SHRIMP U-Pb zircon dating of clastic sedimentary rocks of the Guandu Group, Zanhuang Complex, Hebei Province, and its geological significance
-
摘要:
新太古代-古元古代表壳岩系在华北克拉通广泛发育,在赞皇地区也出露有较典型的中低级变质的火山-沉积岩系,即从原赞皇群解体出来的官都群,其形成时代和成因目前仍有争议。官都群的主要岩石组合为变基性火山岩(包括角闪片岩和斜长角闪岩)、大理岩、石英片岩,以及一系列长英质副片麻岩等。对其中的长英质副片麻岩进行碎屑锆石定年研究,并结合前人已报道的碎屑锆石数据可知,碎屑锆石年龄主要峰值约为2.5Ga,部分样品出现2.0~2.2Ga的峰值。变质锆石记录主要有2个范围,分别为2.48Ga左右和1.85~1.9Ga,可能代表了2期不同的构造热事件记录。结合该地区近年来的研究,可以得到如下认识:①样品中存在形态完好的长柱状锆石,表明是近源沉积;②约2.48Ga的变质记录与核部岩浆锆石的年龄(约2.5Ga)非常接近,可能代表了物源区中酸性岩体侵位后遭受的一次构造热事件,而不代表沉积岩形成后遭受变质的记录,即沉积过程晚于2.48Ga;③官都群至少有一部分岩石组合形成于古元古代;④官都群可能是不同时代、不同岩性单元拼贴而成,需要进一步解体。
-
关键词:
- 碎屑锆石 /
- SHRIMP U-Pb定年 /
- 官都群 /
- 赞皇杂岩 /
- 华北克拉通
Abstract:The Neoarchean-Paleoproterozoic supercrustal rocks as well as the Guandu Group from Zanhuang Complex have been widely reported in the whole North China Craton. The formation age and the environment of the Guandu Group are still controversial. Zircon SHRIMP U-Pb data of clastic sedimentary rocks of the Guandu Group, combined with previously available detrital zircon data, reveal that the majority of detrital ages are at~2.5Ga, with 2.0~2.2Ga peak for some samples. At least two metamorphic events were recorded, i.e., ~2.48Ga and 1.85~1.9Ga. Based on data obtained in this study as well as other studies of the Zanhuang Complex in recent years, some conclusions can be drawn as follows:① The well-preserved elongate prismatic morphology of some zircons implies that the source of depositional materials was not far away; ② The~2.48Ga metamorphic record is so close to the crystallization age of inner cores of zircons (~2.5Ga), probably suggests the existence of metamorphism that happened soon after the formation of the igneous rocks before the deposition of Guandu Group rocks, i.e., the deposition happened after~2.48Ga; ③ At least part of the Guandu Group was formed in Paleoproterozoic instead of late Archean; ④ The Guandu Group was probably not a continuous stratigraphic unit, but was composed of lithological units formed in different epochs and environments, and it thus should be disintegrated.
-
Keywords:
- detrital zircon /
- SHRIMP U-Pb dating /
- Guandu Group /
- Zanhuang Complex /
- North China Craton
-
致谢: 野外工作中得到中国地质科学院地质研究所耿元生研究员、宋会侠助理研究员和李伦同学的帮助,锆石SHRIMP测试工作中得到宋彪研究员的帮助,特表谢意。
-
表 1 官都群变质沉积岩样品锆石SHRIMP U-Th-Pb年龄数据
Table 1 SHRIMP U-Th-Pb ages of zircons from the meta-sedimentary rocks of the Guandu Group
测点 U/10-6 Th/10-6 Th/U 206Pb* 207Pb*/206Pb* 1σ 207Pb*/235U* 1σ 206Pb*/238U* 1σ 错误校正 206Pb/238U/Ma 1σ 207Pb/206Pb年龄/Ma 1σ 不谐和度/% D0533-9 D0533-9-1.1 804 20 0.03 264 0.1524 1.79 7.970 3.1 0.3794 2.52 0.82 2074 45 2388 30 13 D0533-9-2.1 306 20 0.07 126 0.1619 0.46 10.679 0.9 0.4784 0.75 0.85 2520 16 2487 9 -1 D0533-9-3.1 939 3 0 319 0.1627 0.30 8.796 1.0 0.3921 0.96 0.95 2133 18 2509 6 15 D0533-9-4.1 865 20 0.02 341 0.1593 0.29 10.012 0.8 0.4558 0.70 0.92 2421 14 2462 6 2 D0533-9-5.1 1232 14 0.01 458 0.1597 0.30 9.420 0.8 0.4278 0.77 0.93 2296 15 2475 7 7 D0533-9-6.1 222 13 0.06 86 0.1647 0.71 10.169 1.1 0.4479 0.81 0.75 2386 16 2503 13 5 D0533-9-7.1 838 17 0.02 231 0.1593 0.33 7.026 0.7 0.3199 0.66 0.89 1789 10 2448 7 27 D0533-9-8.1 301 16 0.05 126 0.1641 0.46 10.976 1.1 0.4850 1.03 0.91 2549 22 2508 8 -2 D0533-9-9.2 550 25 0.05 157 0.1477 0.43 6.729 0.8 0.3303 0.67 0.84 1840 11 2332 8 21 D0533-9-10.1 1273 478 0.39 249 0.1583 0.31 4.993 0.7 0.2287 0.64 0.90 1328 8 2300 10 42 D0533-9-11.1 246 101 0.42 107 0.1756 0.48 12.210 1.1 0.5042 0.95 0.89 2632 22 2591 11 -2 D0533-9-12.1 297 17 0.06 123 0.1645 0.46 10.904 0.9 0.4809 0.75 0.85 2531 16 2508 9 -1 D0533-9-13.1 343 92 0.28 106 0.1587 1.96 7.847 2.2 0.3586 0.98 0.45 1976 30 2408 35 18 D0533-9-14.1 259 26 0.1 97 0.1597 0.49 9.526 1.0 0.4326 0.90 0.88 2317 18 2458 10 6 D0533-9-15.1 499 51 0.11 176 0.1475 0.50 8.082 0.9 0.3975 0.69 0.81 2158 14 2483 10 13 D0533-9-16.1 330 248 0.78 139 0.1627 0.44 11.008 0.9 0.4908 0.74 0.86 2574 17 2488 8 -3 D0533-9-17.1 763 19 0.03 139 0.1286 6.20 3.741 8.2 0.2109 5.44 0.66 1234 62 2059 111 40 D0533-9-18.1 747 145 0.2 327 0.1609 0.50 11.177 0.9 0.5040 0.71 0.82 2631 16 2472 11 -6 D0533-9-19.1 248 164 0.68 104 0.1627 0.50 10.917 0.9 0.4866 0.78 0.84 2556 18 2494 8 -2 D0533-9-20.1 356 5 0.01 105 0.1562 0.57 7.348 0.9 0.3412 0.76 0.80 1893 13 2429 11 22 D0533-9-21.1 295 215 0.75 123 0.1605 0.47 10.700 1.3 0.4834 1.17 0.93 2542 27 2472 8 -3 D0532-1 D0532-1-1.1 166 134 0.83 67 0.1782 0.58 11.735 1.0 0.4775 0.86 0.83 2517 20 2505 11 0 D0532-1-2.1 60 33 0.57 27 0.1646 0.96 11.649 1.5 0.5132 1.19 0.78 2670 28 2562 15 -4 D0532-1-3.1 120 79 0.67 51 0.1668 0.73 11.401 1.2 0.4957 0.95 0.79 2595 23 2493 13 -4 D0532-1-4.1 407 299 0.76 154 0.1799 0.40 11.139 0.8 0.4492 0.73 0.87 2392 16 2479 9 4 D0532-1-5.1 170 105 0.64 70 0.1591 0.62 10.453 1.1 0.4766 0.88 0.82 2513 20 2442 11 -3 D0532-1-6.1 231 202 0.9 88 0.1658 0.49 10.190 1.7 0.4457 1.67 0.96 2376 40 2422 11 2 D0532-1-7.1 213 207 1.01 68 0.1522 0.62 7.854 1.1 0.3742 0.89 0.82 2049 19 2341 15 12 D0532-1-8.1 243 343 1.46 74 0.1637 0.57 7.955 1.0 0.3523 0.79 0.81 1946 17 2440 14 20 D0532-1-9.1 73 66 0.94 31 0.1590 0.93 10.951 1.5 0.4994 1.13 0.77 2611 28 2479 15 -5 D0532-1-10.1 192 171 0.92 79 0.1648 0.57 10.809 1.2 0.4758 1.08 0.88 2509 26 2515 10 0 D0532-1-11.1 121 64 0.55 51 0.1645 0.77 11.184 1.2 0.4932 0.93 0.77 2585 21 2515 16 -3 D0532-1-12.1 158 78 0.51 68 0.1637 0.63 11.324 1.1 0.5018 0.86 0.81 2622 20 2515 10 -4 D0532-1-13.1 91 82 0.93 38 0.1608 0.86 10.807 1.3 0.4875 1.02 0.77 2560 25 2500 16 -2 D0532-1-14.1 332 239 0.74 128 0.1655 0.44 10.229 0.9 0.4484 0.77 0.87 2388 17 2515 8 5 D0532-1-14.2 171 67 0.41 69 0.1584 0.58 10.202 1.0 0.4670 0.84 0.82 2471 18 2473 11 0 D0532-1-15.1 148 53 0.37 64 0.1695 0.60 11.731 1.1 0.5020 0.88 0.82 2622 20 2553 11 -3 注:Pb *表示放射性成因铅,不谐和度=1-100 *(206Pb/238U)age/(207Pb/206Pb)age -
Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton:lithological, geochemical, structural and P-t path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107:45-73. doi: 10.1016/S0301-9268(00)00154-6
Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Journal of Asian Earth Science, 2005, 136:177-202.
Wang J P, Kusky T M, Polat A, et al. A late Archean tectonic mélange in the Central Orogenic Belt, North China Craton[J]. Tectonophys, 2013, 608:929-946. doi: 10.1016/j.tecto.2013.07.025
Kusky T M, Polat A, Windley B F, et al. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis:A record of outward growth of Precambrian continents[J]. Earth Science Review, 2016, 162:387-432. doi: 10.1016/j.earscirev.2016.09.002
Trap P, Faure M, Lin W, et al. The Zanhuang Massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen[J]. Precambrian Research, 2009, 172:80-98. doi: 10.1016/j.precamres.2009.03.011
Trap P, Faure M, Lin W, et al. Paleoproterozoic tectonic evolution of the Trans-North China Orogen:toward a comprehensive model[J]. Precambrian Research, 2012, 222:191-211.
杨崇辉, 杜利林, 任留东, 等.赞皇杂岩中太古宙末期菅等钾质花岗岩的成因及动力学背景[J].地学前缘, 2011, 18(2):62-78. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102006 Wang J P, Kusky T M, Wang L, et al. Petrogenesis and geochemistry of circa 2.5 Ga granitoids in the Zanhuang massif:implications for magmatic source and Neoarchean metamorphism of the North China Craton[J]. Lithos, 2017, 268:149-162.
Xiao L L, Liu F L, Chen Y. Metamorphic P-T-t paths of the Zanhuang metamorphic complex:Implications for the Paleoproterozoic evolution of the Trans-North China Orogen[J]. Precambrian Research, 2014, 255:216-235. doi: 10.1016/j.precamres.2014.09.027
河北省国土资源厅、河北省地质矿产勘查开发局. 1: 50000河北省、北京市、天津市地质图[M]. 2000. Tang L, Santosh M, Tsunogae T, et al. Paleoproterozoic metacarbonates from the central segment of the Trans-North China Orogen:Zircon U-Pb geochronology, geochemistry, and carbon and oxygen isotopes[J]. Precambrian Research, 2016, 284:14-29. doi: 10.1016/j.precamres.2016.08.001
Li S S, Santosh M, Teng X M, et al. Paleoproterozoic arccontinent collision in the North China Craton:Evidence from the Zanhuang Complex[J]. Precambrian Research, 2016, 286:281-305. doi: 10.1016/j.precamres.2016.10.008
Li S S, Santosh M, Teng X M, et al. Reply to comment by Wang et al. on "Paleoproterozoic arc-continent collision in the North China Craton:Evidence from the Zanhuang Complex" by Li et al. (2016)[J]. Precambrian Research, 2018, 286:281-305.
Wang J P, Kusky T M, Wang L, et al. Structural relationships along a Neoarchean arc-continent collision zone, North China Craton[J]. Geology Society of American Bulletin, 2017, 129:59-75. doi: 10.1130/B31479.1
李伦, 杨永强, 杨崇辉, 等.赞皇地区~2.5Ga A型花岗岩的成因及构造背景:以黄岔岩体为例[J].岩石学报, 2017, 33(9):2850-2866. 牛树银.太行山阜平、赞皇隆起是中新生代变质核杂岩[J].地质科技情报, 1994, (2):15-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400055908 河北省地质矿产局.河北省北京市天津市区域地质志[M].北京:地质出版社, 1989. Williams I S. U-Th-Pb Geochronology by Ion Microprobe[J]. Reviews in Economic Geology, 1998, 7:1-35.
Ludwig K J. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel[J]. Berkeley, CA, Berkeley Geochronol. Center Special Publication, 2003, 4: 1-70.
Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology:a critical appraisal of four zircon standards[J]. Chemical Geology, 2003, 200:171-188. doi: 10.1016/S0009-2541(03)00166-9
Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 2004, 131:231-282. doi: 10.1016/j.precamres.2003.12.011
Wang J P, Deng H, Kusky T M, et al. Comments to "Paleoproterozoic meta-carbonates from the central segment of the Trans-North China Orogen:zircon U-Pb geochronology, geochemistry, and carbon and oxygen isotopes" by Tang et al. (2016)[J]. Precambrian Research, 2017, 294:344-349. doi: 10.1016/j.precamres.2017.01.021
杨崇辉, 杜利林, 任留东, 等.河北赞皇地区许亭花岗岩的时代及成因:对华北克拉通中部带构造演化的制约[J].岩石学报, 2011, 27(4):1003-1016. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201104008 Du L L, Yang C H, Wyman D A, et al. 2090-2070 Ma A-type granitoids in Zanhuang Complex:Further evidence on a Paleoproterozoic rift-related tectonic regime in the Trans-North China Orogen[J]. Lithos, 2016, 254/255:18-35. doi: 10.1016/j.lithos.2016.03.007
Zhao G C, Wilde S A, Cawood P A, et al. SHRIMP U-Pb zircon ages of the Fuping Complex:implications for late Archean to Paleoproterozoic accretion and assembly of the North China Craton[J]. American Journal of Science, 2002, 302:191-226. doi: 10.2475/ajs.302.3.191
Zhang F, Wang Y B, Du L L, et al. The Neoarchean-Paleoproterozoic volcanic-sedimentary rocks in the Zanhuang Complex, North China Craton:Petrogenesis and implications for tectonic evolution[J]. Precambrian Research, 2019, 328:64-80. doi: 10.1016/j.precamres.2019.03.015
杨崇辉, 杜利林, 任留东, 等.华北克拉通早前寒武纪地层划分对比及岩浆演化[M].北京:科学出版社, 2015. -
期刊类型引用(15)
1. 唐永香,林建旺,李嫄嫄,阮传侠,张雪梅,赵娜,刘志龙,张芬娜,李哲,栾鹏宇,王世豪,刘文杰. 天津滨海地热田北部深部地热资源赋存规律. 华北地质. 2024(01): 77-84 . 百度学术
2. 汪新伟,郭世炎,高楠安,刘慧盈,王婷灏,魏广仁,雷海飞. 雄安新区牛东断裂带碳酸盐岩热储探测及其对地热勘探的启示. 地质通报. 2023(01): 14-26 . 本站查看
3. 雷晓东,赵玉,唐显春,王立发,何付兵,关伟,李娟. 基于重磁异常的北京副中心地质构造特征和地热控制作用研究. 地球学报. 2023(01): 79-92 . 百度学术
4. 王卓卓,尉小永,孟杉,杨茜婷,江剑,马静晨,王维逸,郭帅,刘哲,施立志. 北京平谷地区万庄子-镇罗营背斜地热地质条件研究. 城市地质. 2023(02): 169-177 . 百度学术
5. 肖礼军,杨飞,付宜兴. 武汉西部蔡甸地区中深层地热资源主控因素分析. 岩石矿物学杂志. 2023(05): 757-765 . 百度学术
6. 于丹丹,徐成华,骆祖江,顾问,周玲玲. 南京汤泉地下热水补给来源与成因模式. 地质通报. 2023(11): 2006-2013 . 本站查看
7. 李方震,方同明,赵勇,何静,霍雨佳. 北京市浅山区地质资源环境现状及保护对策刍议. 城市地质. 2022(01): 13-20 . 百度学术
8. 刘庆,林天懿,杨淼,柯柏林,项悦鑫,杨茜婷. 北京地区雾迷山组地热储层微观孔隙结构及孔渗特征. 地质通报. 2022(04): 657-668 . 本站查看
9. 雷晓东,李晨,王立发,赵玉,尤志鑫,唐显春,关伟,李娟. 延庆盆地大地热流异常及其构造背景. 地球物理学报. 2022(09): 3405-3418 . 百度学术
10. 李状,周训,方斌,沈晔,徐艳秋,陈柄桦,王蒙蒙,隋丽嫒. 安徽大别山区温泉的水化学与同位素特征及成因. 地质通报. 2022(09): 1687-1697 . 本站查看
11. 卢丽,王喆,邹胜章,樊连杰,林永生,周长松. 四川昭觉县地热温度解析及成因模式. 地质通报. 2021(Z1): 434-441 . 本站查看
12. 李文. 北京通州地温场特征及其影响因素. 地质通报. 2021(07): 1189-1194 . 本站查看
13. 饶家健,张文涛,刘启蒙. 应力对背斜构造中地热的控制作用研究. 安徽理工大学学报(自然科学版). 2020(03): 46-52 . 百度学术
14. 刘元晴,周乐,吕琳,李伟,王新峰,邓启军,宋绵,郑一迪,马雪梅. 山东鲁中山区地热地质特征及热水成因. 地质通报. 2020(12): 1908-1918 . 本站查看
15. 刘峰,王贵玲,张薇,岳晨,甘浩男,肖则佑,欧小科. 江西宁都县北部大地热流特征及地热资源成因机制. 地质通报. 2020(12): 1883-1890 . 本站查看
其他类型引用(4)