• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

西藏冈底斯中段南木林地区始新世岩浆作用的厘定及其大地构造意义

韩飞, 黄永高, 李应栩, 贾小川, 杨学俊, 杨青松, 严刚, 李道凌

韩飞, 黄永高, 李应栩, 贾小川, 杨学俊, 杨青松, 严刚, 李道凌. 2019: 西藏冈底斯中段南木林地区始新世岩浆作用的厘定及其大地构造意义. 地质通报, 38(9): 1403-1416.
引用本文: 韩飞, 黄永高, 李应栩, 贾小川, 杨学俊, 杨青松, 严刚, 李道凌. 2019: 西藏冈底斯中段南木林地区始新世岩浆作用的厘定及其大地构造意义. 地质通报, 38(9): 1403-1416.
HAN Fei, HUANG Yonggao, LI Yingxu, JIA Xiaochuan, YANG Xuejun, YANG Qingsong, YAN Gang, LI Daoling. 2019: The identification of the Eocene magmatism and tectonic significance in the middle Gangdise magmatic belt, Nanmulin area, Tibet. Geological Bulletin of China, 38(9): 1403-1416.
Citation: HAN Fei, HUANG Yonggao, LI Yingxu, JIA Xiaochuan, YANG Xuejun, YANG Qingsong, YAN Gang, LI Daoling. 2019: The identification of the Eocene magmatism and tectonic significance in the middle Gangdise magmatic belt, Nanmulin area, Tibet. Geological Bulletin of China, 38(9): 1403-1416.

西藏冈底斯中段南木林地区始新世岩浆作用的厘定及其大地构造意义

基金项目: 

国家重点研发计划项目《西藏山南地区铍锡多金属矿调查评价》 2016YFC0600308

中国地质调查局地质调查项目《山南地区1:5万水系沉积物测量采样》 DD20190147-01

国家自然科学基金项目《西藏康雄岩金矿形成背景与矿体暴露程度研究》 41702086

详细信息
    作者简介:

    韩飞(1988-), 男, 硕士, 工程师, 从事区域地质调查和矿床成因研究。E-mail:cdhanfei7@163.com

  • 中图分类号: P534.61+3;P588.11

The identification of the Eocene magmatism and tectonic significance in the middle Gangdise magmatic belt, Nanmulin area, Tibet

  • 摘要:

    选取南冈底斯中段南木林地区的二长花岗岩岩体进行了LA-ICP-MS锆石U-Pb测年和全岩地球化学分析。分析结果显示,研究区二长花岗岩体的锆石U-Pb年龄为50.24±0.68Ma,为始新世岩浆活动的产物,是冈底斯岩基的重要组成部分。岩石地球化学特征表明,里特曼指数为1.66~1.94,具有钙碱性特征,A/CNK=1.11~1.15,显示出过铝质的特征,同时具有高硅、高钾(可达钾玄岩系列)特征。微量元素强烈富集Rb、Th、U等大离子亲石元素(LILE)及La、Ce等轻稀土元素,亏损Nb、Ta、Zr等高场强元素(HFSE),表现出弧型或壳源岩浆岩的地球化学属性。Sm/Nd值为0.45~0.57,平均值为0.53,显示出岩浆的深源特征。稀土元素(La/Yb)N值较高,平均值为9.25,轻稀土元素相对富集,重稀土元素相对亏损,且具有较显著的负Eu异常特征。综合研究表明,南木林花岗岩体形成过程为俯冲至断离的特提斯洋壳发生脱水作用,导致上覆地幔楔发生部分熔融,玄武质岩浆形成,岩浆随后上涌底侵至莫霍面附近,巨大的热烘烤作用迫使下地壳(富黏土或泥质岩)发生部分熔融,之后玄武质与长英质岩浆发生了广泛的混合作用,最后侵位成岩形成南木林地区广泛的含基性包体的花岗岩体。这为特提斯洋闭合、印度-欧亚板块碰撞的时限提供了同位素年龄证据,也丰富了冈底斯岩体成岩模式和地球化学特征。

    Abstract:

    The Nanmulin rock is located in the southern Gangdise center. In this study, the authors conducted systematical zircon LA-ICP-MS U-Pb dating and whole-rock geochemical analysis for the monzonitic granite in Nanmulin. The zircon U-Pb analyses demonstrate that the crystallization and emplacement age of the plutons is 50.24 ±0.68Ma, suggesting Eocene magmatic activities. It is an important part of the Gangdise batholith. Geochemical characteristics show that Rittmann index(σ) is 1.66~1.94, implying calc-alkaline series. The Al2O3 varies in the range of 11.82%~12.45%, whereas A/CNK varies in the range of 1.11~1.15, suggesting peraluminous characteristics. The granite is characterized by high SiO2(77.4%~78.18%, averagely 77.82%), high K (shoshonite series). Rb, Th, U and LREE are enriched but Nb, Ta, Zr and HREE are depleted, suggesting arc-related or earth crust geochemical affinities. Sm/Nd varies from 0.45 to 0.57, averagely 0.53, suggesting the deep source characteristics of magma. (La/Yb)N is high, averagely 9.25, suggesting enrichment of the LREE and depletion of HREE, with clear negative Eu anomaly. In summary, the process of granite petrogenesis resulted from subduction or breakoff of the Tethyan Ocean crust experiencing dehydration. This action resulted in partial melting of overlying mantle wedge and caused upward migration of basaltic magma near Moho. Huge thermal baking forces caused partial melting of the lower crust (clay-rich or argillaceous rocks). Magma mixing occurred from both basaltic magma and felsic magma. Nanmulin granite with MME was formed. This study provides isotope age evidence on the time of the closure of the Tethyan Ocean and Indian-Asian continental collision. Moreover, it enriches the diagenetic model and geochemical characteristics of Gangdise rock.

  • 蛇绿岩是一种可与现代大洋岩石圈对比的镁铁-超镁铁质岩石组合,在古洋消减、大陆造山带形成过程中,以构造侵位的方式产在造山带中,作为重大地质界线和板块缝合边界受到地学界的广泛关注[1],可以为古板块构造格局恢复、造山带演化、变形作用过程重建、深源成矿作用等研究提供重要信息,被广泛应用于全球板块构造系统研究,是目前人类探测地球深部物质组成的最好窗口[2-6]

    北疆地区东准噶尔造山带位于阿尔泰造山带和天山造山带之间,其古生代以来的大地构造演化是显生宙亚洲大陆增长和古亚洲洋演化的重要阶段,同时也涉及当今有关大陆造山带模型等重要理论问题[7-14]。然而东准噶尔构造带古生代以来的构造演化迄今未形成共识,尤其是对其中的蛇绿岩时代、构造属性、就位环境等存在争议[9-11, 14-18]。东准噶尔造山带大地构造相解剖表明[9-13, 19],自北向南由一系列岛弧杂岩带和增生楔杂岩组成,其大地构造相自北向南大致包括都拉特复合岛弧、阿尔曼太蛇绿岩、野马泉复合岛弧、卡拉麦里蛇绿岩、将军庙增生杂岩,研究区集中于争议较大的阿尔曼太蛇绿岩带(图 1),通过对蛇绿岩中基性岩块的岩石学和地球化学研究,探讨其岩石成因及地质意义。

    图  1  阿尔曼太蛇绿岩分布略图
    Q—第四系;O1—2Q—青河岩群;O3bs—晚奥陶世巴斯他乌组;D1t—早泥盆世托让格库都克组;D1k—早泥盆世康布铁堡组;D2k—中泥盆世库鲁木迪组;D2b—中泥盆世巴尔雷克组;D3kx—晚泥盆世卡希翁组;D3C1j—晚泥盆世-早石炭世江孜尔库都克组;C1j—早石炭世姜巴斯套组;C2b—中石炭世巴塔玛依内山组;Σ—札河坝-阿尔曼太蛇绿岩;γδοD—泥盆纪英云闪长岩;γβC—石炭纪黑云母花岗岩;ξγC—石炭纪正长花岗岩
    Figure  1.  Distribution map of Armantai ophiolite

    前人研究认为,阿尔曼太蛇绿岩为SSZ型蛇绿岩,产于岛弧、弧后盆地等环境,其主要证据在于玄武岩的地球化学特征。分析认为,该区玄武岩Nb相对于Th、La、Ce亏损,稀土元素曲线皆为轻稀土元素(LREE)富集型,且变化范围较宽,说明了幔源的多样性。阿尔曼太蛇绿岩套变质橄榄岩由于强烈蛇纹石化,其主量元素的地球化学意义不大,而堆晶岩成分变化较大,显示了岩浆结晶分离作用的影响,浅成-喷出岩类以辉绿岩、玄武岩和安山玄武岩为主,主体为亚碱性系列[17]

    研究区阿尔曼太蛇绿岩带位于准噶尔盆地东北缘,乌伦古河南侧,西起准噶尔盆地东缘的札河坝附近,向东沿阿尔曼太山,断续延伸到中蒙边境,走向北西西,蛇绿岩带长约200km,宽3~5km。阿尔曼太蛇绿岩带不同区段各单元发育情况不同,出露宽度相差悬殊,最宽处在札河坝一带,变窄处在兔子泉以西,出露只有数十米,甚至缺失。在东段中蒙边境地区以变质玄武岩为主,变质橄榄岩仅零星出露;在阿尔曼太山主脊线一带,蛇绿岩套发育较完整,变质橄榄岩、堆晶辉长岩和辉绿岩、玄武岩、玄武安山岩均有发育,但完好剖面不多见,堆晶岩、辉绿岩一般以残块形式出现;在西段札河坝地区蛇绿岩以发育变质橄榄岩为主,堆晶岩和辉绿岩不及阿尔曼太山主脊线处发育,顶部有具枕状构造、变形强烈的玄武岩。

    本次研究对札河坝-二台蛇绿岩测制了Ⅹ、Ⅺ号剖面(图 2图 3)。剖面控制了岩块、基质的规模、产状、接触关系。从图 2可以看出,札河坝地区蛇绿岩组分较齐全,有(白云石)蛇纹岩、辉长岩、斜长岩、辉绿岩、玄武岩、放射虫硅泥质沉积。各个岩石单元呈断块产出,相互叠置,由于受断裂构造的影响,各块体岩石均破碎严重。剖面测制,均从围岩地层开始,绿岩各岩块均小规模出露,且间隔大片第四系,受比例尺影响,剖面均未能连续穿透。但基本岩石组合已经明确,后续多为重复出现。

    图  2  阿尔曼太蛇绿岩剖面(Ⅹ号实测剖面17~59层)
    1—粉砂岩;2—绢云母板岩;3—放射虫火山灰凝灰岩;4—硅质岩;5—辉绿岩;6—玄武岩;7—长岩;8—蛇纹岩;9—辉石橄榄岩;10—闪长岩;11—斜长花岗岩;12—碳酸盐脉;13—逆冲断层;14—透镜体
    Figure  2.  The section of Armantai ophiolite(the X measured section of 17~59 strata)
    图  3  阿尔曼太蛇绿岩剖面(Ⅺ号实测剖面0~21层)
    1—灰岩;2—白云岩;3—角砾岩;4—粉砂岩;5—长石岩屑砂岩;6—安山质角砾凝灰岩;7—滑石菱铁片岩;8—绢云千糜岩;9—硅质岩;10—辉绿岩;11—辉长岩;12—蛇纹岩;13—闪长岩;14—斜长花岗岩;15—透闪石岩;16—安山玄武岩;17—逆冲断层
    Figure  3.  The section of Armantai ophiolite (the XI measured section of 0~21 strata)

    蛇纹岩一般呈暗灰绿色、黑绿色或黄绿色,色泽不均匀,质软、具滑感,叶片、纤维、纤状变晶结构,块状构造,表面局部可见蛇纹石化石棉。镜下为交代网状结构,主要由蛇纹石(60%~65%)、菱镁矿(20%~25%)和磁铁矿(5%~10%)、滑石(2%~3%)、少量铬尖晶石及极少量透闪石组成。以细粒磁铁矿、菱镁矿集合体为网而以蛇纹石为格(结)组成交代网格结构,表明原始矿物是橄榄石,局部交代强烈被蛇纹石纤状结合体替代网格。其中蛇纹石有2种:一种是无序排列的叶蛇纹石鳞片集合体,一种是平行排列的纤蛇纹石。一般叶蛇纹石排列在内核,而纤蛇纹石排列在外环。菱镁矿呈斑点浸染分布,有时聚集成团块。磁铁矿主要呈细粒集合体网脉状结构,少量集合成磁铁矿粒晶(图 4-ab)。

    图  4  蛇纹岩(a、b)和变质玄武岩(c、d)宏观及显微照片
    Pl—斜长石;Cal—方解石;Tlc—滑石;Srp—蛇纹石;Px—辉石;Mgs—菱镁矿
    Figure  4.  Photos and microphotographs of serpentinite(a, b) and basalt(c, d)

    镁铁质火山岩蚀变相对较弱,岩性为玄武岩,出露面积较大,岩石为灰黑色、青灰色,风化面多为褐色,碎裂结构,块状构造,局部具有残破的枕状构造。镜下为斑状结构,基质具间粒间隐结构。斑晶含量20%~30%,粒径为0.5~3mm,主要由斜长石和辉石组成。斜长石斑晶有2类:一类以绢云母化为主,呈碎屑状或板柱状;一类以钠黝帘石化为主,常呈板柱状,与基质协调。辉石多呈聚晶,多数绿泥石化、方解石化,个别新鲜但内部被交代。基质更复杂,由斜长石、较多蚀变矿物(绿泥石、绿帘石、阳起石和方解石)和极少量石英组成。局部具有典型的间粒间隐结构(图 4-cd)。

    野外样品采自阿尔曼太蛇绿构造岩带,主要对蛇绿岩中具代表性的基性熔岩按路线进行采样,共采集3组样品,其中在阿尔曼太兔子泉地区采集1组样品(AMT06),在阿尔曼太山地区采集2组样品(AMT11、AMT12)。通过镜下岩相学研究,对较新鲜、蚀变弱、无脉体的样品进行了岩石地球化学测试,测试单位为中国地质调查局西安地质调查中心。主量元素的XRF分析在Xios4.0kwX-荧光光谱仪(仪器编号为SX-45)上完成,精度和准确度优于5%;微量和稀土元素采用等离子质谱仪ICP-MS(仪器编号为SX-50)进行分析,分析精度和准确度优于10%,其中样品AMT06、AMT11、AMT12测试结果见表 1

    表  1  阿尔曼太基性岩主量、微量和稀土元素含量
    Table  1.  Major, trace and rare earth elements compositions
    样品SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5烧失量总计Mg#CuPbZnCrNiCoLiRbCsMoSrBa
    AMT06-147.110.7715.923.535.190.158.514.853.684.290.25.7999.990.6557.85.2976.140613136.323.417011.80.291.2162
    AMT06-248.120.8517.143.174.850.127.173.934.34.420.215.721000.6361.15.8575.113030.425.328.816410.90.3582.3193
    AMT06-347.90.8817.233.315.10.137.043.963.864.790.225.5799.990.6163.13.0272.213227.525.332.816511.30.6467.8273
    AMT06-447.460.8316.732.985.180.137.584.294.124.490.216.02100.020.6367.63.3873.91815024.229.117211.61.0189.2210
    AMT06-5480.816.573.214.930.147.444.454.343.950.225.96100.010.6371.54.8872.119166.228.926.31469.650.67108175
    AMT06-648.380.816.83.035.190.136.964.744.133.970.25.68100.010.6169.83.6468.425576.429.729.31448.950.5491.2258
    样品VScNbTaZrHfGaUThLaCePrNdSmEuGdTbDyHoErTmYbLuYΣREEδEu
    AMT06-1219264.240.3585.51.8516.90.963.0713.9303.8816.23.640.963.50.513.520.722.020.291.770.2818.981.20.81
    AMT06-223225.74.630.494.12.12180.953.2515.131.74.0416.63.71.053.590.493.710.762.170.3420.3118.885.60.87
    AMT06-324527.44.690.3696.92.0318.20.873.0514.330.94.0117.13.991.083.60.554.070.772.340.322.180.3520.385.60.85
    AMT06-423325.54.640.3589.41.9416.50.9314.230.93.8415.83.881.133.380.533.780.752.230.31.970.3219.3830.93
    AMT06-521224.14.640.494.82.1517.413.415.232.24.0716.83.961.193.660.543.50.762.190.32.020.3319.786.70.94
    AMT06-622426.34.530.3488.11.9417.30.953.2114.330.53.9816.33.741.023.410.533.560.742.160.292.010.2818.682.80.85
    样品SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5烧失量总计Mg#CuPbZnCrNiCoLiRbCsMoSrBa
    AMT11-145.241.5512.614.227.930.224.1313.263.930.520.156.1899.940.3993.31.8691.816676.94314.212.21.670.8343139
    AMT11-246.811.7112.673.668.430.214.5311.164.550.230.255.7899.990.4165.20.8698.113776.743.412.26.860.940.421260
    AMT11-348.041.6212.723.398.180.194.8510.824.520.220.235.299.980.4462.81.551011325137.613.15.670.640.8726993.5
    AMT11-445.21.5713.23.389.10.194.6710.94.20.580.196.899.980.4177.41.8410512450.741.11318.62.20.5126693.3
    AMT11-547.451.6512.773.768.080.24.810.984.390.330.245.3499.990.43532.5399.912945.53712.39.30.970.85276113
    AMT11-644.481.6213.14.248.690.214.7611.444.020.580.186.69100.010.41941.810413255.442.213.817.62.180.4823877.8
    AMT11-745.211.5713.83.657.480.18412.544.10.610.26.6499.980.41102.3187.112561.142.813.614.81.960.28353140
    AMT11-845.231.3413.494.135.460.17416.113.30.470.166.1399.990.44891.886195.848.1369.04101.40.24238128
    AMT11-946.421.4410.653.629.450.345.0614.443.220.350.164.8499.990.4262.80.6197.310550.744.812.97.940.920.0917678.2
    样品VScNbTaZrHfGaUThLaCePrNdSmEuGdTbDyHoErTmYbLuYΣREEδEu
    AMT11-130041.31.660.284.92.0215.80.270.143.4110.21.8310.73.971.254.970.816.021.333.960.543.790.5636.653.30.86
    AMT11-231445.82.060.17942.2914.80.240.113.86112.1312.34.511.515.970.957.121.644.780.694.620.745.161.80.89
    AMT11-330846.81.570.09790.52.1713.60.270.113.249.751.7711.64.091.45.320.856.71.544.530.624.250.6241.756.30.91
    样品VScNbTaZrHfGaUThLaCePrNdSmEuGdTbDyHoErTmYbLuYΣREEδEu
    AMT11-431944.61.40.1188.32.0615.10.210.13.069.391.7910.63.961.35.180.86.231.464.350.624.070.63953.40.87
    AMT11-529945.51.510.1189.91.9813.70.310.163.710.51.9711.53.91.295.550.886.781.454.640.664.20.6242.357.60.84
    AMT11-631243.31.440.1490.21.9717.80.230.053.089.41.7310.83.881.185.090.826.081.284.10.63.620.5437.252.20.81
    AMT11-728641.62.530.1596.42.1518.60.270.124.39122.0411.33.931.054.80.745.561.243.830.513.250.4833.655.10.74
    AMT11-826436.92.890.2183.41.7119.50.260.183.8910.41.710.23.220.994.160.674.751.033.270.4930.4429.148.20.82
    AMT11-9301422.740.1980.51.7913.80.240.123.269.381.549.293.7214.390.75.341.163.740.53.310.4833.247.80.75
    样品SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5烧失量总计Mg#CuPbZnCrNiCoLiRbCsMoSrBa
    AMT12-147.691.6214.042.19.360.168.568.583.490.20.174.0199.980.5887.31.1999.252828556.824.63.90.330.3309102
    AMT12-248.251.6313.512.248.710.168.868.753.440.310.183.961000.6801.458554026952.425.53.580.330.29282191
    AMT12-347.41.4814.081.787.60.147.279.753.880.580.195.851000.5966.11.048143119246.225.76.150.480.22225439
    AMT12-446.051.212.651.616.450.146.1513.373.541.040.147.6599.990.5876.81.2364.935116138.818.98.170.40.5207122
    0
    AMT12-546.671.5213.993.196.80.147.4313.592.470.210.173.7999.970.581011.3673.645223150.720.73.140.340.2375127
    AMT12-644.581.413.11.868.340.168.1211.852.980.60.166.8399.980.5971.91.281.444321449.228.86.490.560.18234554
    AMT12-745.721.4312.961.627.530.157.1212.523.450.510.186.82100.010.5978.20.9670.44112195021.25.290.280.3270418
    AMT12-947.31.3914.912.857.590.147.311.192.690.340.144.1499.980.5648.11.0579.94222004524.93.660.190.33381273
    样品VScNbTaZrHfGaUThLaCePrNdSmEuGdTbDyHoErTmYbLuYΣREEδEu
    AMT12-126833.214.31.011062.1618.70.320.8511.626.63.6416.54.311.44.950.794.7912.690.442.630.3626.181.70.92
    AMT12-226734.313.61.011042.1617.70.320.8710.824.73.5116.23.791.334.680.754.680.972.680.442.450.3425.477.30.96
    AMT12-323530120.8896.11.9714.50.450.6910.523.23.0914.83.471.114.230.744.540.942.510.412.50.3124.772.40.88
    AMT12-419624.79.290.7875.91.5613.10.30.587.83182.4411.32.741.23.590.593.650.82.10.342.120.2820.5571.17
    AMT12-525329.612.40.9897.22.0617.70.420.749.0221.43.1713.93.611.434.40.724.570.922.540.42.470.3324.468.91.09
    AMT12-623329.4120.8790.31.8315.60.560.6910233.1613.73.521.264.280.694.170.842.250.372.340.3122.769.90.99
    AMT12-722627.4120.93921.7215.40.50.689.7321.83.0114.63.341.194.110.654.290.892.290.422.420.3223.869.10.98
    AMT12-921227.812.60.871042.1321.60.391.099.7623.53.1514.33.411.414.20.674.30.872.330.392.570.2922.971.21.13
    注:Mg#=MgO/(MgO+TFeO)(分子数);主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV 
    | 显示表格

    样品AMT06 SiO2含量为47.11%~48.38%,平均47.83%;TiO2含量为0.77%~0.88%,平均0.82%,与IAT(0.83%)较接近[20];Al2O3含量为15.92%~17.23%,平均16.73%,与岛弧拉斑玄武岩和板内溢流拉斑玄武岩高Al2O3含量特征相似,后两者分别为16%和17.08%[21],而明显不同于大西洋、太平洋和印度洋中脊拉斑玄武岩的Al2O3含量(分别为15.6%、14.86%、15.15%)[22];MgO含量为6.96%~8.51%,平均7.45%,相对较高;Mg#值为0.61~0.65,平均0.63,接近于原始岩浆成分(0.68~0.75),说明原生岩浆的分异演化较弱。Na2O + K2O含量为7.97% ~8.72%,平均为8.39。在SiO2-Nb/Y图解上,所有样品的Nb/Y值均小于0.7,位于亚碱性系列区;从SiO2-TFeO/MgO图解可以看出,所有样品点位于拉斑系列范围,且样品点非常集中,变化范围小(图 5)。

    图  5  Nb/Y-SiO2图解和SiO2-TFeO/MgO图解
    Figure  5.  Nb/Y-SiO2 and SiO2-TFeO/MgO diagrams

    样品AMT11 SiO2含量为44.08%~48.04%,平均46.01%;TiO2含量为1.34%~1.71%,平均1.56%,与MORB的TiO2(1.5%)较接近[20];Al2O3含量为10.65%~13.80%,平均12.78%,含量较低;MgO含量为4.00%~5.06%,平均4.53%;Mg#值为0.39~0.44,平均0.42,说明原生岩浆发生分异演化。Na2O含量为3.22%~4.55%,平均4.03%;K2O含量为0.22%~0.61%,平均0.43%;Na2O+K2O含量为3.57%~4.78%,平均4.46%。主量元素相对富MgO,贫Al2O3、K2O,Na2O含量大于K2O含量,类似于MORB型岩石。在SiO2-Nb/Y图解上,所有样品的Nb/Y值均小于0.7,位于亚碱性系列区;从SiO2-TFeO/MgO图解可以看出,所有样品点位于拉斑系列范围(图 5)。

    样品AMT12 SiO2含量为44.58%~48.25%,平均46.71%;TiO2含量为1.20%~1.63%,平均1.46%,介于IAT(0.83%)与MORB(1.5%)之间[20],更接近于MORB。Al2O3含量为12.65% ~14.91%,平均13.66%,近于大西洋、太平洋和印度洋中脊拉斑玄武岩的Al2O3含量(分别为15.6%、14.86%、15.15%)[21],明显不同于岛弧拉斑玄武岩和板内溢流拉斑玄武岩高Al2O3含量特征,后两者分别为16%和17.08%[22];MgO含量为6.15%~8.86%,平均7.60%,较高;Mg#值为0.56~0.60,平均0.58%,低于原始岩浆成分(0.68~0.75),说明原生岩浆发生较弱的分异演化。Na2O含量为2.47%~3.88%,平均3.24%;K2O含量为0.20%~1.04%,平均0.47%;Na2O+K2O含量为2.68%~4.58%,平均3.72%。在SiO2-Nb/Y图解上,所有样品的Nb/Y值均小于0.7,位于亚碱性系列区;从SiO2-TFeO/MgO图解可以看出,所有样品点位于拉斑系列范围(图 5)。

    AMT06样品的稀土元素总量(∑REE)较高,为81.19×10-6~86.72×10-6,平均为84.14×10-6,轻、重稀土元素比值(LREE/HREE)在2.07~2.24之间,(La/Yb)N=4.46~5.33,(La/Sm)N=2.24~2.55,(Gd/Yb)N=1.34~1.60,表明轻稀土元素富集而重稀土元素亏损,轻、重稀土元素分馏明显,轻稀土元素组内部的元素分馏程度较重稀土元素分馏强。在球粒陨石标准化配分模式图(图 6)中,配分曲线右倾,强烈富集轻稀土元素,Eu显示弱的负异常(δEu值为0.81~ 0.94,平均0.87)。原始地幔标准化微量元素蛛网图(图 6)显示,大离子亲石元素Rb和K富集,Sr强烈亏损,而高场强元素相对亏损,具有较强的负Nb异常和较弱的Hf、Ti负异常,Zr、Sm显示为较弱的正异常。

    图  6  稀土元素球粒陨石标准化配分图解[23]和微量元素原始地幔标准化配分图解[23]
    Figure  6.  Chondrite-normalized REE patterns and primitive mantle normalized trace element patterns

    AMT11样品的∑REE较高,为47.81×10-6~61.78×10-6,平均为53.98×10-6,LREE/HREE值在0.48~0.65之间,(La/Yb)N=0.51~0.92,(La/Sm)N=0.48~0.75,(Gd/Yb)N=1.01~1.19,表明轻稀土元素亏损而重稀土元素富集,轻、重稀土元素分馏不明显,轻稀土元素内部的元素分馏程度较重稀土元素分馏弱。从球粒陨石标准化配分模式图(图 6)可以看出,轻稀土元素亏损,而重稀土元素呈平坦型分布,稀土元素配分模式与洋脊拉斑玄武岩稀土元素配分曲线相似,Eu显示弱负异常(δEu值为0.71~0.91,平均0.83)。在原始地幔标准化的微量元素蛛网图(图 6)上,大离子亲石元素Rb、Ba、U和K富集,Sr弱亏损,高场强元素显示Nb、P等的负异常。高场强元素分异不明显,显示岛弧岩浆的特征,说明该玄武岩的形成与板块俯冲有关。

    AMT12样品的∑REE较高,为56.98×10-6~81.70×10-6,平均为70.92×10-6,LREE/HREE值在1.28~1.46之间,(La/Yb)N=2.48~3.00,(La/Sm)N=1.56~1.89,(Gd/Yb)N=1.32~1.55,表明轻稀土元素富集而重稀土元素亏损,轻、重稀土元素之间分馏明显,轻稀土元素组内部的元素分馏程度较重稀土元素分馏强。球粒陨石标准化配分模式图(图 6)显示,配分曲线右倾,强烈富集轻稀土元素,Eu无明显异常(δEu值为0.88~1.17,平均1.02)。在原始地幔标准化微量元素蛛网图(图 6)上,大离子亲石元素Rb、Th和K亏损,Ba、U具正异常,而高场强元素相对亏损,具有较强的正Ta异常和较弱的负Hf异常,Hf、Sm显示为较弱的正异常。

    在基性熔岩的TiO2- MnO×10-P2O5×10图解(图 7)中,AMT06样品点主要落入钙碱性玄武岩(CAB)和岛弧拉斑玄武岩(IAT)分界线区域,AMT11、AMT12总体落入洋中脊玄武岩(MORB)区域,其中AMT12样品点大部分落入MORB,少数有从IAT到MORB的过渡趋势。在Nb/La-(Th/Nb)N图解(图 8-a)中,除AMT12样品外,其余样品Nb/La值均小于1,且除AMT11和AMT12以外,其余样品(Th/Nb)N值均大于1。以上特征显示,除AMT12样品外,AMT06和AMT11样品均遭受地壳不同程度的混染。在基性熔岩Zr-Zr/Y图解(图 8-b)中,AMT06和AMT12样品点主要投在板内玄武岩(WPB)及与MORB的边界区域,Zr及Zr/Y值(65.70×10-6~119.00×10-6, 3.00~5.36)与大陆玄武岩(Zr>70×10-6, Zr/Y>3)相符。AMT11样品点均落入洋中脊玄武岩区域和岛弧玄武岩区域,并具有过渡的趋势,Zr及Zr/Y值(40.90×10-6~122.00×10-6, 1.84~3.02)与岛弧玄武岩(Zr < 130×10-6, Zr/Y < 4)相符[24]。在此基础上,基性熔岩的Th-Ta-Hf/3(图 9-a)和Nb×2-Zr/4-Y(图 9-b)图解显示,AMT06和AMT11样品点主要投入MORB和IAB区域,反映其与洋中脊和消减带的岛弧环境相关,AMT06样品主要显示岛弧玄武岩特征,而AMT11样品主要显示洋中脊玄武岩特征。AMT12样品点投入板内碱性玄武岩和板内玄武岩区域,表明其与板内拉张有关。

    图  7  TiO2-MnO×10-P2O5×10图解
    CAB—钙碱性玄武岩;IAT—岛弧拉斑玄武岩;MORB—洋中脊玄武岩;OIT—洋岛拉斑玄武岩;OIA—洋岛碱性玄武岩
    Figure  7.  TiO2-MnO×10-P2O5×10 diagram
    图  8  (Th/Nb)N-Nb/La图解(a)和Zr-Zr/Y图解[24](b)
    WPB—板内玄武岩;MORB—洋中脊玄武岩;IAB—岛弧玄武岩
    Figure  8.  (Th/Nb)N-Nb/La(a)and Zr-Zr/Y(b)diagrams
    图  9  基性熔岩Hf/3-Th-Ta(a)和Nb×2-Zr/4-Y(b)图解
    a中:A—N型洋中脊玄武岩;B—E型洋中脊玄武岩和大陆拉斑玄武岩的区分;C—大陆碱性玄武岩和大陆玄武岩的区分;D—消减性板块边缘玄武岩区分;图b中:AⅠ、AⅡ—板内碱性玄武岩;B—P型洋脊玄武岩;AⅡ+C—板内拉斑玄武岩;D—N型洋脊玄武岩;C+D—弧火山岩
    Figure  9.  Hf/3-Th-Ta (a) and Nb×2-Zr/4-Y (b) diagrams of basic lava

    据研究,Ba、Th、Nb、La四个分配系数相近的极不相容元素在海水蚀变或变质过程中较稳定,尤其是它们的比值在部分熔融和分离结晶过程中均保持不变,可最有效地指示源区特征。在基性熔岩La-La/Nb(图 10-a)和Nb-Th/Nb(图 10-b)图解中,AMT06样品点投入IAB区域,AMT11样品点主要投入MORB区域,AMT12样品点位于洋岛玄武岩(OIB)区域或其边界附近,且兼具二者特征或从MORB向IAB过渡的特点。

    图  10  基性熔岩La-La/Nb(a)和Nb -Th/Nb(b)图解
    IAB—岛弧玄武岩;MORB—洋中脊玄武岩;OIB—洋岛玄武岩
    Figure  10.  La-La/Nb (a) and Nb-Th/Nb (b) diagrams of basic lava

    研究区基性熔岩AMT06样品的Nb/La值(平均0.31)与典型的岛弧岩浆岩的Nb/La值(约为0.3)接近或一致,说明AMT06样品具有岛弧玄武岩特征;AMT11样品中,Th/Ta=0.63~1.45,平均值为0.83,La/Ta=17.05~33.64,平均值为24.62,与MORB中Th/Ta =0.75~2,La/Ta=10~20[25]一致,说明AMT11样品的Th/Ta、La/Ta值,更接近SSZ环境对应的比值(Th/Ta=3~5, La/Ta=30~40);AMT12样品Nb/La的平均值为1.24,与洋岛玄武岩Nb/La值(约1.3)接近,说明AMT12样品具有板内洋岛玄武岩特征。

    由此可见,阿尔曼太蛇绿岩中的基性熔岩包括3种类型,即岛弧型玄武岩(AMT06)、洋中脊玄武岩(AMT11)和洋岛玄武岩(AMT12)。其中,OIB是在洋壳俯冲时被刮削下来与其组分一起卷入蛇绿岩带就位形成的,并非蛇绿岩组分;MORB和IAT属于蛇绿岩组成部分,其球粒陨石标准化配分曲线具有轻稀土元素略亏损型的MORB特征和轻稀土元素略富集的IAT特征,原始地幔标准化配分曲线表现为IAT和MORB的双重特点,主量、微量元素判别图解显示,IAT和MORB兼具并呈现过渡的特点,相关微量元素比值特征也显示相似的特征,该特点与阿曼蛇绿岩相似[20]。结合对南智利中这种过渡型蛇绿岩的研究:从洋脊到海沟,蛇绿岩地球化学特征有从MORB向SSZ方向过渡演化的趋势,并且越向海沟,SSZ的特点就越明显[26]。针对这一特性,笔者认为,阿尔曼太蛇绿岩的形成可能介于洋脊到海沟之间的偏海沟区域。

    在基性岩Zr/Nb-Nb/Th图解(图 11-a)中,AMT06样品点主要投在岛弧玄武岩区域(ARC),AMT11样品点主要投入N-MORB的亏损地幔区域,AMT12样品点投在洋底玄武岩(OPB)边界附近。在基性岩Nb/Y-Zr/Y图解(图 11-b)中,样品点均主要落在△Nb线两侧,大多投入介于洋底玄武岩(OPB)的原始地幔(PM)与N-MORB的亏损地幔(DM)之间,指示这些样品可能为相同岩浆体系下演化的产物,且AMT12样品表现出该基性岩形成过程中,分别受到批次熔融(F)和俯冲流体作用的影响。样品在Zr/Nb-Nb/Th图解(图 11-a)中,主要集中在大陆岩石圈(EN)和大陆上地壳(UC)区域,表明其形成与岛弧或陆壳物质的带入密切相关,与岛弧带关系密切。

    图  11  基性岩Zr/Nb-Nb/Th(a)和Nb/Y-Zr/Y(b)图解[27]
    DEP—高度亏损地幔;EN—富集单元,包括上地壳和大陆岩石圈,后者可能具有消减带化学特征;REC—循环单元,包括Em1、Em2和HIMU;HIMU—高(U/Pb)地幔源区;Em1、Em2—富集地幔源区;UC—大陆上地壳;ARC—岛弧产生的玄武岩;N-MORB—洋脊玄武岩;OIB—洋岛玄武岩;OPB—洋底玄武岩;PM—原始地幔;DM—浅部亏损地幔单元。单箭头指示批次熔融(F)和俯冲流体(SUB)作用,△Nb线为地幔柱源区和非地幔柱源区的分界线
    Figure  11.  Zr/Nb-Nb/Th (a) and Nb/Y-Zr/Y (b) diagrams of basic lava

    对阿尔曼太基性熔岩的微量元素比值与不同地幔端元进行对比(表 2),基性熔岩的相关微量元素比值特征显示,其明显介于亏损地幔与大陆地壳之间,反映其来源于亏损地幔,并受到后期地壳物质的混染作用或来自消减残板片析出流体的交代作用,即与板块的俯冲相关。

    表  2  阿尔曼太基性熔岩微量元素比值与不同地幔端元的对比
    Table  2.  Comparative studies of the trace element ratio in lava and different mantle elements
    样品Zr/NbLa/NbBa/NbBa/ThRb/NbTh/NbTh/LaBa/LaTh/U
    原始地幔14.80.949.0770.910.1170.1259.64.1
    亏损地幔30.01.074.3600.360.0700.0704.0
    大陆地壳16.22.2054.01244.700.4400.20025.03.8
    HIMU2.7~5.50.66~0.774.9~6.539~850.30~0.430.078~0.1010.107~0.1336.8~8.73.5~3.8
    Em15.3~11.50.86~1.1911.4~17.8103~1540.88~1.170.105~0.1220.107~0.12813.2~16.94.50~4.86
    Em212.0~15.350.89~1.097.3~11.067~840.59~0.850.111~0.1570.122~0.1638.3~11.3
    阿尔曼太基性熔岩对应不同地幔端元微量元素比值平均值
    阿尔曼太
    基性熔岩
    AMT0620.053.1846.3467.2535.170.690.2214.653.37
    AMT1148.451.8955.12901.456.460.060.0328.920.47
    AMT127.820.8137.75614.860.430.060.0845.562.00
    注:HIMU为高(U/Pb)值地幔端元;Em1、Em2为富集地幔端元1和2;元素含量为平均值;地幔端元数据据贾大成等[28]
    下载: 导出CSV 
    | 显示表格

    (1)阿尔曼太蛇绿岩为以泥盆纪地层为基质,各构造岩块为其组成部分的蛇绿岩带。蛇绿岩中变质橄榄岩、堆晶岩、基性火山岩较发育,代表扩张机制的岩墙群规模很小,札河坝地区硅质岩较发育,并识别出斜长岩和斜长花岗岩岩块。层序组合虽受构造破坏,但从总体看仍是一套组合较完整的蛇绿岩。

    (2)对阿尔曼太蛇绿岩中基性熔岩岩石地球化学特征研究表明,基性熔岩可分为3种类型,即洋岛玄武岩(OIB)、洋中脊玄武岩(MORB)和岛弧玄武岩(IAT)。其中洋岛玄武岩不属于蛇绿岩成分,与地幔柱或热点作用有关,是后期卷入蛇绿岩带随其他组分一同构造就位而成的;基性熔岩主量和微量元素特征揭示,岩浆源于亏损的地幔源区,并且存在消减组分加入的交代作用,表明其成因与俯冲作用有关。

    (3)结合阿尔曼太蛇绿岩构造环境判别图解,基性熔岩显示出IAT和MORB兼具并呈现过渡的特点,推断该蛇绿岩的形成与岛弧相关,其形成可能介于洋脊到海沟之间的偏海沟区域。通过分析基性熔岩的物质来源,指示其可能为相同岩浆体系下演化的产物,并表明其形成与岛弧或陆壳物质的带入密切相关,与岛弧带关系密切。

    致谢: 文章得到中国地质调查局成都地质调查中心付建刚高级工程师的指导,野外工作得到四川省地质调查院同事的全力支持,锆石U-Pb同位素测年实验中得到中国科学院贵阳地球化学研究所戴智慧老师的指导,感谢审稿专家的辛勤付出,在此一并致以真挚的感谢。
  • 图  1   青藏高原构造单元划分[5](a)和研究区地质简图(b)

    Figure  1.   Tectonic subdivision of the Tibetan Plateau (a) and simplified geological map of the study area (b)

    图版Ⅰ  

    a.二长花岗岩侵入典中组;b.二长花岗岩侵入典中组素描图;c.二长花岗岩基岩;d、e.二长花岗岩中暗色微细粒基性包体;f.二长花岗岩镜下特征。ηγE2—二长花岗岩;E1d—典中组;Qtz—石英;Pl—斜长石;Kf—钾长石;Bt—黑云母

    图版Ⅰ.  

    图  2   南木林花岗岩Q-A-P(a)[38]、SiO2-K2O(b)[39]、SiO2-(Na2O+K2O)(c)[40]和A/CNK-A/NK(d)[41]图解

    1—正长岩;2—二长岩;3—二长闪长岩;4—二长闪长岩;5—闪长岩;6—碱长石英正长岩;7—石英正长岩;8—石英二长岩;9—石英二长闪长岩;10—石英闪长岩、石英辉长岩、石英斜长岩;11—碱长花岗岩;12—花岗岩;13—花岗岩(二长花岗岩);14—花岗闪长岩;15—英云闪长岩、斜长花岗岩;16—富石英花岗岩;17—硅英岩;I、S-I型、S型花岗岩

    Figure  2.   Diagrams of Q-A-P (a), SiO2-K2O (b), SiO2-(Na2O+K2O) (c) and A/CNK-A/NK (d) for Nanmulin granite

    图  3   南木林花岗岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)(标准化数据据参考文献[42])

    Figure  3.   Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element diagrams (b) of Nanmulin granite

    图  4   南木林花岗岩代表性锆石阴极发光(CL)图像

    Figure  4.   Representative zircon CL images of Nanmulin granite

    图  5   南木林花岗岩LA-ICP-MS锆石U-Pb谐和图

    Figure  5.   LA-ICP-MS zircon U-Pb concordia diagrams of Nanmulin granite

    图  6   花岗岩微量元素构造环境判别图(底图据参考文献[56-57])

    Figure  6.   Trace element discrimination diagrams for the interpretation of the tectonic environment of granites

    图  7   花岗岩δEu-(La/Yb)N(a)和MgO-TFeO(b)图解(底图据参考文献[59])

    Figure  7.   δEu versus (La/Yb)N (a) and MgO versus TFeO (b) diagrams of granites

    图  8   花岗岩类R1-R2多阳离子图解(a, 底图据参考文献[63])和Rb/Sr-Rb/Ba物源判别图解(b, 底图据参考文献[60])

    Figure  8.   Multi-cation diagram of the granite (a) and provenance discrimination of Rb/Sr-Rb/Ba (b)

    图  9   南冈底斯中段始新世构造岩浆演化模式

    (据参考文献[33, 66-67]修改)

    Figure  9.   The model of the tectonomagmatic evolution of the middle South Gangdise belt during Eocene

    表  1   西藏南木林始新世花岗岩地球化学测试结果

    Table  1   Geochemical data of the Nanmulin Eocene granite, Tibet

    样品号SiO2TiO2Al2O3FeOFe2O3MnOMgOCaONa2OK2OP2O5烧失量总计
    PM303-H177.880.1812.050.300.440.010.120.381.916.310.040.1699.78
    PM303-H277.980.1511.820.200.480.020.060.442.205.440.040.3899.20
    PM303-H378.180.1312.370.200.320.020.080.592.525.440.030.16100.03
    PM303-H477.660.1612.450.200.420.0130.140.652.645.250.0370.1299.74
    PM303-H577.400.1512.370.200.650.0230.240.62.45.630.0490.47100.18
    样品号LaCePrNdSmEuGdTbDyHoErTmYbLu
    PM303-H134.1070.708.8633.006.441.416.261.056.401.293.640.553.710.55
    PM303-H235.2072.909.1234.006.651.416.321.026.291.283.680.573.740.58
    PM303-H341.8082.0010.5038.707.571.607.211.166.841.413.890.563.720.56
    PM303-H49.7221.802.9111.702.680.892.990.472.700.531.410.201.300.19
    PM303-H59.4221.72.8711.62.770.832.70.462.760.541.460.211.260.18
    样品号RbBaThUNbTaLaCePrSrNdZr
    PM303-H1385.8312.43877.65430.0018.3737.5636.6841.4117.363.7910.787.88
    PM303-H2366.9316.17542.35652.3823.7038.2936.8338.6519.312.9212.707.63
    PM303-H3366.9314.28482.35426.6717.9532.4417.6119.728.953.216.005.25
    PM303-H4387.4010.87507.06376.6723.2844.6328.3833.0714.862.6410.126.86
    PM303-H5379.5313.68488.24430.0019.7834.1542.6535.5521.703.0614.406.93
    样品号HfSmEuGdTbDyYHoErTmYbLu
    PM303-H112.724.841.733.712.872.352.532.442.793.243.574.19
    PM303-H213.276.712.324.773.893.093.083.293.273.513.533.92
    PM303-H38.673.451.672.582.312.012.152.262.172.432.562.84
    PM303-H411.725.741.614.163.612.943.472.933.193.383.494.05
    PM303-H59.977.751.854.953.892.893.082.992.903.113.163.65
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表  2   西藏南木林始新世花岗岩LA-ICP-MS锆石U-Th-Pb测年结果

    Table  2   LA-ICP-MS zircon U-Th-Pb dating results of the Nanmulin Eocene granite, Tibet

    分析
    点号
    含量/10-6Th/U同位素比值年龄/Ma
    PbThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    P303b-013.33235.13311.880.750.05120.00270.05310.00250.00770.0001255.6120.452.52.449.40.9
    P303b-022.20156.97204.800.770.05110.00470.05490.00450.00770.0002255.6217.654.24.349.41.3
    P303b-032.90214.02266.410.800.04740.00340.05150.00370.00780.000177.9153.751.03.650.10.8
    P303b-047.62603.31704.650.860.04970.00200.05020.00170.00800.0007189.094.449.71.751.74.5
    P303b-053.09201.15297.180.680.04730.00220.04970.00200.00770.000161.2107.449.21.949.50.7
    P303b-064.30296.87391.650.760.04680.00220.05160.00230.00810.000142.7107.451.12.251.80.8
    P303b-072.96193.14263.340.730.05140.00290.05800.00330.00820.0001257.5134.257.23.252.30.8
    P303b-0815.981621.371565.101.040.04490.00110.04480.00110.00720.0001errorerror44.51.146.30.6
    P303b-094.12288.79384.520.750.04580.00210.05050.00230.00800.0001errorerror50.12.251.30.7
    P303b-104.30271.36383.210.710.04560.00200.05330.00230.00850.0001errorerror52.82.354.70.8
    P303b-112.06170.88227.970.750.05150.00590.04510.00410.00650.0002264.9240.744.84.042.01.5
    P303b-123.71289.13331.050.870.05150.00220.05730.00250.00810.0001264.9100.056.52.451.90.8
    P303b-133.73278.68357.190.780.05190.00310.05350.00300.00750.0001279.7106.552.92.948.30.7
    P303b-142.68213.38274.000.780.04420.00470.04410.00490.00720.0004errorerror43.84.846.62.5
    P303b-152.77227.29264.470.860.05180.00410.05280.00410.00740.0002276.0183.352.23.947.31.0
    P303b-163.75263.00345.090.760.04540.00210.04950.00230.00800.0001errorerror49.12.351.20.7
    P303b-173.45242.11321.840.750.05020.00490.05350.00530.00780.0003211.2205.553.05.149.81.7
    P303b-183.28229.91287.090.800.04760.00290.05190.00310.00810.000279.7137.051.43.052.01.1
    P303b-192.28151.00209.090.720.07610.00520.07680.00530.00750.00021098.2137.075.15.048.01.3
    P303b-203.56221.76330.990.670.04610.00270.04900.00270.00780.0001400.1-261.148.62.650.00.8
    P303b-2111.01558.74866.320.640.04560.00120.05930.00170.00940.0001errorerror58.51.660.40.7
    P303b-229.09808.18776.261.040.05090.00200.05470.00230.00780.0001235.388.954.12.249.90.7
    P303b-232.53180.53241.070.750.05210.00460.05230.00410.00740.0002287.1200.951.84.047.51.2
    P303b-243.68242.25330.730.730.04730.00210.05260.00230.00810.000164.9100.052.12.251.80.7
    P303b-253.02216.51281.170.770.04780.00250.04890.00240.00760.000187.1122.248.52.448.90.7
    下载: 导出CSV
  • 潘桂棠, 刘玉平, 郑来林, 等.青藏高原碰撞构造与效应[M].广州:广东科技出版社, 2013:1-3.
    莫宣学, 赵志丹, 周肃, 等.印度-亚洲大陆碰撞的时限[J].地质通报, 2007, 26(10):1240-1244. doi: 10.3969/j.issn.1671-2552.2007.10.002
    莫宣学.岩浆作用与青藏高原演化[J].高校地质学报, 2011, 17(3):351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001
    马昭雄, 张彤, 黄波, 等.西藏错龙错晚三叠世粗粒巨斑二长花岗岩锆石U-Pb年龄和地球化学特征[J].地质通报, 2018, 37(7):1202-1212. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180705&flag=1
    莫宣学, 董国臣, 赵志丹, 等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报, 2005, (3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
    孟元库, 许志琴, 高存山, 等.藏南冈底斯带中段始新世岩浆作用的厘定及其大地构造意义[J].岩石学报, 2018, (3):513-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803001
    纪伟强, 吴福元, 锺孙霖, 等.西藏南部冈底斯岩基花岗岩时代与岩石成因[J].中国科学(D辑), 2009, 39(7):849-871. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200907002
    张宏飞, 徐旺春, 郭建秋, 等.冈底斯南缘变形花岗岩错石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据[J].岩石学报, 2007, 23(6):1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011
    王玉净, 松冈笃.藏南泽当雅鲁藏布缝合带中的三叠纪放射虫[J].微体古生物学报, 2002, 19(3):215-227. doi: 10.3969/j.issn.1000-0674.2002.03.001
    李化启, 蔡智慧, 陈松永, 等.拉萨地体中的印支期造山事件及年代学证据[J].岩石学报, 2008, 24(7):1595-1604. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200807016.htm
    李化启, 许志琴, 杨经绥, 等.拉萨地体内松多榴辉岩的同碰撞折返:来自构造变形和40Ar/39Ar年代学的证据田[J].地学前缘, 2011, 18(3):66-78. http://d.old.wanfangdata.com.cn/Periodical/dxqy201103008
    张雨轩, 解超明, 于云鹏, 等.早侏罗世新特提斯洋俯冲作用[J].地质通报, 2018, 37(8):1387-1399. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180803&flag=1
    董国臣, 莫宣学, 赵志丹, 等.冈底斯带西段那木如岩体始新世岩浆作用及构造意义[J].岩石学报, 2011, (7):1983-1992. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107007
    夏斌, 李建峰, 张玉泉, 等.藏南冈底斯带西段麦拉花岗岩锆石SHRIMP定年及地质意义[J].大地构造与成矿学, 2008, (2):243-246. doi: 10.3969/j.issn.1001-1552.2008.02.014
    喻思斌.冈底斯中段始新世复式花岗岩体的成因及其对构造演化的启示[D].南京大学硕士学位论文, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10284-1017097533.htm
    丁小稀.西藏南冈底斯东部新生代侵入岩地球化学与年代学[D].中国地质大学(北京)硕士学位论文, 2016. http://cdmd.cnki.com.cn/Article/CDMD-11415-1016068154.htm
    周斌, 韩奎, 乔新星, 等.西藏日多地区古近纪双峰式脉岩年代学、地球化学及其揭示的伸展背景[J].矿产勘查, 2018, (9):1746-1757. doi: 10.3969/j.issn.1674-7801.2018.09.014
    杜等虎, 杨志明, 李秋耘, 等.西藏厅宫矿区始新世斑岩的厘定及其地质意义[J].矿床地质, 2012, (4):745-757. doi: 10.3969/j.issn.0258-7106.2012.04.007
    邓晋福, 冯艳芳, 狄永军, 等.岩浆弧火成岩构造组合与洋陆转换[J].地质论评, 2015, (3):473-484. http://d.old.wanfangdata.com.cn/Periodical/dzlp201503001
    叶丽娟.西藏拉萨地块南木林-羊八井岩浆岩的年代学和地球化学[D].中国地质大学(北京)硕士学位论文, 2013.
    徐峰, 丁枫, 李跃, 等.西藏措勤县诺仓地区始新世花岗岩岩石学特征及找矿方向[J].矿床地质, 2014, (S1):1037-1038. http://d.old.wanfangdata.com.cn/Conference/8450782
    王莉.青藏高原南部冈底斯岩基东南缘晚侏罗世-早始新世岩浆作用[D].中国地质科学院硕士学位论文, 2013. http://cdmd.cnki.com.cn/Article/CDMD-82501-1016056696.htm
    朱弟成, 王青, 赵志丹, 等.大陆边缘弧岩浆成因与大陆地壳形成[J].地学前缘, 2018, 25(6):67-77. http://d.old.wanfangdata.com.cn/Periodical/dxqy201806007
    孟元库, 许志琴, 陈希节, 等.冈底斯中段碱长花岗岩锆石UPb-Hf同位素特征及地质意义[J].中国地质, 2015, 42(5):1202-1213. doi: 10.3969/j.issn.1000-3657.2015.05.003
    莫宣学, 赵志丹, 邓晋福, 等.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘, 2003, (3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013

    Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250(1/4):49-67. http://www.sciencedirect.com/science/article/pii/S0009254108000582

    Wen D R, Liu D Y, Chung S L, et al. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252(3/4):191-201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cd28a636c37d32c8fd2204619791d3d9

    Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262(3/4):229-245. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89901bb6b2d2c6c295afc354190fe548

    Zhu D C, Wang Q, Zhao Z D, et al. Magmatic record of IndiaAsia collision[J]. Scientific Reports, 2015, 5:14289. doi: 10.1038/srep14289

    董国臣, 莫宣学, 赵志丹, 等, 冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据[J].岩石学报, 2006, (4):835-844. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604007
    李皓揚, 锺孙霖, 王彦斌, 等.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证据[J].岩石学报, 2007, (2):493-499. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702025

    Zhu D C, Zhao Z D, Niu Y L, et al. The origin and preCenozoic evolution of the Tibet Plateau[J].Gondwana Research, 2013, (4):1429-1454. http://www.sciencedirect.com/science/article/pii/S1342937X1200041X

    潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001

    Han Y C, Ghang S H, Pirajno F, et al. Evolution of the Mesozoic Granites in the Xiong'ershan-Waifangshan Region, Western Henan Province, China, and Its Tectonic Implications[J]. Acta Geologica Sinica, 2007, 81(2):253-256. doi: 10.1111/j.1755-6724.2007.tb00949.x

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004

    Ludwig K R. User's Manual for Isoplot 3.00, a geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronological Center Special Publication, 2003, 4:25-32.

    Maitre R W L. A alassification of Igneous Rocks and Glossary of Terms[M]. Blackwell Scientific Publications, 1989.

    Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745

    Middlemost E A K. Naming Materials in the Magma/Igneous Rock System[J]. Annual Review of Earth & Planetary Sciences, 1994, 37(3/4):215-224. http://www.sciencedirect.com/science/article/pii/0012825294900299

    Molnar P, Tapponnier P. Cenozoic Tectonics of Asia:Effects of A Continental Collision:Features of Recent Continental Tectonics in Asia Can Be Interpreted as Results of the India-Eurasia Collision[J]. Science, 1975, 189(4201):419-426. doi: 10.1126/science.189.4201.419

    Sun S S, Mc Donough W F. Chemical and isotope Systematics of Oceanic Basalts: implications for Mantle Composition and Processes[C]//Saunders A D, Norry M J. Geological Society London, Special Pulications, 1989, 12: 313-345.

    Rudnick R L, Gao S. Composition of the continental crust[C]//Rudnick R L. The Crust: Treaties on Geochemistry. Oxford Elsevier Pergamon, 2003: 1-64.

    Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27-62. doi: 10.2113/0530027

    孟元库, 许志琴, 陈希节, 等.藏南冈底斯中段谢通门始新世复式岩体锆石U-Pb年代学、Hf同位素特征及其地质意义[J].大地构造与成矿学, 2015, 39(5):933-948. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201505015

    Mo X X, Dong G C, Zhao Z D, et al. Timing of magma mixing in the Gangdisê magmatic belt during the India-Asia collision:Zircon SHRIMP U-Pb dating[J]. Acta Geologica Sinica, 2005, 79(1):66-76. doi: 10.1111/j.1755-6724.2005.tb00868.x

    董国臣, 莫宣学, 赵志丹, 等.西藏冈底斯南带辉长岩及其所反映的壳幔作用信息[J].岩石学报, 2008, 24(2):203-210. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200802002

    Dong G C, Mo X X, Zhao Z D, et al. Geochronologic constraints on the magmatic underplating of the Gangdisê belt in the IndiaEurasia collision:Evidence of SHRIMP Ⅱ zircon U-Pb dating[J]. Acta Geologica Sinica, 2005, 79(6):787-794. doi: 10.1111/j.1755-6724.2005.tb00933.x

    丛源, 肖克炎, 翟庆国, 等.西藏南木林普洛岗岩体锆石定年和Hf同位素特征及其地质意义[J].吉林大学学报(地球科学版), 2012, 42(6):1783-1795. http://www.cqvip.com/QK/91256B/201206/44695107.html
    李洪梁, 李光明, 刘洪, 等.拉萨地体西段达若地区古新世花岗斑岩成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd-Pb-Hf同位素的约束[J].地球科学, 2019:1-27.doi: 10.3799/dqkx.2019.034.
    邓晋福, 赵海玲, 莫宣学, 等.大陆根柱构造——大陆动力学的钥匙[M].北京:地质出版社, 1996.

    Kelemen P B, Hangh K, Greenem A R.On view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[C]//Rudnick R L. Treatise on Geochemistry, 2003, 3: 593-659.

    钟华明, 童劲松, 鲁如魁, 等.西藏日土县松西地区过铝质花岗岩的地球化学特征及构造背景[J].地质通报, 2006, 25(1/2):185. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20060129&flag=1
    武鹏飞, 孙德有, 王天豪, 等.延边和龙地区闪长岩的年代学、地球化学特征及岩石成因研究[J].高校地质学报, 2013, 19(4):607. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201304006

    Harris N B W, Lnger S. Trace element modeling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110:46-56. doi: 10.1007/BF00310881

    Pearce J A, Harris N B W, Tindle A G. Trace-element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. J. Petrol., 1984, 25(4):956-983 doi: 10.1093/petrology/25.4.956

    Julian Pearce. Sources and settings of granitic rocks[J].Episodes, 1996. 19(4):120-125. doi: 10.18814/epiiugs/1996/v19i4/005

    Liegeoiset J P. Some words on the post-collisional magmatism[J]. Lithos, 1998, 45:ⅩⅤ-ⅩⅤⅡ. doi: 10.1016-S0024-4937(98)00023-1/

    Zorpi M J, Coulon C, Orsini J B. Hybridization between felsic and mafic magmas in calc-alkaline granitoids:A case study in northern Sardinia, Italy[J]. Chemical Geology, 1991, 92(1/3):45-86. http://www.sciencedirect.com/science/article/pii/000925419190049W

    Sylvester L. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45:29-44. doi: 10.1016/S0024-4937(98)00024-3

    吴才来, 郜源红, 雷敏, 等.南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因[J].岩石学报, 2014, 30(8):2297-2323. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408014

    Collins W J, Beams S D, White A J R, et al. Nature and Origin of A-type Granites with Particular Reference to Southeastern Australia[J]. Contributions To Mineralogy and Petrology, 1982, 80(2):189-200. doi: 10.1007/BF00374895

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chem. Geol., 1985, (48):43-55. doi: 10.1016/0009-2541(85)90034-8

    Bowden P. Oversaturated alkaline rocks: granites pantellerites and comendites[C]//The alkaline rocks. New York: Wiley, 1974: 622.

    张旗, 冉眸, 李承东.A型花岗岩的实质是什么?[J].岩石矿物学杂志, 2012, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
    侯增谦, 郑远川, 杨志明, 等.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统[J].矿床地质, 2012, (4):647-670. doi: 10.3969/j.issn.0258-7106.2012.04.002
    许志琴, 杨经绥, 李海兵, 等.印度-亚洲碰撞大地构造[J].地质学报, 2011, 85(1):1-33. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201101001

    Klootwijk C T, Gee J S, Peirce J W, et al. An early India-Asia contact:paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121[J]. Geology, 1992, 20:395-398. doi: 10.1130/0091-7613(1992)020<0395:AEIACP>2.3.CO;2

    李国彪.西藏南部古近纪微体古生物及盆地演化特征[D].中国地质大学(北京)博士学位论文, 2004: 171. http://med.wanfangdata.com.cn/Paper/Detail?id=DegreePaper_Y721277
  • 期刊类型引用(4)

    1. 黄睿,张颖,史骁,孙跃武. 新疆准噶尔盆地东缘中—晚二叠世植物群及其地质意义. 吉林大学学报(地球科学版). 2023(02): 403-417 . 百度学术
    2. 刘晓,孙景耀,张荣霞,李芝荣,吴凤萍,隋天静. 新疆塔里木南缘埃连卡特岩群物质来源及构造环境——锆石U-Pb年代学和地球化学约束. 山东国土资源. 2023(04): 1-11 . 百度学术
    3. 王星,蔺新望,张亚峰,赵端昌,赵江林,仵桐,刘坤. 新疆北部友谊峰一带喀纳斯群碎屑锆石U-Pb年龄及其对阿尔泰造山带构造演化的启示. 地质通报. 2022(09): 1574-1588 . 本站查看
    4. 王国灿,张孟,张雄华,康磊,廖群安,郭瑞禄,王玮. 天山东段“北天山洋”构造涵义及演化模式再认识. 地质学报. 2022(10): 3494-3513 . 百度学术

    其他类型引用(1)

图(10)  /  表(2)
计量
  • 文章访问数:  3633
  • HTML全文浏览量:  254
  • PDF下载量:  2615
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-03-25
  • 修回日期:  2019-05-29
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2019-09-14

目录

/

返回文章
返回