Zircon U-Pb ages and geochemistry of volcanic rocks in the Nie'er Co-Laguo Co area of the western Bangong Co-Nujiang suture zone
-
摘要:
对出露于班公湖-怒江缝合带西段聂尔错和拉果错地区的火山岩开展了锆石U-Pb定年和岩石地球化学测试,旨在查明该区火山岩的形成时代、岩石成因及构造环境。锆石U-Pb定年结果显示,聂尔错地区流纹岩及拉果错地区英安岩分别形成于112.5Ma和112.3Ma,与区域上大规模展布的早白垩世岩浆作用时代一致。全岩主量、微量元素特征显示,英安岩与流纹岩样品均属于钙碱性系列,且明显富集Th、U,亏损Nb、Ta、Ti等高场强元素。地球化学特征指示英安岩起源于增厚的下地壳部分熔融,而流纹岩是下地壳熔体经历广泛结晶分异作用的产物。研究认为,西藏中部早白垩世晚期大规模岩浆作用形成于碰撞后伸展背景,其深部动力学机制可能与北向俯冲的班公湖-怒江洋壳的板片断离有关。
Abstract:In order to ascertain the formation age, rock genesis and tectonic setting of volcanic rocks in the Nie'er Co and Laguo Co areas of the western Bangong Co-Nujiang suture zone, the authors mainly carried out zircon U-Pb dating and petrogeochemical analysis of volcanic rocks. The zircon U-Pb dating results show that the rhyolites in the Nie'er Co area were formed at 112.5Ma, and the dacite in the Laguo Co area was formed at 112.3Ma, respectively, consistent with the age of the magmatism extensively distributed in the study area. The characteristics of the main trace elements of the whole rock show that both the dacite and rhyolite samples belong to the calc-alkaline series, and are obviously enriched in Th, U, and depleted in high field strength elements such as Nb, Ta and Ti. Geochemical characteristics indicate that the dacite originated from the partial melting of the thickened lower crust, whereas rhyolite was formed by the extensive crystallization differentiation of the lower crust melts. The authors hold that the largescale magmatism in the late Early Cretaceous in central Tibet formed a background after collision, and the deep dynamic mechanism was probably related to the slab break-off of the northward subduction of Bangong Co-Nujiang oceanic floor.
-
致谢: 感谢自然资源部沉积盆地与油气资源重点实验室、中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)及西南冶金地质测试中心等测试单位的老师在样品分析过程中给予的帮助,感谢青岛海洋地质研究所吴浩博士和吉林大学范建军副教授、杨浩博士在成文过程中给予的热情指导,感谢审稿专家提出的宝贵修改意见和建议。
-
图 7 Rb-Hf-Ta构造判别图解[49]
Figure 7. Rb-Hf-Ta diagrams
表 1 流纹质凝灰岩(KZL-003)与英安岩(2148TW)样品LA-ICP-MS锆石U-Th-Pb测年结果
Table 1 LA-ICP-MS zircon U-Th-Pb data for rhyolite tuff (KZL-003) and dacite (2148TW)
样品编号 含量/10-6 Th/U 同位素比值 年龄/Ma Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ KZL-003-1 419 427 0.98 0.0516 0.0043 0.124 0.009 0.0175 0.0004 333 193 118 8 112 2 KZL-003-2 165 241 0.68 0.0587 0.0070 0.137 0.011 0.0186 0.0004 554 261 130 10 119 3 KZL-003-3 344 406 0.85 0.0511 0.0042 0.110 0.009 0.0163 0.0004 256 195 106 8 104 2 KZL-003-4 303 348 0.87 0.0489 0.0051 0.113 0.011 0.0172 0.0004 143 230 108 10 110 3 KZL-003-5 708 608 1.16 0.0468 0.0031 0.116 0.008 0.0178 0.0003 43 148 112 7 114 2 KZL-003-6 385 349 1.10 0.0514 0.0046 0.116 0.009 0.0174 0.0004 257 206 111 8 111 2 KZL-003-7 210 265 0.79 0.0495 0.0060 0.114 0.011 0.0173 0.0004 172 259 110 11 111 3 KZL-003-8 543 440 1.23 0.0496 0.0043 0.114 0.008 0.0177 0.0004 176 189 110 7 113 2 KZL-003-9 345 328 1.05 0.0617 0.0056 0.147 0.010 0.0181 0.0005 665 197 139 9 116 3 KZL-003-10 327 293 1.12 0.0499 0.0055 0.122 0.011 0.0176 0.0004 191 237 117 10 113 3 KZL-003-11 330 364 0.91 0.0492 0.0060 0.111 0.011 0.0172 0.0004 167 250 107 10 110 3 KZL-003-12 209 210 0.99 0.0562 0.0070 0.138 0.014 0.0187 0.0005 457 278 131 12 119 3 KZL-003-13 244 260 0.94 0.0495 0.0054 0.116 0.011 0.0174 0.0005 172 237 112 10 111 3 KZL-003-14 321 375 0.86 0.0473 0.0050 0.116 0.010 0.0190 0.0005 65 233 111 9 121 3 KZL-003-15 617 630 0.98 0.0511 0.0038 0.118 0.008 0.0171 0.0003 243 170 113 7 109 2 KZL-003-16 476 472 1.01 0.0518 0.0043 0.124 0.010 0.0176 0.0005 276 191 118 9 113 3 KZL-003-17 386 401 0.96 0.0564 0.0043 0.137 0.010 0.0173 0.0004 478 172 130 9 111 2 KZL-003-18 164 193 0.85 0.0551 0.0061 0.131 0.013 0.0177 0.0005 417 253 125 12 113 3 KZL-003-19 1117 740 1.51 0.0479 0.0034 0.114 0.008 0.0171 0.0003 95 159 110 7 110 2 KZL-003-20 808 524 1.54 0.0506 0.0037 0.123 0.008 0.0180 0.0004 220 172 118 8 115 3 KZL-003-21 358 393 0.91 0.0512 0.0041 0.128 0.010 0.0186 0.0004 256 190 122 9 119 3 KZL-003-22 315 349 0.90 0.0561 0.0054 0.134 0.011 0.0186 0.0005 457 213 128 10 119 3 2148TW-1 120 177 0.68 0.0612 0.0063 0.155 0.016 0.0180 0.0005 656 224 147 14 115 3 2148TW-2 226 291 0.78 0.0544 0.0039 0.129 0.009 0.0176 0.0004 387 161 123 8 112 2 2148TW-3 161 214 0.75 0.0521 0.0041 0.125 0.010 0.0176 0.0004 287 183 119 9 113 2 2148TW-4 402 401 1.00 0.0639 0.0048 0.155 0.012 0.0176 0.0003 739 164 147 10 113 2 2148TW-5 1210 878 1.38 0.0605 0.0034 0.151 0.009 0.0180 0.0003 620 119 143 8 115 2 2148TW-6 346 501 0.69 0.0526 0.0035 0.124 0.008 0.0172 0.0003 309 154 119 8 110 2 2148TW-7 292 459 0.64 0.0505 0.0031 0.119 0.007 0.0174 0.0003 217 144 114 6 111 2 表 2 研究区罗玛组火山岩全岩主量、微量和稀土元素分析结果
Table 2 Major, trace and rare earth element data for volcanic rock of Luoma Formation in study area
样品号 PM003Gs8 PM003Gs12 PM003Gs13 2148Gs D4021-1 D4125-1 PM003-14-1 PM003-21-1 PM003-41-1 岩性 英安岩 英安岩 英安岩 英安岩 流纹岩 流纹岩 流纹质凝灰岩 流纹质凝灰岩 流纹质凝灰岩 SiO2 67.70 69.65 71.75 74.24 71.31 76.05 76.66 76.82 77.42 Al2O3 14.55 15.13 15.52 16.20 13.95 12.71 12.80 12.60 12.17 Fe2O3 1.66 0.82 1.06 0.55 1.25 0.52 0.79 0.76 0.49 FeO 0.14 1.20 0.09 0.07 1.36 0.40 0.20 0.36 0.10 CaO 4.21 2.64 1.78 0.61 2.07 0.86 0.51 0.72 0.29 MgO 0.25 1.12 0.10 0.03 1.02 0.23 0.16 0.20 0.07 k2O 2.38 2.45 1.98 2.17 3.26 4.72 4.31 4.08 5.25 Na2O 0.29 4.01 0.29 0.10 3.54 3.29 3.48 3.18 3.06 TiO2 0.26 0.25 0.29 0.29 0.37 0.16 0.16 0.20 0.15 P2O5 0.07 0.07 0.11 0.09 0.10 0.03 0.03 0.04 0.02 MnO 0.04 0.04 0.02 0.02 0.08 0.04 0.02 0.04 0.02 烧失量 8.26 2.39 6.78 5.42 1.47 0.81 0.74 0.78 0.80 总计 99.81 99.76 99.76 99.79 99.77 99.83 99.86 99.82 99.84 Na2O+ K2O 2.67 6.46 2.27 2.27 6.80 8.01 7.79 7.26 8.31 TFe2O3 1.81 2.15 1.16 0.63 2.76 0.96 1.01 1.15 0.60 Mg# 24.41 54.85 16.72 9.99 46.26 35.72 26.92 28.76 21.35 Rb 86.60 84.60 61.40 81.60 21.70 149.00 25.10 44.30 59.90 Ba 338 554 323 244 178 1210 91 642 336 Th 7.98 9.35 8.24 9.18 24.60 22.50 7.37 26.70 23.20 U 2.08 2.88 1.56 2.98 3.15 2.79 1.11 4.53 6.05 Nb 5.68 5.64 5.68 4.96 11.40 12.00 4.12 9.34 9.65 Ta 1.12 1.14 1.12 0.50 1.25 1.23 0.46 1.19 1.08 Sr 158 249 234 224 122 47.8 44.2 50.7 101 P 309 314 462 410 436 130 130 174 87 Zr 114 118 123 129 156 126 99.6 180 198 Hf 3.10 3.50 3.40 3.46 4.40 3.51 2.57 4.76 4.57 La 14.20 17.00 17.20 17.50 51.30 35.30 17.30 36.80 45.60 Ce 21.60 31.10 30.00 30.20 93.10 69.70 30.40 67.40 83.90 Pr 2.55 3.04 3.09 3.48 10.60 6.70 4.16 7.75 8.75 Nd 8.65 10.40 11.50 11.80 37.20 21.60 15.60 26.60 30.50 Sm 1.56 1.91 1.97 2.10 6.83 3.72 2.94 5.00 5.67 Eu 0.49 0.64 0.54 0.55 1.65 1.15 0.59 0.73 0.76 Gd 1.38 1.55 1.66 1.83 6.18 3.72 2.69 4.38 4.88 Tb 0.22 0.25 0.23 0.29 1.00 0.63 0.45 0.66 0.79 Dy 1.15 1.26 1.20 1.61 6.12 4.17 2.94 4.11 4.48 Ho 0.26 0.25 0.25 0.26 1.22 0.90 0.65 0.81 0.86 Er 0.65 0.63 0.63 0.66 3.68 3.01 2.06 2.62 2.80 Tm 0.11 0.11 0.11 0.11 0.61 0.52 0.35 0.44 0.51 Yb 0.70 0.64 0.69 0.69 3.85 3.58 2.25 2.95 3.43 Lu 0.12 0.10 0.11 0.11 0.64 0.60 0.37 0.47 0.58 Y 7.24 7.18 7.12 8.18 37.30 29.10 21.40 23.60 24.00 δEu 1.02 1.14 0.91 0.86 0.78 0.95 0.64 0.48 0.44 ∑LREE 49.05 64.09 64.30 65.63 200.68 138.17 70.99 144.28 175.18 ∑HREE 11.83 11.97 12.00 13.74 60.60 46.23 33.16 40.04 42.33 LREE/ HREE 4.15 5.35 5.36 4.78 3.31 2.99 2.14 3.60 4.14 ∑REE 60.88 76.06 76.30 79.37 223.98 155.30 82.75 160.72 193.51 (La/Yb)N 13.68 17.91 16.81 17.10 8.98 6.65 5.18 8.41 8.96 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
潘桂棠.初论班公湖-怒江结合带[C]//青藏高原地质文集(12).北京: 地质出版社, 1983. 邱瑞照, 周肃, 邓晋福, 等.西藏班公湖-怒江带西段舍马拉沟蛇绿岩中辉长岩年龄测定:兼论班公湖-怒江蛇绿岩带形成时代[J].中国地质, 2004, 31(3):262-268. doi: 10.3969/j.issn.1000-3657.2004.03.004 潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53(7):3-14. http://d.old.wanfangdata.com.cn/Periodical/dqkx201806009
Zhu D C, Zhao Z D, Niu Y L, et al. The origin and re-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002
范建军, 李兴奎, 张天羽, 等.班公湖-怒江洋中西段汇聚消亡时空重建[M].北京:地质出版社, 2017. 耿全如, 潘桂棠, 王立全, 等.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景[J].地质通报, 2011, 30(8):1261-1274. doi: 10.3969/j.issn.1671-2552.2011.08.013 耿全如, 彭志敏, 张璋, 等.班公湖-怒江成矿带及邻区特提斯演化与成矿地质背景[M].北京:地质出版社, 2012. 唐菊兴, 宋扬, 王勤, 等.西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩-浅成低温热液型矿床[J].地球学报, 2016, 37(6):663-690. doi: 10.3975/cagsb.2016.06.03 唐菊兴, 王勤, 杨欢欢, 等.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J].地球学报, 2017, 38(5):571-613. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705002 曲晓明, 辛洪波, 杜德道, 等.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束[J].地球化学, 2012, 41(1):1-14. http://d.old.wanfangdata.com.cn/Periodical/dqhx201201001 Zhu D C, Mo X X, Niu Y, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268:298-312. doi: 10.1016/j.chemgeo.2009.09.008
Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane:record of a microcontinent and itshistories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301:241-255. doi: 10.1016/j.epsl.2010.11.005
康志强, 许继峰, 王保弟, 等.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境[J].地球科学, 2009, 34(1):89-104. http://d.old.wanfangdata.com.cn/Periodical/dqkx200901009 赵元艺, 崔玉斌, 吕立娜, 等.西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义[J].岩石学报, 2011, 27(7):2132-2142. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107020 Fan J J, Li C, Xie C M, et al. Petrology and U-Pb zircon geochronology of bimdodal volcanic rocks from the Maierze Group northern Tibet:constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos, 2015, 227(15):148-160.
吴浩, 李才, 胡培远, 等.藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义[J].地质通报, 2014, 33(11):1804-1814. doi: 10.3969/j.issn.1671-2552.2014.11.016 Wu H, Li C, Xu M J, et al. Early cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 2015, 97:51-66. doi: 10.1016/j.jseaes.2014.10.014
Wu H, Li C, Hu P Y, et al. Early cretaceous (100-105Ma) adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:implications for the Bangong-Nujiang Ocean subduction and slab break-off[J]. International Geology Review, 2015, 57(9/10):1172-1188.
Xu W, Li C, Wang M, et al. Subduction of a spreading ridge within the Bangong Co-Nujiang Tethys Ocean:Evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu-Au deposit, western Tibet[J]. Gondwana Research, 2017, 41:128-141. doi: 10.1016/j.gr.2015.09.010
Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245:7-17. doi: 10.1016/j.lithos.2015.06.023
Wu H, Qiangba Z, Li C, et al. Geochronology and Geochemistry of Early Cretaceous Granitic Rocks in the Dongqiao Area, Central Tibet:Implications for Magmatic Origin and Geological Evolution[J]. The Journal of Geology, 2018, 126(2):249-260.
Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004
Liu Y S, Gao S, Hu Z, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082
王勤.西藏多龙矿集区美日切错组火山岩成因及与铁格隆南铜(金)矿床成矿的关系[D].成都理工大学硕士学位论文, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10616-1015310699.htm 刘海永.班公湖-怒江成矿带西段"多尼组"火山岩研究[D].成都理工大学硕士学位论文, 2017. Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27:745-750. doi: 10.1093/petrology/27.3.745
Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8:523-548. doi: 10.1139/e71-055
Peecerillo A, Taylor S R. Geochemistry of Eocene Calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745
Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P. Rare Earth Elements Geochemistry. Elsevier, Amsterdam, 1984: 63-114.
Sun W D, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Bacon C R, Druitt T H. Compositional evolution of the zoned calcalkaline magma chamber of mount Mazama, Crater Lake, Oregon[J]. Contribution to Mineralogy and Petrology, 1988, 98:224-256. doi: 10.1007/BF00402114
Ingle S, Weis D, Frey F A. Indian continental crust recovered from Elan Bank, Kerguelen Plateau (ODP Leg 183, Site 1137)[J]. Journal o f Petrology, 2002, 43(7):1241-1257. doi: 10.1093/petrology/43.7.1241
Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources:A review[J]. Lithos, 2004, 78(1/2):1-24. https://www.sciencedirect.com/science/article/pii/S0024493704002014
Tepper J H, Nelson B K, Bergantz G W, et al. Petrology of the Chilliwack batholith, North Cascades, Washington:Generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity[J]. Contribution to Mineralogy and Petrology, 1993, 113:333-351. doi: 10.1007/BF00286926
Guffanti M, Clynne M A, Muffler L J P. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and constraints on basalt influx to the lower crust[J]. Journalo f Geophysical Research, 1996, 101(B2):3003-3013. doi: 10.1029/95JB03463
Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347:662-665. doi: 10.1038/347662a0
Castillo P R. Adakite petrogenesis[J]. Lithos, 2012, 134/135(3):304-316. http://d.old.wanfangdata.com.cn/Periodical/kxtb-e200603001
吴福元, 葛文春, 孙德有.中国东部燕山期"埃达克质岩"问题与意义[C]//埃达克质岩及其地球动力学意义学术研讨会论文摘要, 2001: 53-55. Martin H. Adakitic magmas:Modern analogues of Archaean granitoids[J]. Lithos, 1999, 46:411-429. doi: 10.1016/S0024-4937(98)00076-0
Benoit M, Aguillón-Robles A, Calmus Thierry, et al. Geochemical diversity of Late Miocene volcanism in Southern Baja California, Mexico:implication of mantle and crustal sources during the opening of an asthenospheric window[J]. Journal of Geology, 2002, 110:627-648. doi: 10.1086/342735
Dewey J F, Shackelton R M, Chang C F, et al. The tectonic evolution of the Tibetan Plateau[J]. Phil. Trans. R. Soc. Lond., 1988, A327:379-413. http://d.old.wanfangdata.com.cn/Periodical/dxqy200906024
Leier A L, Decelles P G, Kapp P, et al. Lower Cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau[J]. Journal of Sedimentary Research, 2007, 77:809-825. doi: 10.2110/jsr.2007.078
Xu R H, Schärer U, Allègre C J. Magmatism and metamorphism in the Lhasa block (Tibet):a geochronological study[J]. Journal of Geology, 1985, 93:41-57. doi: 10.1086/628918
Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280. doi: 10.1146/annurev.earth.28.1.211
Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet:implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168/169:144-159. doi: 10.1016/j.lithos.2013.01.012
Fan J J, Li C, Xie C M, et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet:constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos, 2015, 227:148-160. doi: 10.1016/j.lithos.2015.03.021
Qu X M, Wang R J, Xin H B, et al. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau[J]. Lithos, 2012, 146/147:264-275. doi: 10.1016/j.lithos.2012.05.006
Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[J]. Geological Society of London Special Publications, 1986, 19:67-81. doi: 10.1144/GSL.SP.1986.019.01.04
Wu H, Sun S, Liu H, et al. An Early Cretaceous slab window beneath central Tibet, SW China:Evidence from OIB-like alkaline gabbros in the Duolong area[J]. Terra Nova, 2019, 31(1):67-75.
Wu H, Chen J, Wang Q, et al. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in Central Tibet[J]. American Journal of Science, 2019, 319(2):105-121. doi: 10.2475/02.2019.02
Davies J H, F von Blanckenburg. Slab breakoff:a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 1995, 129(1/4):85-102. https://core.ac.uk/display/8803359
杜德道, 曲晓明, 王根厚, 等.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J].岩石学报, 2011, 27(7):1993-2002. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107008 Wu H, Li C, Chen J, et al. Late Triassic tectonic framework and evolution of central Qiangtang, Tibet, SW China[J]. Lithos, 2016, 8(2):141-149.