• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

汶川地震断层带中碳酸盐岩碳氧同位素分异——对断层愈合机制的启示

郭瑾, 闫小兵, 李自红, 陈慧, 扈桂让

郭瑾, 闫小兵, 李自红, 陈慧, 扈桂让. 2019: 汶川地震断层带中碳酸盐岩碳氧同位素分异——对断层愈合机制的启示. 地质通报, 38(6): 959-966.
引用本文: 郭瑾, 闫小兵, 李自红, 陈慧, 扈桂让. 2019: 汶川地震断层带中碳酸盐岩碳氧同位素分异——对断层愈合机制的启示. 地质通报, 38(6): 959-966.
GUO Jin, YAN Xiaobing, LI Zihong, CHEN Hui, HU Guirang. 2019: Carbon and oxygen isotope fractionation of carbonate rocks in the fault zone of Wenchuan earthquake:Implications for the mechanism of fault healing. Geological Bulletin of China, 38(6): 959-966.
Citation: GUO Jin, YAN Xiaobing, LI Zihong, CHEN Hui, HU Guirang. 2019: Carbon and oxygen isotope fractionation of carbonate rocks in the fault zone of Wenchuan earthquake:Implications for the mechanism of fault healing. Geological Bulletin of China, 38(6): 959-966.

汶川地震断层带中碳酸盐岩碳氧同位素分异——对断层愈合机制的启示

基金项目: 

中国地震局地震预测研究所科研专项《主要活动断裂古地震与破裂分段研究》 2017IES010101

临汾市政府项目《临汾市区活断层探测与地震危险性评价》 1521044025

详细信息
    作者简介:

    郭瑾(1987-), 男, 硕士, 工程师, 从事构造地质与地质灾害研究。E-mail:261833184@qq.com

    通讯作者:

    闫小兵(1978-), 男, 硕士, 高级工程师, 从事构造地质与地震地质研究。E-mail:42953033@qq.com

  • 中图分类号: P588.24+5

Carbon and oxygen isotope fractionation of carbonate rocks in the fault zone of Wenchuan earthquake:Implications for the mechanism of fault healing

  • 摘要:

    汶川地震断层带北川擂鼓镇赵家沟剖面的露头及显微结构均发现多期次脉体纵横交错,角砾岩被胶结。通过对断层岩相关的碳酸盐矿物同位素分析得知,断层岩角砾和脉体中大量的白云石来源应是断层带内富Mg离子的流体,且碳氧同位素显著分异,角砾的δ18O值和δ13C值与灰岩围岩更接近,脉体和基质显示重同位素亏损。通过“同震热分解”和“水-岩相互作用”2种可能模型的研究分析,同震热分解模型δ13C值明显高于实际,而水-岩相互作用则可形成这种分异结果。故震后深部流体上涌所导致的表层大气水再循环可能是导致震后断层快速愈合的重要原因,同震破裂和间震期愈合则形成完整的断层系统。

    Abstract:

    The outcrop and microscopic structure analysis of Zhaojiagou section at Leigu Town in Beichuan area of Wenchuan earthquake fault zone revealed that multi-phase veins crisscross and the breccia has been cemented.The isotope analysis of carbonate minerals related to fault rocks shows that the source of a large amount of dolomite in the fault breccia and veins should be the Mgrich fluid in the fault zone, and the carbon and oxygen isotopes exhibit significant differentiation.The δ18O and δ13C values of breccia are more close to values of surrounding rocks of limestone, and the veins and matrix exhibit heavy isotope losses. It is found that the δ13C values of the coseismic thermal decomposition model is obviously higher than the real values and the water-rock interaction model can form this differentiation result, as shown by comparison of these two possible models.Therefore, the surface water recirculation caused by the upwelling of deep fluids may be the significant cause of the fault rapid healing after earthquake. The coseismic rupture and inter-seismic healing form a complete fault system.

  • 致谢: 中国地震局地质研究所陈建业博士在研究课题上给予了指导,山西省地质环境监测中心刘瑾高级工程师在论文修改过程中提出了宝贵意见和建议,审稿专家提出宝贵的修改意见,在此一并表示衷心的感谢。
  • 图  1   龙门山断裂带地质简图及工作区位置[12]

    Figure  1.   Geological sketch map and working area location of the Longmen Mountain fault zone

    图  2   映秀-北川断裂赵家沟剖面断层结构

    Figure  2.   Zhaojiagou section structure of Yingxiu-Beichuan fault

    图  3   同位素分析取样的典型标本(图中黑色、红色及蓝色箭头所指分别为脉体、角砾和基质部分)

    Figure  3.   Typical samples for isotopic analysis

    图版Ⅰ  

    a.断层泥和断层角砾岩交界部位;b.典型断层角砾岩;c.断层泥空隙中方解石充填;d.角砾岩为流体高度改造,可见不同期次脉体;e、f.胶结的角砾岩中多期次脉体相互穿插;g.胶结的断层泥和细碎裂岩;h.伟晶脉体,后期产生微裂隙又被愈合

    图版Ⅰ.  

    图  4   不同部位样品碳氧同位素测试结果

    Figure  4.   Carbon and oxygen isotope analytical results of different parts

    图  5   基于同位素结果的模拟分析

    (黑色粗线为基于同震热分解模型的计算结果;黑色细线及阴影区为水-岩相互作用模型的计算结果)

    Figure  5.   Simulation analysis based on isotope results

    表  1   北川擂鼓镇赵家沟剖面断层岩成分分析结果

    Table  1   Fault rock composition analytical results of Zhaojiagou section at Leigu Town, Beichuan area

    岩性 全岩成分 粘土组成(相对含量)
    石英 长石 白云石 方解石 粘土 蒙脱 伊利 伊/蒙 绿泥 混层比
    上盘灰岩原岩 0.5% 0.5% 98% 1% 96% 4%
    上盘粗角砾岩 1% 1% 29% 68% 1% 95% 5% 5
    上盘细角砾岩 24% 7% 11% 40% 18% 39% 55% 6% 10
    灰色断层泥 29% 2% 27% 7% 35% 3% 83% 14% 36
    白色伟晶脉体 6% 1% 37% 51% 5% 3% 30% 55% 12% 10
    下盘细角砾岩 6% 62% 24% 8% 19% 73% 8% 33
    下盘粗角砾岩 42% 33% 8% 17% 51% 49% 5
    下盘砂岩原岩 43% 39% 9% 9% 47% 53%
    注:混层比为伊蒙混层中蒙脱石的含量
    下载: 导出CSV
  • Li Y G, Vidale J E, Day S M, et al. Postseismic fault healing on the rupture zone of the 1999 M 7.1 Hector Mine, California, earthquake[J]. Bulletin seismological Society of America, 2003, 93(2):854-869. doi: 10.1785/0120020131

    Kitagawa Y, Fujirmori K, Koizumi N. Temporal change in permeability of the Nojima fault zone by repeated water injection experiments[J]. Tectonophysics, 2007, 443:183-192. doi: 10.1016/j.tecto.2007.01.012

    Xue L, Li H B, Brodsky E E, et al. Continuous permeability measurements record healing inside the Wenchuan Earthquake Fault Zone[J]. Science, 2013, 340(6140):1555-1559. doi: 10.1126/science.1237237

    Marone C. Laboratory-derived friction laws and their application to seismic faulting[J]. Annual Review of Earth and Planetary Sciences, 1998, 26(1):643-696. doi: 10.1146/annurev.earth.26.1.643

    Wang P L, Wu J J, Yeh E C, et al. Isotopic constraints of vein carbonates on fluid sources and processes associated with the ongoing brittle deformation within the accretionary wedge of Taiwan[J].Terra Nova, 2010, 22(4):251-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=854f7997668c4f5ae9b42dc97f3f9dbf

    Gratier J P, Richard J, Renard F, et al. Aseismic sliding of active faults by pressure solution creep:Evidence from the San Andreas Fault Observatory at Depth[J]. Geology, 2011, 39(12):1131-1134. doi: 10.1130/G32073.1

    Hickman S, Sibson R, Bruhn R. Introduction to special section:Mechanical involvement of fluids in faulting[J]. Journal of Geophysical Research Atmospheres, 1995, 100(B7):12831-12840. doi: 10.1029/95JB01121

    Kanagawa K, Cox S F, Zhang S. Effects of dissolution precipitation processes on the strength and mechanical behavior of quartz gouge at high-temperature hydrothermal conditions[J]. Journal of Geophysical Research Atmospheres, 2000, 105(B5):11115-11126. doi: 10.1029/2000JB900038

    Yasuhara H, Marone C, Elsworth D. Fault zone restrengthening and frictional healing:The role of pressure solution[J]. Journal of Geophysical Research Atmospheres, 2005, 110(6):10-1029. http://cn.bing.com/academic/profile?id=d269ce7c8d000ef1de5c0a981eca216d&encoded=0&v=paper_preview&mkt=zh-cn

    Chen J Y, Yang X S, Duan Q B, et al. Importance of thermochemical pressurization in the dynamic weakening of the Longmenshan Fault during the 2008 Wenchuan earthquake:Inferences from experiments and modeling[J]. Journal of Geophysical Research Atmospheres, 2013, 118(8):4145-4169. http://cn.bing.com/academic/profile?id=5b9efd121a7b6cf67187d6f75cf274e6&encoded=0&v=paper_preview&mkt=zh-cn

    Yang T, Chen J, Wang H, et al. Rock magnetic properties of fault rocks from the rupture of the 2008 Wenchuan earthquake, China and their implications:Preliminary results from the Zhaojiagou outcrop, Beichuan County (Sichuan)[J]. Tectonophysics, 2012, s530-531(2):331-341. http://cn.bing.com/academic/profile?id=995530802a44cb9766d403560db20d23&encoded=0&v=paper_preview&mkt=zh-cn

    陈建业, 杨晓松, 党嘉祥, 等.汶川地震断层带结构及渗透率[J].地球物理学报, 2011, 54(7):1805-1816. doi: 10.3969/j.issn.0001-5733.2011.07.014

    Zhang L, He C. Frictional properties of natural gouges from Longmenshan fault zone ruptured during the Wenchuan Mw7.9 earthquake[J].Tectonophysics, 2013, 594(3):149-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c30f4b9099fe9a7eb6055bb2e891ca83

    Shieh Y N, Taylor H P. Carbon and hydrogen isotope studies at contact metamorphism in the Santa Rosa Range, Nevada and other areas[J]. Contributions to Mineralogy and Petrology, 1969, 20(4):306-356. doi: 10.1007/BF00373303

    Hirose T, Shimamoto T. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting[J]. Journal of Geophysical Research Solid Earth, 2005, 110(B5):147-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=335e40801f6bdbf507f4443fd3d939c5

    Hirono T, Fujimoto K, Yokoyama T, et al. Clay mineral reactions caused by frictional heating during an earthquake:An example from the Taiwan Chelungpu fault[J].Geophysical Research Letters, 2008, 35:L16303. doi: 10.1029/2008GL034476

    Han R, Shimamoto T, Hirose T, et al. Ultralow friction of carbonate faults caused by thermal decomposition[J]. Science, 2007, 316(5826):878-881. doi: 10.1126/science.1139763

    Hirono T, Ikehara M, Otsuki K, et al. Evidence of frictional melting from disk-shaped black material, discovered within the Taiwan Chelungpu fault system[J]. Geophysical Research Letters, 2006, 33(19):677-688. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5f04feed082fcf3282bb46c01e3f46a5

    Di Toro G, Han R, Hirose T, et al. Fault lubrication during earthquakes[J]. Nature, 2011, 471(7339):494-498. doi: 10.1038/nature09838

    De Paola N, Chiodini G, Hirose T, et al. The geochemical signature caused by earthquake propagation in carbonate-hosted faults[J]. Earth and Planet Science Letters, 2011, 310(3):225-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5eee432a72e8b03251eca6c514621053

    Sheppard S M, Schwarcz H P. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite[J]. Contributions to Mineralogy and Petrology, 1970, 26(3):161-198. doi: 10.1007/BF00373200

    Hausegger S, Kurz W, Rabitsch R, et al. Analysis of the internal structure of a carbonate damage zone:Implications for the mechanisms of fault breccia formation and fluid flow[J].Journal of Structural Geology, 2010, 32(9):1349-1362. doi: 10.1016/j.jsg.2009.04.014

    Molli G, Cortecci G, Vaselli L, et al. Fault zone structure and fluidrock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy)[J]. Journal of Structural Geology, 2010, 32(9):1334-1348. doi: 10.1016/j.jsg.2009.04.021

    Kirschner D L, Kennedy L A. Limited syntectonic fluid flow in carbonate-hosted thrust faults of the Front Ranges, Canadian Rockies, inferred from stable isotope data and structures[J]. Journal of Geophysical Research Atmospheres, 2001, 106(B5):8827-8840. doi: 10.1029/2000JB900414

    Pili E, Poitrasson F, Gratier J P. Carbon-oxygen isotope and trace element constraints on how fluids percolate faulted limestones from the San Andreas Fault system:partitioning of fluid sources and pathways[J]. Chemical Geology, 2002, 190(1/4):231-250. http://cn.bing.com/academic/profile?id=f69bad13dc8c266f1b17b1b3c610212c&encoded=0&v=paper_preview&mkt=zh-cn

    Pili E, Kennedy B M, Conrad M. E, et al. Isotopic evidence for the infiltration of mantle and metamorphic CO2-H2O fluids from below in faulted rocks from the San Andreas Fault System[J]. Chemical Geology, 2011, 281(3/4):242-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=955ce23cf989db9931f64d5173ecb015

    Hellings L, Dehairs F, Tackx M, et al. Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by stable carbon isotope composition[J]. Biogeochemistry, 1999, 47(2):167-186. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e90391aa418628cb86729b876ba431d6

    Ballentine C, O'Nions R K. The use of natural He, Ne and Ar isotopes to study hydrocarbon-related fluid provenance, migration and mass balance in sedimentary basins[J]. Geological Society Special Publication, 1994, 78(1):347-361.

    Zheng Y F, Hoefs J. Carbon and oxygen isotopic covariations in hydrothermal calcites[J]. Mineralium Deposita, 1993, 28(2):79-89. doi: 10.1007-BF00196332/

    Ohomoto H, Rye R O. Isotopes of sulfur and Carbon, in Geochemistry of Hydrothermal Ore Deposits, edited by H. L. Barnes[M]. New York: Wiley, 1979: 509-567.

    O'Neil J R, Clayton R N, Mayeda T K. Oxygen Isotope Fractionation in Divalent Metal Carbonates[J]. Journal of Chemical Physics, 1969, 51(12):5547-5558. doi: 10.1063/1.1671982

    Chen J Y, Yang X S, Ma, S L, et al. Mass removal and clay mineral dehy-dration/rehydration in carbonate-rich surface exposures of the 2008 Wenchuan Earthquake fault:geochemical evidence and implications for fault zone evolution and coseismic slip[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(2):474-496. doi: 10.1002/jgrb.50089

图(6)  /  表(1)
计量
  • 文章访问数:  3610
  • HTML全文浏览量:  366
  • PDF下载量:  2090
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-04
  • 修回日期:  2018-03-09
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2019-06-14

目录

    /

    返回文章
    返回