Geochemical characteristics, zircon U-Pb ages and geological implications of the eastern Innermongolia in Yanggeliya Mountain intermediate-acid rock
-
摘要:
内蒙古东部央格力雅山岩体岩性为正长花岗岩、二长花岗岩和英云闪长岩。正长花岗岩U-Pb年龄为130.4±1.1Ma,英云闪长岩U-Pb年龄为126.6±3.0Ma、二长花岗岩锆石U-Pb年龄分别为131.6±1.1Ma和130.7±1.5Ma,显示岩体侵位时间为早白垩世。地球化学研究表明,该花岗岩体具有富硅、富碱、贫钙的特征,属准铝质-过铝质高钾钙碱性系列岩石;稀土元素总量较低、轻重稀土元素分馏明显,(La/Nb)N值在9.14~24.86之间、正Eu异常显著(δEu值为1.03~1.53);微量元素K、La、Sr、Gd等明显富集,Nb、Pr、P、Ti等亏损;大离子亲石元素相对高场强元素富集。岩石分异指数平均为80.63,岩石成因类型属高分异I型花岗岩,岩浆来源于下地壳岩石的部分熔融,形成于伸展环境,与古太平洋板块俯冲作用密切相关。
-
关键词:
- 中酸性岩体 /
- 地球化学特征 /
- LA-ICP-MS锆石U-Pb年龄 /
- 岩石成因 /
- 央格力雅山
Abstract:The Yanggeliya Mountain is located in the Oroqen Autonomous Banner, Hulunbuir City, eastern Inner Mongolia. Syenogranite, monzoniticgranite and tonalite are the main rocks, and the LA-ICP-MS zircon U-Pb age indicates that the emplacement time is Early Cretaceous (130.4 ±1.1Ma) for syenogranite, 126.6 ±3.0Ma for monzoniticgranite, 131.6 ±1.1Ma and 130.7±1.5Ma for tonalite. The study of rock geochemistry shows that the granite body is characterized by rich silicon and alkali, and depletion of calcium, belonging to the quasi-aluminum-peraluminous, high-potassic, calcium-alkali series of rocks. The total amount of rare earths is relatively low, the fractionation between LREE and HREE is obvious, and the (La/Nb)N values are between 9.14 and 24.86. The Eu has obvious positive anomalies (the δEu values are in the range of 1.03~1.53). As for trace elements, the values of K, La, Sr and Gd are obviously enriched, whereas Nb, Pr, P and Ti are depleted. Large ionic lithophile elements are enriched with relatively high field strength elements. The rock differentiation index DI averages 80.63. The above characteristics are similar to those of highly differentiated I-type granites. The source of magma was the crust-derived magma series, which was the product of the partial melting of continental crust rock, and the tectonic setting was a stretching environment which was closely related to subduction of ancient Pacific plate.
-
蛇绿岩是一种可与现代大洋岩石圈对比的镁铁-超镁铁质岩石组合,在古洋消减、大陆造山带形成过程中,以构造侵位的方式产在造山带中,作为重大地质界线和板块缝合边界受到地学界的广泛关注[1],可以为古板块构造格局恢复、造山带演化、变形作用过程重建、深源成矿作用等研究提供重要信息,被广泛应用于全球板块构造系统研究,是目前人类探测地球深部物质组成的最好窗口[2-6]。
北疆地区东准噶尔造山带位于阿尔泰造山带和天山造山带之间,其古生代以来的大地构造演化是显生宙亚洲大陆增长和古亚洲洋演化的重要阶段,同时也涉及当今有关大陆造山带模型等重要理论问题[7-14]。然而东准噶尔构造带古生代以来的构造演化迄今未形成共识,尤其是对其中的蛇绿岩时代、构造属性、就位环境等存在争议[9-11, 14-18]。东准噶尔造山带大地构造相解剖表明[9-13, 19],自北向南由一系列岛弧杂岩带和增生楔杂岩组成,其大地构造相自北向南大致包括都拉特复合岛弧、阿尔曼太蛇绿岩、野马泉复合岛弧、卡拉麦里蛇绿岩、将军庙增生杂岩,研究区集中于争议较大的阿尔曼太蛇绿岩带(图 1),通过对蛇绿岩中基性岩块的岩石学和地球化学研究,探讨其岩石成因及地质意义。
前人研究认为,阿尔曼太蛇绿岩为SSZ型蛇绿岩,产于岛弧、弧后盆地等环境,其主要证据在于玄武岩的地球化学特征。分析认为,该区玄武岩Nb相对于Th、La、Ce亏损,稀土元素曲线皆为轻稀土元素(LREE)富集型,且变化范围较宽,说明了幔源的多样性。阿尔曼太蛇绿岩套变质橄榄岩由于强烈蛇纹石化,其主量元素的地球化学意义不大,而堆晶岩成分变化较大,显示了岩浆结晶分离作用的影响,浅成-喷出岩类以辉绿岩、玄武岩和安山玄武岩为主,主体为亚碱性系列[17]。
1. 蛇绿岩物质组成
研究区阿尔曼太蛇绿岩带位于准噶尔盆地东北缘,乌伦古河南侧,西起准噶尔盆地东缘的札河坝附近,向东沿阿尔曼太山,断续延伸到中蒙边境,走向北西西,蛇绿岩带长约200km,宽3~5km。阿尔曼太蛇绿岩带不同区段各单元发育情况不同,出露宽度相差悬殊,最宽处在札河坝一带,变窄处在兔子泉以西,出露只有数十米,甚至缺失。在东段中蒙边境地区以变质玄武岩为主,变质橄榄岩仅零星出露;在阿尔曼太山主脊线一带,蛇绿岩套发育较完整,变质橄榄岩、堆晶辉长岩和辉绿岩、玄武岩、玄武安山岩均有发育,但完好剖面不多见,堆晶岩、辉绿岩一般以残块形式出现;在西段札河坝地区蛇绿岩以发育变质橄榄岩为主,堆晶岩和辉绿岩不及阿尔曼太山主脊线处发育,顶部有具枕状构造、变形强烈的玄武岩。
本次研究对札河坝-二台蛇绿岩测制了Ⅹ、Ⅺ号剖面(图 2、图 3)。剖面控制了岩块、基质的规模、产状、接触关系。从图 2可以看出,札河坝地区蛇绿岩组分较齐全,有(白云石)蛇纹岩、辉长岩、斜长岩、辉绿岩、玄武岩、放射虫硅泥质沉积。各个岩石单元呈断块产出,相互叠置,由于受断裂构造的影响,各块体岩石均破碎严重。剖面测制,均从围岩地层开始,绿岩各岩块均小规模出露,且间隔大片第四系,受比例尺影响,剖面均未能连续穿透。但基本岩石组合已经明确,后续多为重复出现。
2. 岩相学特征
2.1 蛇纹岩
蛇纹岩一般呈暗灰绿色、黑绿色或黄绿色,色泽不均匀,质软、具滑感,叶片、纤维、纤状变晶结构,块状构造,表面局部可见蛇纹石化石棉。镜下为交代网状结构,主要由蛇纹石(60%~65%)、菱镁矿(20%~25%)和磁铁矿(5%~10%)、滑石(2%~3%)、少量铬尖晶石及极少量透闪石组成。以细粒磁铁矿、菱镁矿集合体为网而以蛇纹石为格(结)组成交代网格结构,表明原始矿物是橄榄石,局部交代强烈被蛇纹石纤状结合体替代网格。其中蛇纹石有2种:一种是无序排列的叶蛇纹石鳞片集合体,一种是平行排列的纤蛇纹石。一般叶蛇纹石排列在内核,而纤蛇纹石排列在外环。菱镁矿呈斑点浸染分布,有时聚集成团块。磁铁矿主要呈细粒集合体网脉状结构,少量集合成磁铁矿粒晶(图 4-a、b)。
2.2 玄武岩
镁铁质火山岩蚀变相对较弱,岩性为玄武岩,出露面积较大,岩石为灰黑色、青灰色,风化面多为褐色,碎裂结构,块状构造,局部具有残破的枕状构造。镜下为斑状结构,基质具间粒间隐结构。斑晶含量20%~30%,粒径为0.5~3mm,主要由斜长石和辉石组成。斜长石斑晶有2类:一类以绢云母化为主,呈碎屑状或板柱状;一类以钠黝帘石化为主,常呈板柱状,与基质协调。辉石多呈聚晶,多数绿泥石化、方解石化,个别新鲜但内部被交代。基质更复杂,由斜长石、较多蚀变矿物(绿泥石、绿帘石、阳起石和方解石)和极少量石英组成。局部具有典型的间粒间隐结构(图 4-c、d)。
3. 岩石地球化学特征
野外样品采自阿尔曼太蛇绿构造岩带,主要对蛇绿岩中具代表性的基性熔岩按路线进行采样,共采集3组样品,其中在阿尔曼太兔子泉地区采集1组样品(AMT06),在阿尔曼太山地区采集2组样品(AMT11、AMT12)。通过镜下岩相学研究,对较新鲜、蚀变弱、无脉体的样品进行了岩石地球化学测试,测试单位为中国地质调查局西安地质调查中心。主量元素的XRF分析在Xios4.0kwX-荧光光谱仪(仪器编号为SX-45)上完成,精度和准确度优于5%;微量和稀土元素采用等离子质谱仪ICP-MS(仪器编号为SX-50)进行分析,分析精度和准确度优于10%,其中样品AMT06、AMT11、AMT12测试结果见表 1。
表 1 阿尔曼太基性岩主量、微量和稀土元素含量Table 1. Major, trace and rare earth elements compositions样品 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 烧失量 总计 Mg# Cu Pb Zn Cr Ni Co Li Rb Cs Mo Sr Ba AMT06-1 47.11 0.77 15.92 3.53 5.19 0.15 8.51 4.85 3.68 4.29 0.2 5.79 99.99 0.65 57.8 5.29 76.1 406 131 36.3 23.4 170 11.8 0.2 91.2 162 AMT06-2 48.12 0.85 17.14 3.17 4.85 0.12 7.17 3.93 4.3 4.42 0.21 5.72 100 0.63 61.1 5.85 75.1 130 30.4 25.3 28.8 164 10.9 0.35 82.3 193 AMT06-3 47.9 0.88 17.23 3.31 5.1 0.13 7.04 3.96 3.86 4.79 0.22 5.57 99.99 0.61 63.1 3.02 72.2 132 27.5 25.3 32.8 165 11.3 0.64 67.8 273 AMT06-4 47.46 0.83 16.73 2.98 5.18 0.13 7.58 4.29 4.12 4.49 0.21 6.02 100.02 0.63 67.6 3.38 73.9 181 50 24.2 29.1 172 11.6 1.01 89.2 210 AMT06-5 48 0.8 16.57 3.21 4.93 0.14 7.44 4.45 4.34 3.95 0.22 5.96 100.01 0.63 71.5 4.88 72.1 191 66.2 28.9 26.3 146 9.65 0.67 108 175 AMT06-6 48.38 0.8 16.8 3.03 5.19 0.13 6.96 4.74 4.13 3.97 0.2 5.68 100.01 0.61 69.8 3.64 68.4 255 76.4 29.7 29.3 144 8.95 0.54 91.2 258 样品 V Sc Nb Ta Zr Hf Ga U Th La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE δEu AMT06-1 219 26 4.24 0.35 85.5 1.85 16.9 0.96 3.07 13.9 30 3.88 16.2 3.64 0.96 3.5 0.51 3.52 0.72 2.02 0.29 1.77 0.28 18.9 81.2 0.81 AMT06-2 232 25.7 4.63 0.4 94.1 2.12 18 0.95 3.25 15.1 31.7 4.04 16.6 3.7 1.05 3.59 0.49 3.71 0.76 2.17 0.34 2 0.31 18.8 85.6 0.87 AMT06-3 245 27.4 4.69 0.36 96.9 2.03 18.2 0.87 3.05 14.3 30.9 4.01 17.1 3.99 1.08 3.6 0.55 4.07 0.77 2.34 0.32 2.18 0.35 20.3 85.6 0.85 AMT06-4 233 25.5 4.64 0.35 89.4 1.94 16.5 0.9 3 14.2 30.9 3.84 15.8 3.88 1.13 3.38 0.53 3.78 0.75 2.23 0.3 1.97 0.32 19.3 83 0.93 AMT06-5 212 24.1 4.64 0.4 94.8 2.15 17.4 1 3.4 15.2 32.2 4.07 16.8 3.96 1.19 3.66 0.54 3.5 0.76 2.19 0.3 2.02 0.33 19.7 86.7 0.94 AMT06-6 224 26.3 4.53 0.34 88.1 1.94 17.3 0.95 3.21 14.3 30.5 3.98 16.3 3.74 1.02 3.41 0.53 3.56 0.74 2.16 0.29 2.01 0.28 18.6 82.8 0.85 样品 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 烧失量 总计 Mg# Cu Pb Zn Cr Ni Co Li Rb Cs Mo Sr Ba AMT11-1 45.24 1.55 12.61 4.22 7.93 0.22 4.13 13.26 3.93 0.52 0.15 6.18 99.94 0.39 93.3 1.86 91.8 166 76.9 43 14.2 12.2 1.67 0.8 343 139 AMT11-2 46.81 1.71 12.67 3.66 8.43 0.21 4.53 11.16 4.55 0.23 0.25 5.78 99.99 0.41 65.2 0.86 98.1 137 76.7 43.4 12.2 6.86 0.94 0.4 212 60 AMT11-3 48.04 1.62 12.72 3.39 8.18 0.19 4.85 10.82 4.52 0.22 0.23 5.2 99.98 0.44 62.8 1.55 101 132 51 37.6 13.1 5.67 0.64 0.87 269 93.5 AMT11-4 45.2 1.57 13.2 3.38 9.1 0.19 4.67 10.9 4.2 0.58 0.19 6.8 99.98 0.41 77.4 1.84 105 124 50.7 41.1 13 18.6 2.2 0.51 266 93.3 AMT11-5 47.45 1.65 12.77 3.76 8.08 0.2 4.8 10.98 4.39 0.33 0.24 5.34 99.99 0.43 53 2.53 99.9 129 45.5 37 12.3 9.3 0.97 0.85 276 113 AMT11-6 44.48 1.62 13.1 4.24 8.69 0.21 4.76 11.44 4.02 0.58 0.18 6.69 100.01 0.41 94 1.8 104 132 55.4 42.2 13.8 17.6 2.18 0.48 238 77.8 AMT11-7 45.21 1.57 13.8 3.65 7.48 0.18 4 12.54 4.1 0.61 0.2 6.64 99.98 0.4 110 2.31 87.1 125 61.1 42.8 13.6 14.8 1.96 0.28 353 140 AMT11-8 45.23 1.34 13.49 4.13 5.46 0.17 4 16.11 3.3 0.47 0.16 6.13 99.99 0.44 89 1.88 61 95.8 48.1 36 9.04 10 1.4 0.24 238 128 AMT11-9 46.42 1.44 10.65 3.62 9.45 0.34 5.06 14.44 3.22 0.35 0.16 4.84 99.99 0.42 62.8 0.61 97.3 105 50.7 44.8 12.9 7.94 0.92 0.09 176 78.2 样品 V Sc Nb Ta Zr Hf Ga U Th La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE δEu AMT11-1 300 41.3 1.66 0.2 84.9 2.02 15.8 0.27 0.14 3.41 10.2 1.83 10.7 3.97 1.25 4.97 0.81 6.02 1.33 3.96 0.54 3.79 0.56 36.6 53.3 0.86 AMT11-2 314 45.8 2.06 0.17 94 2.29 14.8 0.24 0.11 3.86 11 2.13 12.3 4.51 1.51 5.97 0.95 7.12 1.64 4.78 0.69 4.62 0.7 45.1 61.8 0.89 AMT11-3 308 46.8 1.57 0.097 90.5 2.17 13.6 0.27 0.11 3.24 9.75 1.77 11.6 4.09 1.4 5.32 0.85 6.7 1.54 4.53 0.62 4.25 0.62 41.7 56.3 0.91 样品 V Sc Nb Ta Zr Hf Ga U Th La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE δEu AMT11-4 319 44.6 1.4 0.11 88.3 2.06 15.1 0.21 0.1 3.06 9.39 1.79 10.6 3.96 1.3 5.18 0.8 6.23 1.46 4.35 0.62 4.07 0.6 39 53.4 0.87 AMT11-5 299 45.5 1.51 0.11 89.9 1.98 13.7 0.31 0.16 3.7 10.5 1.97 11.5 3.9 1.29 5.55 0.88 6.78 1.45 4.64 0.66 4.2 0.62 42.3 57.6 0.84 AMT11-6 312 43.3 1.44 0.14 90.2 1.97 17.8 0.23 0.05 3.08 9.4 1.73 10.8 3.88 1.18 5.09 0.82 6.08 1.28 4.1 0.6 3.62 0.54 37.2 52.2 0.81 AMT11-7 286 41.6 2.53 0.15 96.4 2.15 18.6 0.27 0.12 4.39 12 2.04 11.3 3.93 1.05 4.8 0.74 5.56 1.24 3.83 0.51 3.25 0.48 33.6 55.1 0.74 AMT11-8 264 36.9 2.89 0.21 83.4 1.71 19.5 0.26 0.18 3.89 10.4 1.7 10.2 3.22 0.99 4.16 0.67 4.75 1.03 3.27 0.49 3 0.44 29.1 48.2 0.82 AMT11-9 301 42 2.74 0.19 80.5 1.79 13.8 0.24 0.12 3.26 9.38 1.54 9.29 3.72 1 4.39 0.7 5.34 1.16 3.74 0.5 3.31 0.48 33.2 47.8 0.75 样品 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 烧失量 总计 Mg# Cu Pb Zn Cr Ni Co Li Rb Cs Mo Sr Ba AMT12-1 47.69 1.62 14.04 2.1 9.36 0.16 8.56 8.58 3.49 0.2 0.17 4.01 99.98 0.58 87.3 1.19 99.2 528 285 56.8 24.6 3.9 0.33 0.3 309 102 AMT12-2 48.25 1.63 13.51 2.24 8.71 0.16 8.86 8.75 3.44 0.31 0.18 3.96 100 0.6 80 1.45 85 540 269 52.4 25.5 3.58 0.33 0.29 282 191 AMT12-3 47.4 1.48 14.08 1.78 7.6 0.14 7.27 9.75 3.88 0.58 0.19 5.85 100 0.59 66.1 1.04 81 431 192 46.2 25.7 6.15 0.48 0.22 225 439 AMT12-4 46.05 1.2 12.65 1.61 6.45 0.14 6.15 13.37 3.54 1.04 0.14 7.65 99.99 0.58 76.8 1.23 64.9 351 161 38.8 18.9 8.17 0.4 0.5 207 122
0AMT12-5 46.67 1.52 13.99 3.19 6.8 0.14 7.43 13.59 2.47 0.21 0.17 3.79 99.97 0.58 101 1.36 73.6 452 231 50.7 20.7 3.14 0.34 0.2 375 127 AMT12-6 44.58 1.4 13.1 1.86 8.34 0.16 8.12 11.85 2.98 0.6 0.16 6.83 99.98 0.59 71.9 1.2 81.4 443 214 49.2 28.8 6.49 0.56 0.18 234 554 AMT12-7 45.72 1.43 12.96 1.62 7.53 0.15 7.12 12.52 3.45 0.51 0.18 6.82 100.01 0.59 78.2 0.96 70.4 411 219 50 21.2 5.29 0.28 0.3 270 418 AMT12-9 47.3 1.39 14.91 2.85 7.59 0.14 7.3 11.19 2.69 0.34 0.14 4.14 99.98 0.56 48.1 1.05 79.9 422 200 45 24.9 3.66 0.19 0.33 381 273 样品 V Sc Nb Ta Zr Hf Ga U Th La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE δEu AMT12-1 268 33.2 14.3 1.01 106 2.16 18.7 0.32 0.85 11.6 26.6 3.64 16.5 4.31 1.4 4.95 0.79 4.79 1 2.69 0.44 2.63 0.36 26.1 81.7 0.92 AMT12-2 267 34.3 13.6 1.01 104 2.16 17.7 0.32 0.87 10.8 24.7 3.51 16.2 3.79 1.33 4.68 0.75 4.68 0.97 2.68 0.44 2.45 0.34 25.4 77.3 0.96 AMT12-3 235 30 12 0.88 96.1 1.97 14.5 0.45 0.69 10.5 23.2 3.09 14.8 3.47 1.11 4.23 0.74 4.54 0.94 2.51 0.41 2.5 0.31 24.7 72.4 0.88 AMT12-4 196 24.7 9.29 0.78 75.9 1.56 13.1 0.3 0.58 7.83 18 2.44 11.3 2.74 1.2 3.59 0.59 3.65 0.8 2.1 0.34 2.12 0.28 20.5 57 1.17 AMT12-5 253 29.6 12.4 0.98 97.2 2.06 17.7 0.42 0.74 9.02 21.4 3.17 13.9 3.61 1.43 4.4 0.72 4.57 0.92 2.54 0.4 2.47 0.33 24.4 68.9 1.09 AMT12-6 233 29.4 12 0.87 90.3 1.83 15.6 0.56 0.69 10 23 3.16 13.7 3.52 1.26 4.28 0.69 4.17 0.84 2.25 0.37 2.34 0.31 22.7 69.9 0.99 AMT12-7 226 27.4 12 0.93 92 1.72 15.4 0.5 0.68 9.73 21.8 3.01 14.6 3.34 1.19 4.11 0.65 4.29 0.89 2.29 0.42 2.42 0.32 23.8 69.1 0.98 AMT12-9 212 27.8 12.6 0.87 104 2.13 21.6 0.39 1.09 9.76 23.5 3.15 14.3 3.41 1.41 4.2 0.67 4.3 0.87 2.33 0.39 2.57 0.29 22.9 71.2 1.13 注:Mg#=MgO/(MgO+TFeO)(分子数);主量元素含量单位为%,微量和稀土元素含量单位为10-6 3.1 主量元素
样品AMT06 SiO2含量为47.11%~48.38%,平均47.83%;TiO2含量为0.77%~0.88%,平均0.82%,与IAT(0.83%)较接近[20];Al2O3含量为15.92%~17.23%,平均16.73%,与岛弧拉斑玄武岩和板内溢流拉斑玄武岩高Al2O3含量特征相似,后两者分别为16%和17.08%[21],而明显不同于大西洋、太平洋和印度洋中脊拉斑玄武岩的Al2O3含量(分别为15.6%、14.86%、15.15%)[22];MgO含量为6.96%~8.51%,平均7.45%,相对较高;Mg#值为0.61~0.65,平均0.63,接近于原始岩浆成分(0.68~0.75),说明原生岩浆的分异演化较弱。Na2O + K2O含量为7.97% ~8.72%,平均为8.39。在SiO2-Nb/Y图解上,所有样品的Nb/Y值均小于0.7,位于亚碱性系列区;从SiO2-TFeO/MgO图解可以看出,所有样品点位于拉斑系列范围,且样品点非常集中,变化范围小(图 5)。
样品AMT11 SiO2含量为44.08%~48.04%,平均46.01%;TiO2含量为1.34%~1.71%,平均1.56%,与MORB的TiO2(1.5%)较接近[20];Al2O3含量为10.65%~13.80%,平均12.78%,含量较低;MgO含量为4.00%~5.06%,平均4.53%;Mg#值为0.39~0.44,平均0.42,说明原生岩浆发生分异演化。Na2O含量为3.22%~4.55%,平均4.03%;K2O含量为0.22%~0.61%,平均0.43%;Na2O+K2O含量为3.57%~4.78%,平均4.46%。主量元素相对富MgO,贫Al2O3、K2O,Na2O含量大于K2O含量,类似于MORB型岩石。在SiO2-Nb/Y图解上,所有样品的Nb/Y值均小于0.7,位于亚碱性系列区;从SiO2-TFeO/MgO图解可以看出,所有样品点位于拉斑系列范围(图 5)。
样品AMT12 SiO2含量为44.58%~48.25%,平均46.71%;TiO2含量为1.20%~1.63%,平均1.46%,介于IAT(0.83%)与MORB(1.5%)之间[20],更接近于MORB。Al2O3含量为12.65% ~14.91%,平均13.66%,近于大西洋、太平洋和印度洋中脊拉斑玄武岩的Al2O3含量(分别为15.6%、14.86%、15.15%)[21],明显不同于岛弧拉斑玄武岩和板内溢流拉斑玄武岩高Al2O3含量特征,后两者分别为16%和17.08%[22];MgO含量为6.15%~8.86%,平均7.60%,较高;Mg#值为0.56~0.60,平均0.58%,低于原始岩浆成分(0.68~0.75),说明原生岩浆发生较弱的分异演化。Na2O含量为2.47%~3.88%,平均3.24%;K2O含量为0.20%~1.04%,平均0.47%;Na2O+K2O含量为2.68%~4.58%,平均3.72%。在SiO2-Nb/Y图解上,所有样品的Nb/Y值均小于0.7,位于亚碱性系列区;从SiO2-TFeO/MgO图解可以看出,所有样品点位于拉斑系列范围(图 5)。
3.2 微量和稀土元素
AMT06样品的稀土元素总量(∑REE)较高,为81.19×10-6~86.72×10-6,平均为84.14×10-6,轻、重稀土元素比值(LREE/HREE)在2.07~2.24之间,(La/Yb)N=4.46~5.33,(La/Sm)N=2.24~2.55,(Gd/Yb)N=1.34~1.60,表明轻稀土元素富集而重稀土元素亏损,轻、重稀土元素分馏明显,轻稀土元素组内部的元素分馏程度较重稀土元素分馏强。在球粒陨石标准化配分模式图(图 6)中,配分曲线右倾,强烈富集轻稀土元素,Eu显示弱的负异常(δEu值为0.81~ 0.94,平均0.87)。原始地幔标准化微量元素蛛网图(图 6)显示,大离子亲石元素Rb和K富集,Sr强烈亏损,而高场强元素相对亏损,具有较强的负Nb异常和较弱的Hf、Ti负异常,Zr、Sm显示为较弱的正异常。
AMT11样品的∑REE较高,为47.81×10-6~61.78×10-6,平均为53.98×10-6,LREE/HREE值在0.48~0.65之间,(La/Yb)N=0.51~0.92,(La/Sm)N=0.48~0.75,(Gd/Yb)N=1.01~1.19,表明轻稀土元素亏损而重稀土元素富集,轻、重稀土元素分馏不明显,轻稀土元素内部的元素分馏程度较重稀土元素分馏弱。从球粒陨石标准化配分模式图(图 6)可以看出,轻稀土元素亏损,而重稀土元素呈平坦型分布,稀土元素配分模式与洋脊拉斑玄武岩稀土元素配分曲线相似,Eu显示弱负异常(δEu值为0.71~0.91,平均0.83)。在原始地幔标准化的微量元素蛛网图(图 6)上,大离子亲石元素Rb、Ba、U和K富集,Sr弱亏损,高场强元素显示Nb、P等的负异常。高场强元素分异不明显,显示岛弧岩浆的特征,说明该玄武岩的形成与板块俯冲有关。
AMT12样品的∑REE较高,为56.98×10-6~81.70×10-6,平均为70.92×10-6,LREE/HREE值在1.28~1.46之间,(La/Yb)N=2.48~3.00,(La/Sm)N=1.56~1.89,(Gd/Yb)N=1.32~1.55,表明轻稀土元素富集而重稀土元素亏损,轻、重稀土元素之间分馏明显,轻稀土元素组内部的元素分馏程度较重稀土元素分馏强。球粒陨石标准化配分模式图(图 6)显示,配分曲线右倾,强烈富集轻稀土元素,Eu无明显异常(δEu值为0.88~1.17,平均1.02)。在原始地幔标准化微量元素蛛网图(图 6)上,大离子亲石元素Rb、Th和K亏损,Ba、U具正异常,而高场强元素相对亏损,具有较强的正Ta异常和较弱的负Hf异常,Hf、Sm显示为较弱的正异常。
4. 构造环境
在基性熔岩的TiO2- MnO×10-P2O5×10图解(图 7)中,AMT06样品点主要落入钙碱性玄武岩(CAB)和岛弧拉斑玄武岩(IAT)分界线区域,AMT11、AMT12总体落入洋中脊玄武岩(MORB)区域,其中AMT12样品点大部分落入MORB,少数有从IAT到MORB的过渡趋势。在Nb/La-(Th/Nb)N图解(图 8-a)中,除AMT12样品外,其余样品Nb/La值均小于1,且除AMT11和AMT12以外,其余样品(Th/Nb)N值均大于1。以上特征显示,除AMT12样品外,AMT06和AMT11样品均遭受地壳不同程度的混染。在基性熔岩Zr-Zr/Y图解(图 8-b)中,AMT06和AMT12样品点主要投在板内玄武岩(WPB)及与MORB的边界区域,Zr及Zr/Y值(65.70×10-6~119.00×10-6, 3.00~5.36)与大陆玄武岩(Zr>70×10-6, Zr/Y>3)相符。AMT11样品点均落入洋中脊玄武岩区域和岛弧玄武岩区域,并具有过渡的趋势,Zr及Zr/Y值(40.90×10-6~122.00×10-6, 1.84~3.02)与岛弧玄武岩(Zr < 130×10-6, Zr/Y < 4)相符[24]。在此基础上,基性熔岩的Th-Ta-Hf/3(图 9-a)和Nb×2-Zr/4-Y(图 9-b)图解显示,AMT06和AMT11样品点主要投入MORB和IAB区域,反映其与洋中脊和消减带的岛弧环境相关,AMT06样品主要显示岛弧玄武岩特征,而AMT11样品主要显示洋中脊玄武岩特征。AMT12样品点投入板内碱性玄武岩和板内玄武岩区域,表明其与板内拉张有关。
图 8 (Th/Nb)N-Nb/La图解(a)和Zr-Zr/Y图解[24](b)WPB—板内玄武岩;MORB—洋中脊玄武岩;IAB—岛弧玄武岩Figure 8. (Th/Nb)N-Nb/La(a)and Zr-Zr/Y(b)diagrams据研究,Ba、Th、Nb、La四个分配系数相近的极不相容元素在海水蚀变或变质过程中较稳定,尤其是它们的比值在部分熔融和分离结晶过程中均保持不变,可最有效地指示源区特征。在基性熔岩La-La/Nb(图 10-a)和Nb-Th/Nb(图 10-b)图解中,AMT06样品点投入IAB区域,AMT11样品点主要投入MORB区域,AMT12样品点位于洋岛玄武岩(OIB)区域或其边界附近,且兼具二者特征或从MORB向IAB过渡的特点。
研究区基性熔岩AMT06样品的Nb/La值(平均0.31)与典型的岛弧岩浆岩的Nb/La值(约为0.3)接近或一致,说明AMT06样品具有岛弧玄武岩特征;AMT11样品中,Th/Ta=0.63~1.45,平均值为0.83,La/Ta=17.05~33.64,平均值为24.62,与MORB中Th/Ta =0.75~2,La/Ta=10~20[25]一致,说明AMT11样品的Th/Ta、La/Ta值,更接近SSZ环境对应的比值(Th/Ta=3~5, La/Ta=30~40);AMT12样品Nb/La的平均值为1.24,与洋岛玄武岩Nb/La值(约1.3)接近,说明AMT12样品具有板内洋岛玄武岩特征。
由此可见,阿尔曼太蛇绿岩中的基性熔岩包括3种类型,即岛弧型玄武岩(AMT06)、洋中脊玄武岩(AMT11)和洋岛玄武岩(AMT12)。其中,OIB是在洋壳俯冲时被刮削下来与其组分一起卷入蛇绿岩带就位形成的,并非蛇绿岩组分;MORB和IAT属于蛇绿岩组成部分,其球粒陨石标准化配分曲线具有轻稀土元素略亏损型的MORB特征和轻稀土元素略富集的IAT特征,原始地幔标准化配分曲线表现为IAT和MORB的双重特点,主量、微量元素判别图解显示,IAT和MORB兼具并呈现过渡的特点,相关微量元素比值特征也显示相似的特征,该特点与阿曼蛇绿岩相似[20]。结合对南智利中这种过渡型蛇绿岩的研究:从洋脊到海沟,蛇绿岩地球化学特征有从MORB向SSZ方向过渡演化的趋势,并且越向海沟,SSZ的特点就越明显[26]。针对这一特性,笔者认为,阿尔曼太蛇绿岩的形成可能介于洋脊到海沟之间的偏海沟区域。
5. 基性岩块源区
在基性岩Zr/Nb-Nb/Th图解(图 11-a)中,AMT06样品点主要投在岛弧玄武岩区域(ARC),AMT11样品点主要投入N-MORB的亏损地幔区域,AMT12样品点投在洋底玄武岩(OPB)边界附近。在基性岩Nb/Y-Zr/Y图解(图 11-b)中,样品点均主要落在△Nb线两侧,大多投入介于洋底玄武岩(OPB)的原始地幔(PM)与N-MORB的亏损地幔(DM)之间,指示这些样品可能为相同岩浆体系下演化的产物,且AMT12样品表现出该基性岩形成过程中,分别受到批次熔融(F)和俯冲流体作用的影响。样品在Zr/Nb-Nb/Th图解(图 11-a)中,主要集中在大陆岩石圈(EN)和大陆上地壳(UC)区域,表明其形成与岛弧或陆壳物质的带入密切相关,与岛弧带关系密切。
图 11 基性岩Zr/Nb-Nb/Th(a)和Nb/Y-Zr/Y(b)图解[27]DEP—高度亏损地幔;EN—富集单元,包括上地壳和大陆岩石圈,后者可能具有消减带化学特征;REC—循环单元,包括Em1、Em2和HIMU;HIMU—高(U/Pb)地幔源区;Em1、Em2—富集地幔源区;UC—大陆上地壳;ARC—岛弧产生的玄武岩;N-MORB—洋脊玄武岩;OIB—洋岛玄武岩;OPB—洋底玄武岩;PM—原始地幔;DM—浅部亏损地幔单元。单箭头指示批次熔融(F)和俯冲流体(SUB)作用,△Nb线为地幔柱源区和非地幔柱源区的分界线Figure 11. Zr/Nb-Nb/Th (a) and Nb/Y-Zr/Y (b) diagrams of basic lava对阿尔曼太基性熔岩的微量元素比值与不同地幔端元进行对比(表 2),基性熔岩的相关微量元素比值特征显示,其明显介于亏损地幔与大陆地壳之间,反映其来源于亏损地幔,并受到后期地壳物质的混染作用或来自消减残板片析出流体的交代作用,即与板块的俯冲相关。
表 2 阿尔曼太基性熔岩微量元素比值与不同地幔端元的对比Table 2. Comparative studies of the trace element ratio in lava and different mantle elements样品 Zr/Nb La/Nb Ba/Nb Ba/Th Rb/Nb Th/Nb Th/La Ba/La Th/U 原始地幔 14.8 0.94 9.0 77 0.91 0.117 0.125 9.6 4.1 亏损地幔 30.0 1.07 4.3 60 0.36 0.070 0.070 4.0 大陆地壳 16.2 2.20 54.0 124 4.70 0.440 0.200 25.0 3.8 HIMU 2.7~5.5 0.66~0.77 4.9~6.5 39~85 0.30~0.43 0.078~0.101 0.107~0.133 6.8~8.7 3.5~3.8 Em1 5.3~11.5 0.86~1.19 11.4~17.8 103~154 0.88~1.17 0.105~0.122 0.107~0.128 13.2~16.9 4.50~4.86 Em2 12.0~15.35 0.89~1.09 7.3~11.0 67~84 0.59~0.85 0.111~0.157 0.122~0.163 8.3~11.3 阿尔曼太基性熔岩对应不同地幔端元微量元素比值平均值 阿尔曼太
基性熔岩AMT06 20.05 3.18 46.34 67.25 35.17 0.69 0.22 14.65 3.37 AMT11 48.45 1.89 55.12 901.45 6.46 0.06 0.03 28.92 0.47 AMT12 7.82 0.81 37.75 614.86 0.43 0.06 0.08 45.56 2.00 注:HIMU为高(U/Pb)值地幔端元;Em1、Em2为富集地幔端元1和2;元素含量为平均值;地幔端元数据据贾大成等[28] 6. 结论
(1)阿尔曼太蛇绿岩为以泥盆纪地层为基质,各构造岩块为其组成部分的蛇绿岩带。蛇绿岩中变质橄榄岩、堆晶岩、基性火山岩较发育,代表扩张机制的岩墙群规模很小,札河坝地区硅质岩较发育,并识别出斜长岩和斜长花岗岩岩块。层序组合虽受构造破坏,但从总体看仍是一套组合较完整的蛇绿岩。
(2)对阿尔曼太蛇绿岩中基性熔岩岩石地球化学特征研究表明,基性熔岩可分为3种类型,即洋岛玄武岩(OIB)、洋中脊玄武岩(MORB)和岛弧玄武岩(IAT)。其中洋岛玄武岩不属于蛇绿岩成分,与地幔柱或热点作用有关,是后期卷入蛇绿岩带随其他组分一同构造就位而成的;基性熔岩主量和微量元素特征揭示,岩浆源于亏损的地幔源区,并且存在消减组分加入的交代作用,表明其成因与俯冲作用有关。
(3)结合阿尔曼太蛇绿岩构造环境判别图解,基性熔岩显示出IAT和MORB兼具并呈现过渡的特点,推断该蛇绿岩的形成与岛弧相关,其形成可能介于洋脊到海沟之间的偏海沟区域。通过分析基性熔岩的物质来源,指示其可能为相同岩浆体系下演化的产物,并表明其形成与岛弧或陆壳物质的带入密切相关,与岛弧带关系密切。
致谢: 感谢湖南省地质矿产勘查开发局四一八队姜魁、肖亮工程师等在论文撰写过程中给予的大力支持。 -
图 1 央格力雅山大地构造背景图(a)和研究区地质简图(b)
1—第四系冲积层;2—白音高老组;3—玛尼吐组;4—满克头鄂博组;5—卧都河组;6—早白垩世闪长岩;7—早白垩世花岗闪长岩;8—早白垩世正长花岗岩;9—中二叠世正长花岗岩;10—中二叠世花岗闪长岩;11—中二叠世黑云母花岗闪长岩;12—中二叠世闪长岩;13—中二叠世二长花岗岩;14—晚石炭世正长花岗岩;15—早寒武世二长花岗岩;16—花岗斑岩脉;17—安山玢岩脉;18—二长斑岩脉;19—实测断层;20—火山断裂;21—火山口或火山通道;22—采样位置
Figure 1. Structural sketch geological map of the Yanggeliya Mountain (a) and geological map of the study area (b)
图 5 央格力雅山中酸性岩体球粒陨石标准化稀土元素模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据参考文献[25])
Figure 5. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements spidegrams (b) for Yanggeliya Mountain intermediate-acid rocks
图 6 央格力雅山中酸性岩SiO2-Ce(a, 底图据参考文献[41])和La-La/Nb判别图解(b)
Figure 6. Discrimination diagrams of SiO2 versus Ce (a) and La versus La/Nb (b) of Yanggeliya Mountain intermediate-acid rocks
表 1 央格力雅山中酸性岩全岩主量、微量和稀土元素测试结果
Table 1 Whole-rock major, trace and rare earth elements data of Yanggeliya Mountain intermediate-acid rocks
样品编号 TW2 TW3 TW4 TW6 样品编号 TW2 TW3 TW4 TW6 岩性 正长花岗岩 英云闪长岩 二长花岗岩 二长花岗岩 岩性 正长花岗岩 英云闪长岩 二长花岗岩 二长花岗岩 SiO2 73.8 60.2 74.4 69.1 Gd 1.34 3.87 0.8 3.09 TiO2 0.18 0.65 0.12 0.4 Tb 0.18 0.61 0.11 0.42 Al2O3 13.8 16.9 14.2 15.7 Dy 0.92 3.45 0.55 2.13 Fe2O3 1.99 5.86 1.83 3.29 Ho 0.15 0.64 0.09 0.32 FeO 0.25 1.83 0.18 0.93 Er 0.5 1.94 0.29 1.02 MnO 0.03 0.12 0.03 0.05 Tm 0.07 0.29 0.04 0.13 MgO 0.28 1.88 0.16 0.68 Yb 0.54 2 0.32 0.88 CaO 1.17 4.3 1.56 2.18 Lu 0.09 0.33 0.05 0.14 Na2O 3.76 4.26 4.24 4.62 ΣREE 62.2 133 37.2 134 K2O 4.19 2.34 3.28 3.02 LREE 58.4 120.5 34.9 126.4 P2O5 0.04 0.26 0.02 0.13 HREE 3.79 13.1 2.25 8.14 烧失量 0.18 2.24 0.02 0.21 LREE/HREE 15.4 9.18 15.5 15.5 总计 99.6 100 100 100 (La/Yb)N 18.8 9.41 21.6 24.7 Mg# 19.7 32.1 13.5 23.8 δEu 1.53 1.03 1.61 1.19 R1 2536 1737 2627 2137 δCe 1.05 1.01 0.92 1 R2 408 884 454 574 Rb 125 57 110 79.1 A/NK 1.28 1.77 1.35 1.44 Ba 593 889 558 1083 A/CNK 1.07 0.97 1.06 1.05 K 33720 20359 28901 25467 AR -1.41 -7 -1.58 -2.02 Th 10.9 4.76 7.66 9.29 DI 89.5 63.7 88.2 81.1 U 4.1 1.04 1.23 1.18 TFeO 2.05 7.2 1.83 3.89 Nb 4.37 9.9 4.14 8.43 TFe2O3 2.28 8 2.03 4.32 Sr 387 500 552 500 La 14.2 26.2 9.7 30.2 Ta 0.34 0.55 0.32 0.6 Ce 28.7 55.7 16.4 59.9 p 207 839 119 598 Pr 2.89 6.64 1.66 6.56 Ti 1037 4999 845 2586 Nd 10.1 25.7 5.81 24.3 Rb/Sr 0.32 0.11 0.2 0.16 Sm 1.66 4.8 0.94 4.01 Rb/Nb 28.7 5.76 26.6 9.38 Eu 0.77 1.51 0.47 1.42 La/Nb 3.24 2.65 2.33 3.58 注:分异指数(DI) =Qz+Or+Ab+Ne+Lc+Kp;固结指数(SI)=MgO×100/(MgO+FeO+F2O3+Na2O+K2O);碱度率(AR) =[Al2O3+ CaO+(Na2O+K2O)]/[Al2O3+CaO-(Na2O+K2O)];R1=4Si-11(Na+K)-2(Fe+Ti);R2=6Ca+2Mg+Al; 镁指数(Mg#)=100×(MgO/ 40.3044)/(MgO/40.3044+FeOT/71.844);A/NK=Al2O3/(Na2O+K2O), A/CNK=Al2O3/(CaO+Na2O+K2O) 表 2 央格力雅山中酸性岩锆石U-Th-Pb同位素数据
Table 2 Zircon U-Th-Pb isotope data of the Yanggeliya Mountain intermediate-acid rocks
测点号 含量/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ/10-2 207Pb/235U 1σ/10-2 206Pb/238U 1σ/10-2 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ TW2-1 10.53 220 402 0.55 0.0513 0.20 0.1462 0.56 0.0207 0.03 254 91 139 5 132 2 TW2-2 16.52 480 578 0.83 0.0469 0.16 0.1345 0.45 0.0209 0.03 42 82 128 4 133 2 TW2-3 15.12 480 558 0.86 0.0526 0.19 0.1437 0.45 0.0202 0.03 309 77 136 4 129 2 TW2-4 12.04 287 468 0.61 0.0485 0.18 0.1346 0.51 0.0202 0.03 124 89 128 5 129 2 TW2-5 18.14 563 673 0.84 0.0523 0.19 0.1413 0.52 0.0197 0.03 300 81 134 5 125 2 TW2-6 7.07 135 284 0.47 0.0537 0.35 0.1486 0.93 0.0202 0.05 367 146 141 8 129 3 TW2-7 25.11 789 945 0.83 0.0501 0.17 0.1397 0.49 0.0203 0.03 211 78 133 4 129 2 TW2-8 21.43 626 804 0.78 0.0511 0.18 0.1434 0.56 0.0203 0.03 256 83 136 5 129 2 TW2-9 15.15 375 567 0.66 0.0492 0.18 0.1416 0.53 0.0208 0.03 167 85 134 5 133 2 TW2-10 13.88 402 545 0.74 0.0521 0.22 0.1407 0.57 0.0200 0.03 298 98 134 5 128 2 TW2-11 14.14 265 575 0.46 0.0495 0.20 0.1386 0.55 0.0205 0.03 169 94 132 5 131 2 TW2-12 10.87 233 450 0.52 0.0466 0.19 0.1293 0.56 0.0202 0.04 32 96 123 5 129 2 TW2-13 18.00 477 656 0.73 0.0521 0.18 0.1514 0.51 0.0212 0.03 300 80 143 4 135 2 TW2-14 8.46 202 331 0.61 0.0482 0.23 0.1345 0.65 0.0204 0.04 109 107 128 6 130 2 TW2-15 9.47 185 385 0.48 0.0522 0.25 0.1459 0.66 0.0206 0.03 295 139 138 6 132 2 TW2-16 19.70 563 747 0.75 0.0519 0.19 0.1491 0.56 0.0209 0.03 280 83 141 5 133 2 TW2-17 12.43 386 492 0.78 0.0533 0.23 0.1448 0.65 0.0197 0.03 339 98 137 6 126 2 TW2-18 14.03 360 552 0.65 0.0502 0.19 0.1419 0.54 0.0205 0.03 206 92 135 5 131 2 TW2-19 12.04 266 470 0.57 0.0527 0.21 0.1509 0.58 0.0210 0.03 322 93 143 5 134 2 TW2-20 13.40 381 525 0.73 0.0504 0.19 0.1365 0.49 0.0199 0.03 213 85 130 4 127 2 TW2-21 10.46 236 414 0.57 0.0482 0.19 0.1367 0.56 0.0206 0.03 109 99 130 5 132 2 TW2-22 14.03 402 538 0.75 0.0486 0.18 0.1343 0.50 0.0201 0.03 128 89 128 4 128 2 TW2-23 14.35 330 547 0.60 0.0482 0.19 0.1373 0.51 0.0208 0.03 106 94 131 5 133 2 TW2-24 14.09 337 539 0.63 0.0499 0.19 0.1407 0.55 0.0203 0.03 191 89 134 5 129 2 TW2-25 14.86 349 582 0.60 0.0479 0.19 0.1340 0.51 0.0202 0.03 95 89 128 5 129 2 TW3-1 2.49 64.5 103 0.62 0.0549 0.32 0.1420 0.79 0.0195 0.04 406 130 135 7 124 3 TW3-2 4.48 200 159 1.26 0.0467 0.29 0.1197 0.68 0.0189 0.04 35 141 115 6 121 2 TW3-4 1.98 49.6 84.8 0.59 0.0518 0.44 0.1307 0.0104 0.0190 0.05 276 192 125 9 121 3 TW3-6 2.64 72.6 99.9 0.73 0.0518 0.45 0.1378 0.98 0.0207 0.07 276 198 131 9 132 4 TW3-8 6.01 231 235 0.98 0.0466 0.24 0.1229 0.65 0.0195 0.04 27.9 119 118 6 125 3 TW3-9 5.41 97.9 226 0.43 0.0473 0.27 0.1345 0.82 0.0208 0.04 65 130 128 7 132 2 TW3-10 8.67 294 333 0.88 0.0493 0.24 0.1321 0.66 0.0198 0.04 161 117 126 6 127 2 TW3-14 8.18 169 329 0.51 0.0529 0.21 0.1411 0.52 0.0198 0.03 328 91 134 5 127 2 TW3-19 14.42 372 540 0.69 0.0505 0.16 0.1406 0.43 0.0203 0.03 217 79 134 4 130 2 TW4-1 9.16 187 361 0.52 0.0482 0.20 0.1362 0.54 0.0206 0.03 109 101 130 5 131 2 TW4-2 13.74 306 530 0.58 0.0483 0.15 0.1381 0.43 0.0208 0.03 122 76 131 4 133 2 TW4-3 18.59 571 714 0.80 0.0548 0.17 0.1508 0.51 0.0200 0.03 467 70 143 5 127 2 TW4-5 16.43 448 642 0.70 0.0463 0.15 0.1298 0.41 0.0204 0.03 13 74 124 4 130 2 TW4-6 11.84 256 471 0.54 0.0487 0.16 0.1366 0.43 0.0204 0.03 200 76 130 4 130 2 TW4-7 7.48 139 299 0.47 0.0486 0.19 0.1380 0.51 0.0208 0.03 132 91 131 5 133 2 TW4-8 14.15 416 545 0.76 0.0481 0.17 0.1331 0.49 0.0201 0.03 102 85 127 4 128 2 TW4-9 23.12 653 848 0.77 0.0469 0.13 0.1346 0.37 0.0207 0.02 42.7 63 128 3 132 2 TW4-10 16.78 395 652 0.60 0.0484 0.15 0.1391 0.45 0.0208 0.03 120 69 132 4 133 2 TW4-11 18.62 514 735 0.70 0.0472 0.16 0.1352 0.50 0.0207 0.03 58 143 129 4 132 2 TW4-12 13.50 357 527 0.68 0.0503 0.16 0.1387 0.45 0.0201 0.03 209 76 132 4 128 2 TW4-13 13.28 346 524 0.66 0.0468 0.18 0.1307 0.53 0.0202 0.03 39 93 125 5 129 2 TW4-14 8.44 189 321 0.59 0.0508 0.21 0.1455 0.61 0.0207 0.03 232 96 138 5 132 2 TW4-15 12.74 320 498 0.64 0.0516 0.19 0.1414 0.48 0.0019 0.03 265 79 134 4 128 2 TW4-16 16.89 482 634 0.76 0.0481 0.14 0.1352 0.40 0.0014 0.03 106 72 129 4 131 2 TW4-18 14.20 315 560 0.56 0.0460 0.16 0.1300 0.45 0.0016 0.03 - - 124 4 131 2 TW4-19 8.50 183 336 0.55 0.0496 0.18 0.1400 0.53 0.0018 0.03 176 87 133 5 131 2 TW4-20 18.25 438 692 0.63 0.0522 0.16 0.1514 0.48 0.0016 0.03 295 72 143 4 134 2 TW4-21 13.81 291 546 0.53 0.0458 0.16 0.1319 0.45 0.0016 0.03 - - 126 4 134 2 TW4-22 20.99 610 751 0.81 0.0489 0.14 0.1454 0.42 0.0014 0.03 143 69 138 4 138 2 TW4-23 11.34 250 434 0.58 0.0514 0.20 0.1512 0.62 0.0020 0.03 261 91 143 5 136 2 TW4-24 16.46 393 624 0.63 0.0518 0.19 0.1507 0.58 0.0019 0.03 280 85 143 5 134 2 TW4-25 15.07 310 593 0.52 0.0467 0.15 0.1369 0.45 0.0015 0.03 35 74 130 4 135 2 TW6-1 9.21 137 264 0.52 0.0554 0.42 0.1623 0.0125 0.0042 0.06 428 168 153 11 137 4 TW6-2 13.3 246 343 0.72 0.0502 0.27 0.1368 0.74 0.0027 0.04 206 126 130 7 127 2 TW6-3 14.3 257 414 0.62 0.0501 0.25 0.1405 0.71 0.0025 0.04 211 119 134 6 129 2 TW6-4 26.7 629 537 1.17 0.0528 0.23 0.1443 0.62 0.0023 0.03 317 98 137 6 127 2 TW6-5 19.9 399 481 0.83 0.0471 0.24 0.1306 0.65 0.0024 0.04 54 114 125 6 128 2 TW6-6 34.2 702 835 0.84 0.0497 0.17 0.1384 0.47 0.0017 0.03 183 80 132 4 128 2 TW6-7 17.9 330 496 0.67 0.0471 0.25 0.1312 0.68 0.0025 0.04 54 118 125 6 129 2 TW6-8 20.7 435 476 0.91 0.0473 0.25 0.1288 0.64 0.0025 0.04 64.9 122 123 6 130 3 TW6-9 15.3 267 419 0.64 0.0478 0.25 0.1328 0.67 0.0025 0.04 87 119 127 6 131 3 TW6-11 16.2 319 438 0.73 0.0478 0.24 0.1293 0.65 0.0024 0.04 100 109 123 6 125 2 TW6-12 12.6 246 321 0.77 0.0515 0.28 0.1470 0.81 0.0028 0.04 261 94 139 7 131 2 TW6-13 14.7 240 393 0.61 0.0476 0.21 0.1397 0.60 0.0021 0.04 80 109 133 5 136 2 TW6-14 13.6 223 368 0.61 0.0504 0.25 0.1494 0.75 0.0025 0.04 213 114 141 7 138 3 TW6-15 13.5 255 368 0.69 0.0495 0.30 0.1412 0.77 0.0030 0.04 169 143 134 7 135 3 TW6-16 15.6 277 405 0.68 0.0477 0.22 0.1395 0.65 0.0022 0.03 87 107 133 6 134 2 TW6-17 22.6 480 522 0.92 0.0488 0.21 0.1417 0.62 0.0211 0.04 200 102 135 5 134 3 TW6-18 11.9 199 335 0.59 0.0498 0.29 0.1361 0.77 0.0201 0.04 187 137 130 7 128 3 TW6-19 21.0 468 497 0.94 0.0487 0.23 0.1406 0.69 0.0208 0.04 132 111 134 6 132 3 TW6-20 21.1 430 517 0.83 0.0547 0.30 0.1462 0.73 0.0198 0.04 398 94 139 6 126 2 TW6-21 12.0 209 336 0.62 0.0509 0.27 0.1463 0.77 0.0210 0.04 235 124 139 7 134 3 TW6-22 16.8 336 462 0.73 0.0499 0.24 0.1352 0.62 0.0200 0.04 191 111 129 6 128 3 TW6-23 29.0 646 614 1.05 0.0474 0.20 0.1352 0.54 0.0208 0.04 78 87 129 5 132 2 TW6-24 12.7 214 361 0.59 0.0486 0.26 0.1394 0.76 0.0209 0.04 128 122 132 7 133 3 TW6-25 19.7 372 492 0.76 0.0507 0.30 0.1409 0.76 0.0204 0.04 228 140 134 7 130 2 -
葛文春, 吴福元, 周长勇, 等.兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J].科学通报, 2007, 52(20):2407-2417. doi: 10.3321/j.issn:0023-074x.2007.20.012 Xiao W J, Windley B F, Huang B C, et al. End-Permian to midTriassic termination of the accretionary processes of the southern Altaids:implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 98(6):1189-1217. doi: 10.1007/s00531-008-0407-z
佘宏全, 李红红, 李进文, 等.内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向[J].地质学报, 2009, 83(10):1456-1472. doi: 10.3321/j.issn:0001-5717.2009.10.010 朱伟, 郑婧, 李静.兴蒙造山带构造演化过程探讨[J].地下水, 2013, 35(5):122-124. doi: 10.3969/j.issn.1004-1184.2013.05.046 龙舟, 来林, 张学斌, 等.内蒙古苏尼特右旗白垩纪A型花岗岩锆石U-Pb年龄、地球化学特征及其构造意义[J].地质与勘探, 2017, (6):1115-1128. doi: 10.3969/j.issn.0495-5331.2017.06.007 关庆彬, 李世超, 张超, 等.兴蒙造山带南缘东段和龙地区Ⅰ型花岗岩锆石U-Pb定年、地球化学特征及其地质意义[J].岩石学报, 2016, 32(9):2690-2706. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201609007 洪大卫.兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J].地学前缘, 2000, (2):441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012 Cao H H, Xu W L, Pei F P, et al. Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern Segment of the northern margin of the North China Block[J]. Lithos, 2013, 170/171:191-207. doi: 10.1016/j.lithos.2013.03.006
Wang Fei, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and implications for the dynamic setting of NE Asia[J]. Earth & Planetary Science Letters, 2006, 251(1):179-198.
Fan W M, Guo Feng, Wang Y J, et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology & Geothermal Research, 2003, 121(1):115-135.
Meng Q R. What drove late Mesozoic extension of the northern China-Mongolia tract?[J]. Tectonophysics, 2003, 369(3):155-174. doi: 10.1016-S0040-1951(03)00195-1/
李世超, 徐仲元, 刘正宏, 等.大兴安岭中段玛尼吐组火山岩LAICP-MS锆石U-Pb年龄及地球化学特征[J].地质通报, 2013, 32(2):399-407. doi: 10.3969/j.issn.1671-2552.2013.02.018 葛文春, 林强, 孙德有, 等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学-中国地质大学学报, 2000, 25(2):172-178. doi: 10.3321/j.issn:1000-2383.2000.02.012 徐美君, 许文良, 王枫, 等.小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义[J].岩石学报, 2013, 29(2):354-368. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302002 Zhang J H, Ge W C, Wu F Y, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range[J].Lithos, 2008, 102(1/2):138-157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d14ba8be8a38a9512101ffec46cee93d
周建波, 王斌, 曾维顺, 等.大兴安岭地区扎兰屯变质杂岩的碎屑锆石U-Pb年龄及其大地构造意义[J].岩石学报, 2014, 30(7):1879-1888. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407004 许文良, 王枫, 裴福萍, 等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 2013, 29(2):339-353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001 Liu Y S, Gao S, Hu Z C, et al.Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the TransNorth China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2009, 51(1/2):537-571
Ludwig K R. Users manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochron. Cent. Spec. Pub, 2003, 4:25-32.
Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy & Petrology, 1999, 134(4):380-404. doi: 10.1007-s004100050492/
Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2010, 18(4):423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20f7cb4f6d72be021ecb081c5fa74229
De la Roche H, Leterrier J, Grande Claude P, et al. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses-its relationship and current nomenclature[J]. Chemical Geology, 1980, 29(1):183-210. http://www.sciencedirect.com/science/article/pii/0009254180900200
Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58:63-81. doi: 10.1007/BF00384745
Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Sun S S, Mc Donough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publication, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19
李莉.安徽铜陵地区基性岩特征与成因[D].中国地质大学(北京)硕士学位论文, 2010. http://cdmd.cnki.com.cn/Article/CDMD-11415-2010085856.htm Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at 115 and 210GPa:Implication for the origin of adakites[J]. Contributions to Mineralogy and Petrology, 1994, 117:394-409. doi: 10.1007/BF00307273
Stevens G, Villaros A, Moyen J F. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites[J]. Geology, 2007, 35(1):9-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d19de893f2ad98fa7f0078ea5a2c4e04
Papoutsa A, Pepiper G, Piper D J W. Systematic mineralogical diversity in A-type granitic intrusions:Control of magmatic source and geological processes[J]. Geological Society of America Bulletin, 2016, 128(3):487-501.
Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7):641. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Champion D C, Chappell B W. Petrogenesis of felsic I-type granites:an example from northern Queensland. Trans R Soc Edinb Earth Sci[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83(1/2):115-126.
Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 1987, 95(4):407-419. http://d.old.wanfangdata.com.cn/Periodical/hndzykc201103007
Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83(1/2):1-26.
Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535-551. doi: 10.1016/S0024-4937(98)00086-3
Chappell B W, White A J R. Two contrasting granite types:25 years later[J]. Journal of the Geological Society of Australia, 2015, 48(4):489-499. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027419645/
Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1):89-106. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200702001073.htm
张旗, 王元龙, 金惟俊, 等.造山前、造山和造山后花岗岩的识别[J].地质通报, 2008, 27(1):1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001 李献华, 李武显, 李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报, 2007, 52(9):981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001 Chappell B W, White A Jr. Two constrasting granitetypes[J]. Pacific Geol., 1974. 8:173-174.
陶继华, 李武显, 李献华, 等.赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究[J].中国科学:地球科学, 2013, 43(5):770-788. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201305006 Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy & Petrology, 1982, 80(2):189-200. doi: 10.1007-BF00374895/
吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 徐克勤, 胡受奚, 孙明志, 等.论花岗岩的成因系列——以华南中生代花岗岩为例[J].地质学报, 1983, (2):3-14. http://www.cnki.com.cn/Article/CJFDTotal-DZXE198302000.htm Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated I-type granites in NE China (Ⅰ):geochronology and petrogenesis[J]. Lithos, 2003, 66(3/4):241-273. https://www.onacademic.com/detail/journal_1000035101746610_f4fa.html
Taylor S R, McLennan S M. The Continental Crust:Its Compositon and Evolution[M]. Oxford:Blackwell Scientific, 1985, 94(4):1-312.
Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3/4):347-359. http://www.sciencedirect.com/science/article/pii/000925419400145X
Bea F, Arzamastsev A, Montero P, L Arzamastseva. Anomalous alkaline rocks of Soustov, Kola:evidence of mantle-derived metasomatic fluids affecting crustal materials[J]. Contributions to Mineralogy & Petrology, 2001, 140(5):554-566.
Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise Geochem, 2003, 3:1-64. doi: 10.1016-0016-7037(95)00038-2/
Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956
Brown G C. Calc-alkaline intrusive rocks: their diversity, evolution and relation to volcanic arcs[C]//Andesites Orogenic Andesites and Related Rocks. New York: John Wiley and Sons, 1982, 1437-4641.
Roberts M P, Clemens J D. Origin of high-potassium, talcalkaline, I-type granitoids[J]. Geology, 1993, 21(9):825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2
Fritzell E H, Bull A L, Shephard G E. Closure of the MongolOkhotsk Ocean:insights from seismic tomography and numerical modeling[J]. Earth and Planetary Science Letters, 2016, 445:1-12. doi: 10.1016/j.epsl.2016.03.042
刘勃然, 李伟, 张守志, 等.大兴安岭北段伸展构造[J].吉林大学学报(地球科学报), 2016, 46(5):1440-1448. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201605015 环文林, 时振梁, 鄢家全.中国东部及邻区中新生代构造演化与太平洋板块运动[J].地质科学, 1982, (2):179-190. http://www.cnki.com.cn/article/cjfd1982-dzkx198202007.htm -
期刊类型引用(4)
1. 黄睿,张颖,史骁,孙跃武. 新疆准噶尔盆地东缘中—晚二叠世植物群及其地质意义. 吉林大学学报(地球科学版). 2023(02): 403-417 . 百度学术
2. 刘晓,孙景耀,张荣霞,李芝荣,吴凤萍,隋天静. 新疆塔里木南缘埃连卡特岩群物质来源及构造环境——锆石U-Pb年代学和地球化学约束. 山东国土资源. 2023(04): 1-11 . 百度学术
3. 王星,蔺新望,张亚峰,赵端昌,赵江林,仵桐,刘坤. 新疆北部友谊峰一带喀纳斯群碎屑锆石U-Pb年龄及其对阿尔泰造山带构造演化的启示. 地质通报. 2022(09): 1574-1588 . 本站查看
4. 王国灿,张孟,张雄华,康磊,廖群安,郭瑞禄,王玮. 天山东段“北天山洋”构造涵义及演化模式再认识. 地质学报. 2022(10): 3494-3513 . 百度学术
其他类型引用(1)