18 KK4603 214-217m 锰矿石 C2h -5.1 -21.3 8.9 0.709602 0.000025 QXP1-19 KK4603 217-220m 锰矿石 C2h -4.9 -18.2 12.2 0.709220 0.000013 QXP1-20 KK4603 220-226m 铅锌矿石 C2h -4.4 -16.7 13.6 0.710137 0.000015 QXP1-21 KK4603 226-236m 铅锌矿石 C2h -2.6 -12.9 17.6 0.710063 0.000020 QXP1-22 KK4603 236-243m 铅锌矿石 C2h -4.8 -18.9 11.4 0.710197 0.000011 QXP1-23 KK4603 243-255m 铅锌矿石 C2h -1.6 -15 15.5 0.708748 0.000009 QXP1-24 KK4603 255-267m 铅锌矿石 C2h 1.3 -15.5 14.9 0.709528 0.000013 QXP1-25 KK4603 267-276m 褪色灰岩 C2h -0.7 -17.1 13.3 0.708606 0.000013 QXP1-26 KK4603 276-285m 铅锌矿石(接触带) C2h -3.5 -20.9 9.4 0.709737 0.000011 QXP1-27 KK4603 285-297m 铅锌矿石 C2h -0.2 -15.6 14.9 0.709823 0.000013 QXP1-28 KK4603 297-310m 铅锌矿石 C2h -0.7 -15.5 15 0.708459 0.000016 QXP1-29 KK4603 310-320m 角砾状含矿灰岩 C2h -1.6 -16.2 14.2 0.709526 0.000021 QXP1-30 KK4603 320-323m 角砾状含矿灰岩 C2h -2.1 -19.3 11 0.709806 0.000011 QXP1-31 KK4603 323-327m 黄铁矿石 C2h -0.6 -15.4 15 0.712917 0.000012 QXP1-32 KK4603 327-334m 铅锌矿石 C2h 1.9 -13.1 17.3 0.713207 0.000014 QXP1-33 KK4603 334-342m 铅锌矿石 C2h -1.8 -11 19.6 0.705725 0.000010 QXP1-34 KK4603 342-354m 铅锌矿石 C2h -0.7 -15.6 14.8 0.71178 0.000011 QXP1-35 KK4603 354-366m 铅锌矿石 C2h 1 -13.5 17 0.704816 0.000016 QXP1-36 KK4603 366-376m 铅锌矿石 C2h -0.2 -14.6 15.9 0.705199 0.000013 QXP1-37 KK4603 376-385m 铅锌矿石 C2h -0.4 -15.4 15 0.705744 0.000012 QXP1-38 KK4603 385-389m 黄铁矿石 C2h -0.3 -15.1 15.4 0.714050 0.000009 QXP1-39 KK4603 389-403m 泥质粉砂岩 C1g — — — 0.762018 0.000015 QXP1-40 KK4603 403-417m 泥质粉砂岩 C1g — — — 0.753588 0.000014 QXP1-41 KK4603 417-424m 细砂岩 C1g — — — 0.764320 0.000017 注:地层代号同图 3 -
刘沈衡.南京栖霞山铅锌多金属矿床地球物理勘查模式[J].物探与化探, 1999, 23(1):72-78. doi: 10.3969/j.issn.1000-8918.1999.01.014 王世雄, 周宏.关于开发利用南京栖霞山矿区物化探资料的地质方法问题[J].地质学刊, 1993, 17(2):107-113. http://www.cnki.com.cn/Article/CJFDTotal-JSDZ199302011.htm 杨元昭.南京栖霞山多金属矿区弱缓磁异常的性质及地质找矿意义[J].桂林理工大学学报, 1989, 9(2):202-208. http://www.cqvip.com/QK/91163X/198902/5195560.html 张明超, 陈仁义, 叶天竺, 等.江苏栖霞山铅锌多金属矿床成因探讨:流体包裹体及氢-氧-硫-铅同位素证据[J].岩石学报, 2017, 33(11):3453-3470. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711008 魏新良, 龚德奎.南京栖霞山铅锌银矿床深部找铜前景[J].地质学刊, 2013, 37(2):230-235. doi: 10.3969/j.issn.1674-3636.2013.02.230 曾正海.栖霞山矿区外围隐伏矿找矿经验[J].矿山地质, 1989, 39(3):8-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005324426 汪京, 蔡彩雯, 苏玉风.栖霞山铅锌多金属矿床矿石中银镉等伴生组分的赋存特点及综合利用[J].现代冶金, 1984, (2):21-28. http://www.cnki.com.cn/Article/CJFD1984-YAJI198402008.htm 欧亦君, 郭晓山.试论伴共生金银矿在南京栖霞山铅锌矿床综合勘查中的重要意义[J].地质学刊, 1990, (4):61-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001745260 陈福鑫.南京大凹山铅锌硫矿床成因探讨[J].地质学刊, 1992, 16(3/4):180-187. http://www.cnki.com.cn/Article/CJFDTotal-JSDZ1992Z1011.htm 于海华, 张达玉, 周涛发.宁镇矿集区栖霞山铅锌矿床黄铁矿的成分标型及其成因意义[J].吉林大学学报(地球科学版), 2015, (S1):1510. http://d.old.wanfangdata.com.cn/Conference/9244694 刘孝善, 陈诸麒, 陈永清, 等.南京栖霞山硫化物矿床的矿石结构构造及其对矿石的成因意义[J].南京大学学报, 1979, (4):75-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=801091 郭晓山, 肖振明, 欧亦君, 等.南京栖霞山铅锌矿床成因探讨[J].矿床地质, 1985, (1):11-21. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ198501001.htm 真允庆, 陈金欣.南京栖霞山铅锌矿床硫铅同位素组成及其成因[J].桂林理工大学学报, 1986, 6(4):319-328. http://www.cqvip.com/QK/91163B/198604/71767188495756544852484850.html 钟庆禄.南京栖霞山大型铅锌银多金属矿床的发现及其找矿远景[J].地质学刊, 1998, 22(1):56-61. http://www.cnki.com.cn/Article/CJFDTotal-JSDZ801.012.htm 徐忠发, 曾正海.南京栖霞山铅锌银矿床成矿作用与岩浆活动关系探讨[J].地质学刊, 2006, 30(3):177-182. doi: 10.3969/j.issn.1674-3636.2006.03.003 付强, 葛文胜, 王伟, 等.南京栖霞山铅锌银多金属矿床成矿物质来源:C、O、S、Pb同位素制约[J].矿物学报, 2011, (s1):578-579. http://d.old.wanfangdata.com.cn/Conference/7684891 谢树成, 殷鸿福, 王红梅, 等.南京栖霞山铅锌银多金属矿床的成矿流体特征[J].地质科技情报, 1998, 17(s1):78-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800069749 叶水泉, 曾正海.南京栖霞山铅锌矿床流体包裹体研究[J].资源调查与环境, 2000, 21(4):266-274. doi: 10.3969/j.issn.1671-4814.2000.04.003 桂长杰.江苏省南京市栖霞山铅锌矿矿床成因研究[D].南京大学硕士学位论文, 2012: 1-61. http://cdmd.cnki.com.cn/Article/CDMD-10284-1012376559.htm 张明超, 李景朝, 左群超, 等.江苏栖霞山铅锌银多金属矿床成矿时代探讨[J].中国矿业, 2015, 24(s2):128-134. http://d.old.wanfangdata.com.cn/Periodical/zgky2015z2030 蔡彩雯.栖霞山铅锌多金属矿床物质成分与矿床成因[J].地质与勘探, 1983, (6):18-23. http://www.cnki.com.cn/Article/CJFDTotal-DZKT198306004.htm 肖振民, 郭晓山, 欧亦君, 等.栖霞山铅锌锰硫矿床的多源层控特征[J].地质与勘探, 1983, (9):1-7. http://www.cnki.com.cn/Article/CJFDTotal-DZKT198309000.htm 杨元昭.据深源磁异常的发现论栖霞山多金属矿矿床的成因[J].地质与勘探, 1986, 22(2):42-46. http://www.cnki.com.cn/Article/CJFDTotal-DZKT198602008.htm 蒋慎君, 刘沈衡.栖霞山铅锌银矿床深部地质构造特征及成因过程模型初探[J].地质学刊, 1990, (3):9-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001745232 Liu S A, Li S G, He Y S, et al. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:Implications for petrogenesis and Cu-Au mineralization[J]. Geochimica Et Cosmochimica Acta, 2010, 74(24):7160-7178. doi: 10.1016/j.gca.2010.09.003
Wang Y, Deng J F, Ji G Y. A perspective on the geotectonic setting of early Cretaceous adakite-like rocks in the Lower Reaches of Yangtze River and its significance for copper-gold mineralization[J]. Acta Petrologica Sinica, 2004, 20(2):297-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200402011
刘沈衡.南京栖霞山铅锌多金属矿床重磁异常及矿床成因解释[J].地质找矿论丛, 1991, (1):76-84. http://www.cqvip.com/Main/Detail.aspx?id=463682 毛建仁, 赵曙良.宁镇山脉岩基岩浆的化学演化[J].资源调查与环境, 1990, (1):15-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001812255 毛建仁, 苏郁香, 陈三元.长江中下游中酸性侵入岩与成矿[M].北京:地质出版社, 1994:1-60. 徐莺.宁镇中段燕山期岩浆岩成因、演化规律及其与铜多金属成矿关系研究[D].中南大学硕士学位论文, 2010: 1-60. http://cdmd.cnki.com.cn/Article/CDMD-10533-2010189537.htm 曾键年, 李锦伟, 陈津华, 等.宁镇地区安基山侵入岩SHRIMP锆石U-Pb年龄及其地质意义[J].地球科学-中国地质大学学报, 2013, 38(1):57-67. http://d.old.wanfangdata.com.cn/Periodical/dqkx201301006 王小龙, 曾键年, 马昌前, 等.宁镇地区燕山期侵入岩锆石U-Pb定年:长江中下游新一期成岩成矿作用的年代学证据[J].地学前缘, 2014, 21(6):289-301. http://d.old.wanfangdata.com.cn/Periodical/dxqy201406028 关俊朋, 韦福彪, 孙国曦, 等.宁镇中段中酸性侵入岩锆石U-Pb年龄及其成岩成矿指示意义[J].大地构造与成矿学, 2015, (2):344-354. doi: 10.3969/j.issn.1001-1552.2015.02.014 Mao J, Wang Y, Lehmann B, et al. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications[J]. Ore Geology Reviews, 2006, 29(3/4):307-324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=50bbaac0ff73025a56c1a391edc3b5cc
郑永飞, 陈江峰.稳定同位素地球化学[M].北京:科学出版社, 2000:1-316. 彭建堂, 胡瑞忠.湘中锡矿山超大型锑矿床的碳、氧同位素体系[J].地质论评, 2001, 47(1):34-41. doi: 10.3321/j.issn:0371-5736.2001.01.005 吕志成, 刘丛强, 刘家军, 等.紫阳黄柏树湾和竹山文峪河毒重石矿床锶同位素及碳氧同位素研究[J].地球化学, 2005, 34(6):557-573. doi: 10.3321/j.issn:0379-1726.2005.06.003 Taylor B E. Magmatic volatiles; Isotopic variation of C, H and S[J]. Rev. Mineral., 1986, 16(1):185-225. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsrmg&resid=16/1/185
Veizer J, Holser W T, Wilgus C K. Correlation of 13C/12C and 34S/32S secular variations[J]. Geochimica Et Cosmochimica Acta, 1980, 44:579-587. doi: 10.1016/0016-7037(80)90250-1
Ohmoto H. Isotopes of sulfur and carbon[J]. Geochemistry of Hydrothermal Ore Deposits, 1979:509-567. doi: 10.2113-gsecongeo.67.5.551/
Zheng Y F. Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2[J]. Mineralium Deposita, 1990, 25(4):246-250. doi: 10.1007-BF00198993/
Clark I D, Fritz P F. Environmental Isotopes in Hydrology[J]. Boca Raton Fla Lewis Publishers, 1997, 80(5):532-532. doi: 10.1016-j.jhydrol.2010.04.007/
Hoefs J. Stable Isotope Geochemistry[M]. Springer, 1997:102-107.
刘家军, 何明勤, 李志明, 等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质, 2004, 23(1):1-10. doi: 10.3969/j.issn.0258-7106.2004.01.001 Keller J, Hoefs J. Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai[C]//Bell K, Keller J. Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites. IAVCEI Proceedings in Volcanology 4. Berlin: Springer, 1995: 113-123. doi: 10.1007%2F978-3-642-79182-6_9
刘建明, 刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J].矿物学报, 1997, (4):448-456. doi: 10.3321/j.issn:1000-4734.1997.04.012 Barnes H L. Geochemistry of Hydrothermal Ore Deposits (3rd Edition)[M]. New York:John Wiley and Sons, 1997:1-972.
Zheng Y F, Hoefs J. Carbon and oxygen isotopic covariations in hydrothermal calcites[J]. Mineralium Deposita, 1993, 28(28):79-89. doi: 10.1007-BF00196332/
郑永飞.稳定同位素体系理论模式及其矿床地球化学应用[J].矿床地质, 2001, 20(1):57-70. doi: 10.3969/j.issn.0258-7106.2001.01.007 毛景文, 赫英, 丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J].矿床地质, 2002, 21(2):121-128. doi: 10.3969/j.issn.0258-7106.2002.02.004 刘德良, 孙先如, 李振生, 等.鄂尔多斯盆地奥陶系白云岩碳氧同位素分析[J].石油实验地质, 2006, 28(2):155-161. doi: 10.3969/j.issn.1001-6112.2006.02.012 韩英.广东凡口铅锌矿床成矿机制与成矿模式[D].昆明理工大学博士学位论文, 2013: 94-103. http://cdmd.cnki.com.cn/Article/CDMD-10674-1013344754.htm 陶发祥, 洪业汤, 冷雪天.锶同位素对环境变化的指示意义[J].地球与环境, 1996, (5):45-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600061764 彭建堂, 胡瑞忠, 邓海琳, 等.湘中锡矿山锑矿床的Sr同位素地球化学[J].地球化学, 2001, 30(3):248-256. doi: 10.3321/j.issn:0379-1726.2001.03.008 彭建堂, 胡瑞忠, 蒋国豪.贵州晴隆锑矿床中萤石的Sr同位素地球化学[J].高校地质学报, 2003, 9(2):244-251. doi: 10.3969/j.issn.1006-7493.2003.02.010 彭建堂, 胡瑞忠, 赵军红, 等.湘西沃溪Au-Sb-W矿床中富放射成因锶的成矿流体及其指示意义[J].矿物岩石地球化学通报, 2003, 22(3):193-196. doi: 10.3969/j.issn.1007-2802.2003.03.001 祁进平, 赖勇, 任康绪, 等.小秦岭金矿田成因的锶同位素约束[J].岩石学报, 2006, 22(10):2543-2550. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200610015 翟建平, 胡凯.乳山金矿床的成因机制:成矿流体和H, O, Sr同位素证据[J].科学通报, 1996, (12):1119-1121. doi: 10.3321/j.issn:0023-074X.1996.12.017 Deer W A, Howie R A, Zussman J. An introduction to the rock forming minerals[M]. Longman Group Limited, 1966:509-517.
余金杰.宁芜地区凹山和太山铁矿床中磷灰石Sr同位素特征及意义[J].地质论评, 2003, 49(3):272-276. doi: 10.3321/j.issn:0371-5736.2003.03.008 赵斌, 赵劲松.长江中下游地区若干铁铜(金)矿床中块状及脉状钙质夕卡岩的氧锶同位素地球[J].地球化学, 1997, (5):34-53. doi: 10.3321/j.issn:0379-1726.1997.05.004 王坤, 李伟, 陆进, 等.川东地区石炭系碳酸盐岩碳、氧、锶同位素特征及其成因分析[J].地球化学, 2011, (4):351-362. http://d.old.wanfangdata.com.cn/Periodical/dqhx201104004 黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报, 1997, (1):45-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700067621 Veizer J. Strontium Isotopes in Seawater through Time[J]. Annual Review of Earth & Planetary Sciences, 2003, 17(1):141-167. doi: 10.1146-annurev.ea.17.050189.001041/
黄思静, 石和, 张萌, 等.上扬子石炭-二叠纪海相碳酸盐的锶同位素演化与全球海平面变化[J].沉积学报, 2001, 19(4):481-487. doi: 10.3969/j.issn.1000-0550.2001.04.001 Palmer M R, Elderfield H. Sr isotope composition of sea water over the past 75 Myr[J]. Nature, 1985, 314(6011):526-528. doi: 10.1038/314526a0
Palmer M R, Edmond J M. The strontium isotope budget of the modern ocean[J]. Earth & Planetary Science Letters, 1989, 92(1):11-26. http://www.sciencedirect.com/science/article/pii/0012821X89900174
Denison R E, Koepnick R B, Burke W H, et al. Construction of the Cambrian and Ordovician seawater, ja:math, curve[J]. Chemical Geology, 1998, 152(3/4):325-340. http://www.sciencedirect.com/science/article/pii/S0009254198001193
Kontak D J, Kerrich R. An isotopic (C, O, Sr) study of vein gold deposits in the Meguma Terrane, Nova Scotia; implication for source reservoirs[J]. Economic Geology, 1997, 92(2):161-180. doi: 10.2113/gsecongeo.92.2.161
朱东亚, 金之钧, 胡文瑄.塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义[J].中国科学:地球科学, 2010, (2):156-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000351464 孙晓明, 陆红峰, 马名扬.粤北凡口超大型铅锌矿热液碳酸盐矿物微量元素和C、O、Sr同位素组成及其矿床成因意义[C]//全国包裹体及地质流体学术研讨会论文摘要. 2002. 刘家军, 吕志成, 吴胜华, 等.南秦岭大巴山大型钡成矿带中锶同位素组成及其成因意义[J].地学前缘, 2014, 21(5):23-30. http://d.old.wanfangdata.com.cn/Periodical/dxqy201405003 陈思松, 魏金生, 吴乔良, 等.宁镇地区岩浆岩与内生金属矿成矿关系研究.江苏省地矿局中心实验室与南京大学, 1989. 华东有色地质矿产勘查开发院.江苏省南京市栖霞山铅锌矿接替资源勘查2012年度工作方案. 2012.