Zircon U-Pb age of intrusive rocks and molybdenite Re-Os age for Lianzigou Au deposit in Xiaoqinling area and its geological significance
-
摘要:
镰子沟金矿床位于小秦岭金矿集区西部,矿体受断裂和石英脉体控制,围岩蚀变以钾化和硅化为主。矿床浅部以金矿为主,深部发现金钼(共)伴生矿体。为了确定镰子沟金矿床成岩、成矿时代,选择镰子沟金矿床正长斑岩和金钼矿石分别进行了LA-ICP-MS锆石U-Pb和辉钼矿Re-Os同位素研究。获得正长斑岩的207Pb/206Pb年龄加权平均值为1802.9±9.9Ma,此年龄明显早于小秦岭地区金矿床的形成时代;获得辉钼矿Re-Os等时线年龄为128.8±6.5Ma,指示矿床形成于早白垩世,晚于区域已知花岗岩形成时代。综合研究认为,镰子沟金矿床的形成与区域花岗岩无关,可能与深部流体或隐伏岩浆有关。
-
关键词:
- 地质特征 /
- LA-ICP-MS锆石U-Pb年龄 /
- Re-Os年龄 /
- 成岩成矿时代 /
- 镰子沟金矿床
Abstract:The Lianzigou gold deposit is located in the west of Xiaoqinling Au ore concentration area. The orebodies are hosted in the upper strata of Taihua Group and controlled by fault fracture zone or quartz veins. The wall rock alteration is dominated by potassium alteration and silicification. Au (Mo) orebodies have been discovered in the depth of the deposit. To constrain its petrogenic and metallgogenic ages, the authors carried out LA-ICP-MS zircon U-Pb dating on syenite porphyry and Re-Os dating on molybdenite, respectively. LA-ICP-MS zircon U-Pb dating of syenite porphyry gave a weighted average age of 1802.9±9.9Ma, which is clearly older than the age of large-scale gold mineralization in the Xiaoqinling area. Re-Os dating on molybdenite from the Au orebodies gave an isochron age of 128.8±6.5Ma, indicating that the Au and Mo mineralization occurred in Early Cretaceous. The Re-Os age is younger than the petrogenic ages of granites in the Xiaoqinling area, showing that there is no direct relationship between the known granitic magmatism and the mineralization of the Lianzigou Au deposit. Deep fluids or concealed magmatic intrusion probably played an important role in mineralization.
-
三水盆地是南海北部陆缘唯一具有大规模新生代火山喷发记录的沉积盆地。盆地新生代火山喷发组合以粗面岩、玄武岩和流纹岩为代表,总体体现板内的大陆裂谷环境[1-10]。根据前人研究,三水盆地存在13期火山喷发[1-2, 5-6, 8, 11],其中大多数集中于古新世和始新世。时代最新的玄武岩年龄为38Ma[12],这也是南海北部大陆边缘地区迄今获得的南海扩张之前最晚的火山喷发年龄。本文报道的西樵山独岗流纹岩和石头村玄武岩样品是新近采得,应用K-Ar法经过严格的测试和检验,分别测得28.25Ma和29.27Ma的同位素地质年龄。这一新的结果将三水盆地的火山喷发序列推迟至渐新世中期,也改变了长期以来关于南海扩张期间(32~ 16Ma)无陆上火山喷发活动的传统认识,对于区域构造环境的解读和南海扩张过程的研究具有重要意义。
1. 地质背景
三水盆地位于广东省南部,是中国华南大陆最贴近南海的内陆盆地。盆地主要断裂带是吴川-四会断裂带、西江断裂带和三水-西樵山断裂带,新生代地层自下而上有莘庄村组、㘵心组、宝月组和华涌组。
三水盆地是南海北部唯一存在早新生代大规模火山喷发的陆缘盆地,前人总结的13期火山喷发活动中绝大部分(10~11期)发生在古新世—中始新世(60.5~38Ma),喷发岩的主要种类为玄武岩、粗面岩和流纹岩,地表出露地点主要有紫洞、王借岗、走马营、西樵山、狮岭、黎边山等地,基性岩与中酸性岩呈近南北向双列线性展布。本文分析样品是采自石头村的玄武岩和独岗的流纹岩(图 1)。
西樵山是三水盆地出露面积最大的火山喷发点,各类熔岩、集块岩、熔结凝灰岩、凝灰岩发育齐全。根据以往报道,该地粗面岩数量巨大,年龄一般为45Ma,是盆地火山活动最强烈的第10期喷发的主要代表。独岗贴近西樵山,可能是西樵山火山体系的一部分,也可能属于后期的独立喷发。独岗岩体呈灰黄色,柱状节理非常发育,化学分析结果表明其为典型的流纹岩。石头村位于三水盆地东北部,是盆地内玄武岩出露的主要地区之一,但随着当地经济建设的发展,露头已被挖掘殆尽,本文的分析样品来自某工程施工现场。
2. K-Ar年代测试
测试玄武岩选用剔除斑晶的基质,流纹岩选用透长石单矿物,测试在北京大学造山带与地壳演化教育部重点实验室完成,K含量测量采用锂内标钠缓冲火焰光度计法,火焰光度计型号为6400,所用标样为房山花岗闪长岩体黑云母(编号ZBH-25)和腾冲芒棒玄武岩(编号TC-18)。Ar含量测量采用VSS-RGA-10质谱计,稀释法静态测量,标样为房山花岗闪长岩体黑云母(编号ZBH-25)。计算过程中的标准值据桑海清等[17]。计算所用衰变常数λ= 5.543×10-10/a,40K/∑K=1.167×10-4。
玄武岩测试年龄为29.27±1.52Ma,流纹岩测试结果为28.25±1.14Ma,均属渐新世,具体测试结果见表 1。测试过程中所选标样房山花岗闪长岩体黑云母(编号ZBH-25)K含量标准值为7.60%,实测值7.04%,腾冲芒棒玄武岩(编号TC-18)K含量标准值1.04%,实测值1.01%。Ar含量测量标样ZBH-25标准值为132.9±1.3Ma,实测值为132.47Ma。测试方法合理,数据可靠,笔者认为测试年龄可为后续科学研究提供可靠的年代学依据。
表 1 三水盆地火山岩K-Ar测年数据结果Table 1. The K-Ar isotopic dating results of the volcanic rocks in Sanshui Basin岩性 玄武岩 流纹岩 K含量/% 1.70±2.56 4.92±2.92 称样量/g 0.0211 0.0101 40Ar*/(mol·g-1) 8.70E-11 2.43E-10 40Ar*% 48.8661 54.64888 38Ar/mol 7.12E-12 7.15E-12 40/38Ar 0.527478±2.51E-05 0.628125±0.000384 36/38Ar 0.000932±2.01E-05 0.000984±7.39E-06 40Ar*/40K 0.001715±8.97E-05 0.001654±6.71E-05 年龄值/Ma 29.27±1.52 28.25±1.14 注:40Ar*代表放射性成因40Ar 3. 岩石矿物和地球化学特征
3.1 岩石矿物学特征
石头村玄武岩呈黑色,少见气孔,具斑状结构(图 2-a),斑晶为斜长石(15%)、橄榄石(10%)和辉石(5%)。基质为拉斑玄武结构,包含斜长石微晶(20%)和火山玻璃(30%),橄榄石形状不规则,晶体较大,有不规则裂纹且个别橄榄石有蛇纹石化现象(图 2-b)。辉石形状较规则,呈八边形,有裂纹,发育较弱的环带,且裂纹穿过环带(图 2-c)。斜长石形状规则,发育大量环带,且环带清晰、完整,无裂纹、无蚀变现象。
流纹岩呈灰色,少见气孔,斑状结构,块状构造(图 3-a),矿物组成为长石、石英、黑云母。斑晶主要为碱性长石(10%),偶见长石斑晶中包裹小颗粒长石(图 3-b),碱性长石斑晶呈自形-半自形,有不规则裂纹,大小为1~1.5mm,基质为微晶结构,碱性长石微晶半定向排列,其间充填有玻璃质成分。副矿物为菱铁矿(1%~2%)(图 3-c)。以上岩石矿物特征与前人研究的时代较老的同类岩石一致[5, 11, 18]。
3.2 地球化学特征
石头村玄武岩和独岗流纹岩元素地球化学分析数据见表 2。石头村玄武岩(图 4)SiO2含量为47.57%,TiO2含量为2.78%(大于2%),K2O+Na2O含量为4.54%,且Na2O>K2O。该类岩石富集Nb、Ta、Zr、Hf等不相容元素,稀土元素总量为133.74×10-6,轻稀土元素富集,重稀土元素亏损,La/Yb值为12.12,Ce/Yb值为25.1。在微量元素蛛网图上具有与OIB(洋岛玄武岩)相似的地球化学特征(图 5- a)。La/Nb值为0.45,Nb/Zr值为0.28,Th/Nb值为0.05,与地幔热柱玄武岩特征相似[19-20]。构造环境投图判别为板内玄武岩(图 6-a)。以上特征均与盆地时代较老的玄武岩一致(图 5-a),指示伸展拉张的陆内裂谷环境。
表 2 三水盆地火山岩地球化学数据分析结果Table 2. The major, trace and rare earth elements analysis data of the volcanic rocks in Sanshui Basin地名 石头村 独岗 样品编号 14SS004 14SS013 岩性 玄武岩 流纹岩 SiO2 47.57 70.43 TiO2 2.78 0.24 Al2O3 17.34 14.24 Fe2O3 12.07 3.28 MnO 0.15 0.09 MgO 5.06 0.18 CaO 9.67 0.17 Na20 2.82 5.47 K20 1.7 4.99 P2O5 0.49 0.01 总计 99.65 99.1 Be 1.25 7.74 Sc 24.3 1.42 V 240 1.4 Cr 67.3 1.68 Co 42 9.06 Ni 40.7 1.07 Cu 45.6 7.08 Zn 100 211 Ga 22.6 44.3 Rb 32.4 325 Sr 768 8.22 Y 24.2 159 Zr 187 1504 Nb 53.1 460 Cs 0.32 2.54 Ba 318 19 La 24 175 Ce 49.7 324 Pr 6.48 36.8 Nd 27.4 125 Sm 6.19 24.1 Eu 2.16 0.21 Gd 5.96 23.3 Tb 0.92 4.21 Dy 5.01 26 Ho 0.91 5.43 Er 2.4 16.2 Tm 0.34 2.64 Yb 1.98 16.4 Lu 0.29 2.46 Hf 4.56 37.4 Ta 3.13 26.5 Pb 2.57 37.6 Th 2.55 58 U 0.73 14.7 注:主量元素含量单位为%,微量和稀土元素为10-6 图 6 玄武岩(a)和流纹岩(b)构造环境判别图(a底图据参考文献[25];数据据参考文献[6-7, 12, 15-16])和流纹岩构造环境判别图;b底图据参考文献[26];A型花岗岩数据据参考文献[27-28];其他对比数据据参考文献[5-7, 12, 15-16, 18])
A—岛弧拉斑玄武岩;B—MORB、岛弧拉斑玄武岩、钙碱玄武岩;C—钙碱性玄武岩;D—板内玄武岩;ORG—洋脊花岗岩;WPG—板内花岗岩;VAG—火山弧花岗岩;syn-COLG—同碰撞花岗岩Figure 6. The discrimination of tectonic setting of basalts (a) and rhyolites (b)独岗流纹岩(图 4)SiO2含量为70.43%,Na2O为5.47%,K2O为4.99%,Al2O3为14.24%,属高钾钙碱性;富集Nb、Ta、Zr、Hf、Th等不相容元素,亏损Ba、Sr、P、Ti、Eu等;稀土元素总量为781.75×10-6,轻稀土元素总量为708.41×10-6,La/Yb值为10.67,Ce/ Yb值为19.76,具有负Eu异常,构造环境判别图显示其产出于板内环境(图 6-b)。与A型花岗岩特征相似,在微量元素蛛网图上与红海Afar地幔柱流纹岩具有一致的分布曲线(图 5-b)。以上特征与盆地时代较老的流纹岩一致,属于板内拉张的陆内裂谷环境。
综上所述,石头村玄武岩和独岗流纹岩与三水盆地新生代基性岩和酸性岩的基本特征一致,均产自板内构造环境,表明它们与前人总结的研究区古、始新世双峰式火山喷发模式一脉相承[5-7, 15],仍属于陆内裂谷体系[1-6]。
4. 讨论
三水盆地古新世—始新世发生大规模的火山喷发活动,有“三水热点”之称[5-8]。这种多期次、多旋回的激烈火山活动在华南地区同时期构造盆地中“一枝独秀”,没有类似的地域可供比拟。盆地基性和中酸性喷出岩分别与OIB和Afar地区同类型火山岩具有相似的地球化学特征,可能受控于地幔柱上涌[5-6],代表大陆裂谷[1-6],是大陆边缘发生破裂的产物。结合南海演化过程及北部陆域的区域地质特征,推测盆地火山活动的性质和时间(38~ 60Ma),大体相当于Afar于红海开裂,属于威尔逊旋回中洋盆扩张前的陆内裂谷阶段。
大西洋、红海的演化路径是体现威尔逊旋回的典型范例,即它们在发生扩张的同时,邻近陆域伴有长期的裂谷型火山喷发活动。北大西洋扩张始于早侏罗世末期,北美大陆边缘保存有至新生代早期的火山记录,红海扩张发生在渐新世初,其阿拉伯一侧的火山喷发活动至今未绝。南海被认为是大西洋式张裂形成的海盆[29-32],但是根据以往资料,在南海扩张期间其周缘陆地鲜有岩浆活动记录,即使如三水盆地这类新生代早期具有陆内裂谷火山活动特征的火山喷发中心,也在南海扩张之前的始新世中晚期(38Ma)完全停止了岩浆活动。这一现象受到研究者的广泛关注[8-9, 33-38],但迄今尚没有合理的解释。
在南海海域自始新世中晚期至南海开裂期间基本没有火山记录,洋岛火山岩年龄多集中在3.69~ 18.61Ma[39-43],基本属于南海扩张停止以后的岩浆活动的产物,对理解南海早期开裂-扩张机制可能不具有太大意义。而本文火山岩喷发正值南海早期扩张阶段,玄武岩和流纹岩构成常见的双峰裂谷模式,与盆地之前的火山活动较一致,将伴随南海扩张的陆域火山活动记录拉长至渐新世中期,改变了南海扩张期间周边陆域无重要火山活动的传统认识。虽然仅从它们的发现还不足以构建南海早期的开裂-扩张模式,但是对传统认识已经形成突破,为正确理解南海早期演化提供了新的材料和视角。
5. 结论
三水盆地渐新世火山岩的发现修正了关于南海早期扩张过程中在其北部陆域缺乏火山喷发记录的传统认识,将双峰式陆内裂谷岩浆活动延续至渐新世中期,即南海早期扩张阶段。这一新的认识对于通过海陆对比进一步分析和总结南海的早期演化模式具有重要意义。
致谢: 野外工作得到镰子沟金矿汪道东总经理、李栋副总经理等的大力支持,锆石U-Pb和辉钼矿Re-Os同位素测试及数据处理分别得到中国地质大学(武汉)张东阳博士和中国地质科学院侯李超博士的帮助,在此一并表示谢意。 -
表 1 镰子沟金矿床正长斑岩LA- ICP-MS锆石U-Th-Pb同位素数据
Table 1 LA- ICP-MS zircon U-Th-Pb isotopic data for syenite-porphyry from the Lianzigou Au deposit
分析点号 Th/10-6 U/10-6 Th/U 同位素比值 年龄/Ma 207Pb/206Pb +1σ 207Pb/235U +1σ 206Pb/238U +1σ 207Pb/206Pb +1σ 207Pb/235U +1σ 206Pb/238U +1σ LZ-20-3 88 114 0.77 0.11033 0.00159 4.7408 0.07512 0.31165 0.00404 1805 13 1774 13 1749 20 LZ-20-6 49 56 0.87 0.11013 0.00375 4.75394 0.16408 0.31309 0.00551 1802 38 1777 2 1756 27 LZ-20-10 118 110 1.08 0.11014 0.00168 4.51894 0.07516 0.29757 0.00388 1802 14 1734 14 1679 19 LZ-20-11 24 31 0.78 0.11036 0.00468 4.799 0.20184 0.31536 0.00623 1805 48 1785 35 1767 31 LZ-20-12 96 345 0.28 0.11027 0.00195 4. 96993 0.09337 0.32686 0.0044 1804 17 1814 16 1823 21 LZ-20-18 23 30 0.76 0.11045 0.00647 4.96918 0.28668 0.32627 0.00828 1807 68 1814 49 1820 10 LZ-20-19 88 143 0.62 0.11027 0.00404 4.85384 0.17904 0.31922 0.00485 1804 45 1794 31 1786 24 LZ-20-20 113 130 0.87 0.11017 0.00154 4.89413 0.07565 0.32216 0.00419 1802 13 1801 13 1800 20 LZ-20-21 2: 45 0.56 0.11004 0.00437 4.83971 0.19082 0.31896 0.00623 1800 44 1792 33 1785 30 LZ-20-23 167 200 0.84 0.1102 0.00125 4.61519 0.06121 0.30373 0.00383 1803 11 1752 11 1710. 19 LZ-20-24 269 283 0.95 0.11013 0.00131 5.04404 0.0692 0.33215 0.00422 1802 11 1827 12 1849 20 LZ-20-4 151 273 0.55 0.14625 0.0017 8.59821 0.11647 0.42639 0.00543 2303 10 2296 12 2289 25 LZ-20-5 93 263 0.35 0.14573 0.00165 8.49724 0.11317 0.42289 0.00536 2296 10 2286 12 2274 24 LZ-20-7 100 267 0.37 0.15914 0.00197 10.33216 0.1462 0.47087 0.00609 2447 11 2465 13 2487 27 LZ-20-14 213 324 0.66 0.15962 0.00209 10.1717 0.15091 0.46215 0.00612 2452 11 2451 14 2449 27 LZ-20-16 259 197 132 0.15983 0.00238 10.08622 0.16535 0.45768 0.00609 2454 13 2443 15 2429 27 LZ-20-17 114 194 0.59 0.15919 0.00189 10.19534 0.14012 0.46448 0.00588 2447 10 2453 13 2459 26 LZ-20-1 130 227 0.57 0.1391 0.00473 6.39143 0.1963 0.33325 0.00487 2216 60 2031 27 1854 24 LZ-20-8 200 184 1.09 0.32585 0.00338 14 3458 0.17879 0.3193 0.00401 3598 9 2773 12 1786 20 LZ-20-9 314 368 0.85 0.18304 0.00481 8.821 0.19457 0.34952 0.00498 2681 44 2320 20 1932 24 LZ-20-15 97 190 0.51 0.14523 0.0046 6.00355 0.16877 0.29981 0.00439 2291 56 1976 24 1690 22 LZ-20-25 35 48 0.73 0.15786 0.00273 6.63535 0.12122 0.30483 0.00428 2433 14 2064 1 1715 21 LZ-20-2 42 66 0.63 0.0839 0.04434 .1.38335 0.72769 0.11958 0.00603 1290 1181 882 310 728 35 LZ-20-13 444 436 1.02 0.04605 0.00656 0.34164 0.04832 0.05381 0.00088 / 259 298 37 338 5 LZ-20-22 43 58 0.64 0.08664 0.00519 2.18226 0.12608 0.18267 0.00291 1353 119 1175 40 1082 16 注“:/”表示无数据 表 2 镰子沟金矿床辉钼矿Re-Os同位素测试结果
Table 2 Analytical result of Re-Os isotopes of molybdenites from the Lianzigou Au deposit
样名 矿石类型 样重/g Re/10-9 普Os/10-9 187Re/10-9 187Os/10-9 187Os/普
Os测定值 2 测定值 2 测定值 2 测定值 2 LZ-11 钾长石-石英脉型 0.25 97.11 1.51 0.20 < 0.01 61.04 0.95 0.15 < 0.01 0.78 LZ-12 0.25 390.70 2.48 2.88 0.02 245.56 1.56 0.78 < 0.01 0.27 LZ-13 0.19 173.25 1 66 0.25 < 0.01 108.89 1.04 0.26 < 0.01 1.04 LZ-14 0.25 179.59 1.80 3.77 0.07 112.88 1.13 0.62 < 0.01 0.16 LZ-15 碎裂岩型 0.25 70.41 0.71 2.84 0.04 44.25 0.44 0.39 < 0.01 0.14 表 3 镰子沟金矿床辉钼矿Re-Os同位素参数及模式年龄
Table 3 Re-Os isotopic parameters and model ages of the molybdenites from the Lianzigou Au deposit
样名 187Re/188Os 187Os/188Os 等时线初始值 模式年龄/Ma 测定值 2σ 测定值 2σ 187Os/188Os 修正后 LZ-11 2399 47.08 5.96 0.11 0.75+0.13 130.19 LZ-12 655 6.87 2.08 0.02 121.25 LZ-13 3388 69.72 8.02 0.18 128.72 LZ-14 229 5.06 1.25 0.03 131.35 LZ-15 119 1.95 1.07 0.02 158.63 注:扣除非放射成因的普Os中187Os计算模式年龄方法见李超等[20] -
栾世伟, 曹殿春, 方耀奎, 等.小秦岭金矿床地球化学[J].矿物岩石, 1985, 5(2):1-117. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200002008 栾世伟, 陈尚迪.小秦岭金矿主要控矿因素及成矿模式[J].地质找矿论丛, 1990, 5(5):1-14. doi: 10.6053/j.issn.1001-1412.1990.4.001 胡正国, 钱壮志, 闫广民, 等.小秦岭拆离-变质杂岩核构造与金矿[M].西安:陕西科学技术出版社, 1994:21-122. 黎世美, 瞿伦全, 苏振邦, 等.小秦岭金矿地质和成矿预测[M].北京:地质出版社, 1996:39-178. 王相, 唐荣扬, 李实, 等.秦岭造山与金属成矿[M].北京:冶金工业出版社, 1996, 123-145. 卢欣祥, 尉向东, 董有, 等.小秦岭-熊耳山地区金矿时代[J].黄金地质, 1999, 5(1):11-16. http://d.old.wanfangdata.com.cn/Conference/168821 晁援.关于小秦岭金矿时代探讨[J].陕西地质, 1989, 7(1):52-56. 胡受奚, 林潜龙, 陈泽铭, 等.华北与华南古板块拼合带地质与成矿[M].南京:南京大学出版社, 1988:1-558. 祁进平, 赖勇, 任康绪, 等.小秦岭金矿田成因的锶同位素约束[J].岩石学报, 2006, 22(10):2543-2550. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200610015 冯建之, 岳铮生, 肖荣阁, 等.小秦岭深部金矿成矿规律与成矿研究[M].北京:地质出版社, 2009:44-252. 卢欣祥, 尉向东, 于在平, 等.小秦岭-熊耳山地区金矿的成矿流体特征[J].矿床地质, 2003, 22(4):377-386. doi: 10.3969/j.issn.0258-7106.2003.04.006 Mao J W, Goldfarb R J, Zhang Z W, et al. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains central China[J]. Mineralium Deposita, 2002, 37:306-325. doi: 10.1007/s00126-001-0248-1
蒋少涌, 戴宝章, 姜耀辉, 等.胶东和小秦岭:两类不同构造环境中的造山型金矿省[J].岩石学报, 2009, 25(11):2727-2738. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200911002 王义天, 叶会寿, 叶安旺, 等.小秦岭文峪和娘娘山花岗岩体锆石SHRIMP U-Pb年龄及其意义[J].地质科学, 2010, 45(1):167-180. doi: 10.3969/j.issn.0563-5020.2010.01.015 李栋, 高毅, 路卫东.小秦岭镰子沟蚀变岩型金矿地质特征及找矿标志[J].科技风, 2014, 4:67-69. http://d.old.wanfangdata.com.cn/Periodical/kjf201406050 王雷.小秦岭镰子沟金矿床地质地球化学特征与矿床成因探讨[D].中国地质大学(北京)硕士学位论文, 2016: 37-66. 时毓, 于津海, 徐夕生, 等.陕西小秦岭地区太华群的锆石U-Pb年龄和Hf同位素组成[J].岩石学报, 2011, 27(10):3095-3108. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201110024 Su H M, Mao J W, He X R, et al. Timing of the formation of the Tianhuashan Basin in northern Wuyi as constrained by geochronology of volcanic and plutonic rocks[J]. Science China:Earth Sciences, 2013, 56:940-955. doi: 10.1007/s11430-013-4610-9
Du A D, Wu S Q, Sun D Z, et al. Preparation and Certification of Re-Os Dating Reference Materials:Molybdenite HLP and JDC[J]. Geostandard and Geoanalytical Research, 2004, 28(1):41-52. doi: 10.1111/j.1751-908X.2004.tb01042.x
李超, 屈文俊, 杜安道, 等.含有普通锇的辉钼矿Re-Os同位素定年研究[J].岩石学报, 2012, 28(2):702-708. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202027 Stein H J, Scherstén A, Hannah J L, et al. Subgrain-scale decoupling of Re and 187Os and assessment of laser ablation ICPMS spot dating in molybdenite[J]. Geochimica et Cosmochimica, 2003, 67:3673-3686. doi: 10.1016/S0016-7037(03)00269-2
Ludwig K R. Isoplot/Ex, version 3.0: a geochronological tool kit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, Berkeley, 2001.
Luck J M, Allegre C J. The study of molybdenites through the 187Re-187Os chronometer[J]. Earth Planet. Sci. Lett., 1982, 61:291-296. doi: 10.1016/0012-821X(82)90060-7
杜安道, 何红蓼, 殷宁万, 等.辉钼矿的铼-锇同位素地质年龄测定方法研究[J].地质学报, 1994, 68(4):339-347 doi: 10.3321/j.issn:0001-5717.1994.04.005 Martínez M C, Tudela A N. Archean lamprophyre dykes and gold mineralization, Matheson, Ontario:the conjunction of LILEenriched mafic magmas, deep crustal structures, and Au concentration[J]. Canadian Journal of Earth Sciences, 1986, 23(23):324-343. doi: 10.1139/e86-035
Rock Amp N M S, Groves D I. Do lamprophyres carry gold as well as diamonds?[J]. Nature, 1988, 332(6161):253-255. doi: 10.1038/332253a0
王团华, 毛景文, 王彦斌.小秦岭-熊耳山地区岩墙锆石SHRIMP年代学研究——秦岭造山带岩石圈拆沉的证据[J].岩石学报, 2008, 24(6):1273-1287. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200806010 毕诗健, 李建威, 李占轲.华北克拉通南缘小秦岭金矿区基性脉岩时代及地质意义[J].地球科学, 2011, 36(1):17-32. http://d.old.wanfangdata.com.cn/Periodical/dqkx201101003 赵太平, 徐勇航, 翟明国.华北陆块南部元古宙熊耳群火山岩的成因与构造环境:事实与争议[J].高校地质学报, 2007, 132(2):191-206. doi: 10.3969/j.issn.1006-7493.2007.02.005 侯贵廷, 李江海, 刘玉琳, 等.华北克拉通古元古代末的伸展事件:拗拉谷与岩墙群[J].自然科学进展, 2005, 15(11):1366-1373. doi: 10.3321/j.issn:1002-008X.2005.11.014 唐克非.华北克拉通南缘熊耳山地区金矿床时空演化、矿床成因及成矿构造背景[D].中国地质大学(武汉)博士学位论文, 2014: 74-85. 王义天, 毛景文, 卢欣祥, 等.河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar-39Ar年龄及其意义[J].科学通报, 2002, 47(18):1427-1431. doi: 10.3321/j.issn:0023-074X.2002.18.015 郭波, 朱赖民, 李犇, 等.华北陆块南缘华山和合峪花岗岩岩体锆石U-Pb年龄、Hf同位素组成与成岩动力学背景[J].岩石学报, 2009, 25(2):265-281. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200902003 朱赖民, 张国伟, 郭波, 等.东秦岭金堆城大型斑岩钼矿床LAICP-MS锆石U-Pb定年及成矿动力学背景[J].地质学报, 2008, 82(2):204-220. doi: 10.3321/j.issn:0001-5717.2008.02.007 王晓霞, 王涛, 齐秋菊, 等.秦岭晚中生代花岗岩时空分布、成因演变及构造意义[J].岩石学报, 2011, 27(6):1573-1593. http://d.old.wanfangdata.com.cn/Conference/7414846 Li J W, Bi S J, Selby D, et al. Giant Mesozoic gold provinces related to the destruction of the North China craton[J]. Earth & Planetary Science Letters, 2012, 349(4):26-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ae2c2c4e572421da67e1b82f7472a203
王秀璋, 程景平, 张宝贵, 等.中国改造型金矿床地球化学[M].北京:科学出版社, 1992:177. 李诺, 孙亚莉, 李晶, 等.小秦岭大湖金钼矿床辉钼矿铼锇同位素年龄及印支期成矿事件[J].岩石学报, 2008, 24(4):810-816. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200804020 张进江, 郑亚东, 刘树文.小秦岭变质核杂岩的构造特征、形成机制及构造演化[M].北京:海洋出版社, 1998:17-63. 张本仁, 骆庭川, 高山, 等.秦巴岩石圈构造及成矿规律地球化学研究[M].武汉:中国地质大学出版社, 1994:1-466. 代军治, 钱壮志, 高菊生, 等.小秦岭镰子沟金矿床地质特征、黄铁矿原位硫同位素分析及成因[J].吉林大学学报(地球科学版), 2018, 48(6):1669-1682. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201806006.htm 毛景文, 谢桂青, 张作衡, 等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报, 2005, 31(1):169-188. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200501017 -
期刊类型引用(10)
1. 王剑,张豪薇,张健,沈利军,张建勇,付修根. 论羌塘含油气盆地关键地层划分对比问题. 海相油气地质. 2024(01): 17-29 . 百度学术
2. 刘佳,宋艾,丁林,苏涛,周浙昆. 青藏高原及其周边古近纪综合地层、生物群与古地理演化. 中国科学:地球科学. 2024(04): 1308-1342 . 百度学术
3. 毕文军,张佳伟,李亚林,邓玉珍. 西藏中部羌塘地体白垩纪以来隆升剥露过程. 地学前缘. 2023(02): 18-34 . 百度学术
4. Li-jun Shen,Jian-yong Zhang,Shao-yun Xiong,Jian Wang,Xiu-gen Fu,Bo Zheng,Zhong-wei Wang. Evaluation of the oil and gas preservation conditions, source rocks, and hydrocarbongenerating potential of the Qiangtang Basin: New evidence from the scientific drilling project. China Geology. 2023(02): 187-207 . 必应学术
5. 王剑,王忠伟,付修根,宋春彦,谭富文,韦恒叶. 青藏高原羌塘盆地首口油气科探井(QK-1)新发现. 科学通报. 2022(03): 321-328 . 百度学术
6. 赵嘉峰,王剑,付修根,沈利军,郑波,韦恒叶,张豪薇,唐为. 西藏羌塘盆地古近纪康托组沉积物源及构造背景分析. 地质论评. 2022(01): 93-110 . 百度学术
7. 寇琳琳,李海龙,李振宏,董晓朋,崔加伟,黄婷. 青藏高原东北缘烟筒山构造带二叠系红泉组沉积时代及物源示踪. 地质通报. 2022(Z1): 315-326 . 本站查看
8. 王剑,付修根,沈利军,谭富文,宋春彦,陈文彬. 论羌塘盆地油气勘探前景. 地质论评. 2020(05): 1091-1113 . 百度学术
9. 赵珍,吴珍汉,杨易卓,季长军. 羌塘中部陆相红层时代的U-Pb年龄约束. 地质论评. 2020(05): 1155-1171 . 百度学术
10. 吴珍汉,季长军,赵珍,陈程. 羌塘盆地中部侏罗系埋藏史和生烃史. 地质学报. 2020(10): 2823-2833 . 百度学术
其他类型引用(3)