• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

内蒙古阿拉善地块东北缘狼山枕状玄武岩地球化学特征、锆石U-Pb年龄及构造背景

艾米尔丁·艾尔肯, 解国爱, 张进, 曲军峰, 田荣松, 赵衡, 李法浩, 李甜

艾米尔丁·艾尔肯, 解国爱, 张进, 曲军峰, 田荣松, 赵衡, 李法浩, 李甜. 2019: 内蒙古阿拉善地块东北缘狼山枕状玄武岩地球化学特征、锆石U-Pb年龄及构造背景. 地质通报, 38(5): 810-823.
引用本文: 艾米尔丁·艾尔肯, 解国爱, 张进, 曲军峰, 田荣松, 赵衡, 李法浩, 李甜. 2019: 内蒙古阿拉善地块东北缘狼山枕状玄武岩地球化学特征、锆石U-Pb年龄及构造背景. 地质通报, 38(5): 810-823.
ARKIN Amirdin, XIE Guoai, ZHANG Jin, QU Junfeng, TIAN Rongsong, ZHAO Heng, LI Fahao, LI Tian. 2019: Geochemistry, zircon U-Pb age and tectonic settings of pillow basalts in the Langshan area on the northern margin of the Alxa block, Inner Mongolia. Geological Bulletin of China, 38(5): 810-823.
Citation: ARKIN Amirdin, XIE Guoai, ZHANG Jin, QU Junfeng, TIAN Rongsong, ZHAO Heng, LI Fahao, LI Tian. 2019: Geochemistry, zircon U-Pb age and tectonic settings of pillow basalts in the Langshan area on the northern margin of the Alxa block, Inner Mongolia. Geological Bulletin of China, 38(5): 810-823.

内蒙古阿拉善地块东北缘狼山枕状玄武岩地球化学特征、锆石U-Pb年龄及构造背景

基金项目: 

国家重点研发计划项目《北方东部符合造山带岩石圈三维架构与成矿地质背景》 2017YFC0601301

《深部过程与成矿作用研究集成》 2018YFC0603703

南京大学“十三五”实验教学改革研究课题 SY201913

详细信息
    作者简介:

    艾米尔丁·艾尔肯(1991-), 男, 在读硕士生, 构造地质专业。E-mail:amirdin@smail.nju.edu.cn

    通讯作者:

    解国爱(1965-), 男, 博士, 教授, 从事构造地质教学和矿田构造等研究。E-mail:njuxie@nju.edu.cn

  • 中图分类号: P597+.3;P588.14+5

Geochemistry, zircon U-Pb age and tectonic settings of pillow basalts in the Langshan area on the northern margin of the Alxa block, Inner Mongolia

  • 摘要:

    狼山地区位于内蒙古阿拉善地块东北缘,其构造背景一直存在争议。报道狼山地区枕状玄武岩的锆石U-Pb年龄、地球化学研究成果。LA-ICP-MS锆石U-Pb定年结果表明,玄武岩中的锆石大多为捕获基底的锆石。根据锆石特征及侵入玄武岩的花岗岩年龄,得出玄武岩年龄为254~252Ma,属于二叠纪晚期。枕状玄武岩具有贫碱低钾的特征,亏损Nb、Ta、Ti、P,富集Rb、Ba、U等元素,富集轻稀土元素、亏损重稀土元素,具弱负Eu异常,显示岛弧玄武岩特征。初步认为玄武岩形成于活动大陆边缘弧环境,为古亚洲洋向南俯冲的产物,指示阿拉善地块北缘在二叠纪晚期为大陆边缘弧,为研究阿拉善地块东北缘晚古生代构造背景提供了证据。

    Abstract:

    The tectonic setting of the Langshan area, which is located on the northeastern margin of the Alxa block in Inner Mongolia, has always been controversial. This paper presents the results of zircon U-Pb geochronology and geochemical data of pillow basalts in the Langshan area. The basalt LA-ICP-MS zircon U-Pb dating results show that most zircons from basalts were captured from basement. Based on the features of zircon and the age of granite invading basalt, the age of basalt is estimated to be ca. 254~252Ma, which falls into the Late Permian. Pillow basalt shows the characteristics of island arc basalt with its low alkali and low potassium, depletion of Nb, Ta, Ti, P, enrichment of Rb, Ba, U, enrichment of LREE, and depletion of HREE with weak Eu negative anomaly. It is preliminarily believed that basalt was formed on the active continental margin and was produced by southward subduction of the ancient Asian Ocean. The results indicate that the northern margin of the Alxa block was a continental marginal arc in the Late Permian, thus providing evidence for the study of the Late Paleozoic tectonic setting on the northeastern margin of the Alxa block.

  • 致谢: 审稿专家对文章提出了宝贵的修改意见,野外工作期间得到南京大学张庆龙教授的耐心指导,南京大学博士研究生高爽、中国地质科学院博士研究生张北航和中国科学院硕士研究生惠洁在文章写作中提出了宝贵的意见,使文章能够顺利完成,在此一并表示衷心感谢。
  • 图  1   阿拉善地块构造位置(a)及狼山地区地质图(b)[14]

    Figure  1.   Tectonic location of the Alxa block (a) and geological map of Langshan area (b)

    图版Ⅰ  

    a.玄武岩与西侧花岗岩断层接触;b.枕状玄武岩;c.变形的枕状玄武岩;d.玄武岩中侵入的花岗岩脉;e.杏仁构造;f.气孔构造;g、h.枕状玄武岩显微照片

    图版Ⅰ.  

    图  2   狼山枕状玄武岩锆石阴极发光(CL)图像及年龄

    Figure  2.   CL images of zircons from the Langshan pillow basalts and their U-Pb ages

    图  3   枕状玄武岩锆石U-Pb谐和图(a)及锆石年龄频谱图(b)

    Figure  3.   U-Pb concordia diagrams of zircons from pillow basalt (a) and their age histogram (b)

    图  4   花岗岩锆石U-Pb谐和图(a)及锆石年龄频谱图(b)

    Figure  4.   U-Pb concordia diagrams of zircons from granite (a) and their age histogram (b)

    图  5   侵入玄武岩的花岗岩锆石阴极发光(CL)图像及年龄

    Figure  5.   CL images of zircons from the granite and their U-Pb ages

    图  6   狼山枕状玄武岩TAS分类图解(a)[42]和Nb/Y-Zr/TiO2岩石分类图解(b)[43]

    Pc—苦橄玄武岩;B—玄武岩;O1—玄武安山岩;O2—安山岩;O3—英安岩;S1—粗面玄武岩;S2—玄武质粗面安山岩;S3—粗面安山岩;T—粗面岩、粗面安山岩;R—流纹岩;U1—碱玄岩、碧玄岩;U2—响岩质碱玄岩;U3—碱玄质响岩;Ph—响岩;F—副长石岩;Ir—分界线(上方为碱性,下方为亚碱性)

    Figure  6.   TAS (a) and Nb/Y-Zr/TiO2 diagrams (b) for pillow basalt from Langshan area

    图  7   枕状玄武岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分模式图(b)(标准化数据据参考文献[44])

    N-MORB—正常型大洋中脊玄武岩;E-MORB—富集型洋中脊玄武岩;OIB—洋岛玄武岩

    Figure  7.   Primitive mantle-normalized trace elements pattern (a) and chondrite-normalized REE patterns (b) of pillow basalt in Langshan

    图  8   枕状玄武岩Nb/Y-Ti/Y(a)[59]、Hf-Th-Ta(b)及Hf-Th-Nb图解(c)[60]

    WPB—板内玄武岩;MORB—洋中脊玄武岩;IAB—火山弧玄武岩;N-MORB—正常洋中脊玄武岩;E-MORB—富集型洋中脊玄武岩;WPT—板内拉斑玄武岩;WPAB—板内碱性玄武岩;IAT—岛弧拉斑玄武岩;CAB—钙碱性玄武岩

    Figure  8.   Nb/Y-Ti/Y (a), Hf-Th-Ta (b) and Hf-Th-Nb (c) diagrams for pillow basalt

    图  9   狼山地区枕状玄武岩成因模式图(据参考文献[23]修改)

    Figure  9.   Pillow basalt genetic model diagram

    表  1   狼山枕状玄武岩LA-ICP-MS锆石U-Th-Pb同位素测定结果

    Table  1   LA-ICP-MS zircon U-Th-Pb dating results for Langshan pillow basalts

    样品号 含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb Th U 207Pb/235U 206Pb/238U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb
    D15726-3-1 543 480 702 0.68 0.284 0.007 0.040 0.001 0.052 0.001 252 3 254 5 272 45
    D15726-3-3 520 261 268 0.97 0.589 0.014 0.070 0.001 0.061 0.001 439 5 470 9 628 45
    D15726-3-4 2085 1745 3089 0.56 0.338 0.009 0.039 0.001 0.063 0.001 244 3 296 7 720 46
    D15726-3-5 250 224 449 0.50 0.278 0.007 0.040 0.001 0.050 0.001 254 3 249 5 211 54
    D15726-3-9 1553 240 223 1.08 2.640 0.055 0.186 0.002 0.102 0.002 1102 11 1312 15 1678 33
    D15726-3-12 681 616 851 0.72 0.314 0.007 0.040 0.001 0.057 0.001 251 2 277 5 494 44
    D15726-3-15 865 92.6 480 0.19 5.291 0.098 0.333 0.004 0.115 0.002 1852 19 1867 16 1881 27
    D15726-3-20 944 254 326 0.78 1.126 0.026 0.123 0.002 0.067 0.001 747 13 766 13 833 37
    D15726-3-23 129 77.4 119 0.65 0.315 0.013 0.040 0.001 0.058 0.003 254 4 278 10 517 98
    D15726-3-27 1489 868 803 1.08 0.498 0.010 0.064 0.001 0.056 0.001 402 5 410 7 450 39
    D15726-3-29 633 493 1018 0.48 0.321 0.007 0.046 0.001 0.051 0.001 287 3 282 5 239 43
    D15726-3-30 492 597 1305 0.46 0.208 0.006 0.028 0.001 0.053 0.001 180 2 192 5 332 29
    D15726-3-31 419 519 1167 0.44 0.197 0.005 0.028 0.001 0.051 0.001 179 2 183 4 232 54
    D15726-3-38 179 132 212 0.63 0.346 0.011 0.044 0.001 0.058 0.002 275 4 302 9 520 78
    D15726-3-39 772 609 1208 0.50 0.342 0.007 0.045 0.001 0.055 0.001 282 3 299 5 433 47
    D15726-3-40 357 416 981 0.42 0.205 0.005 0.031 0.001 0.049 0.001 194 2 190 4 132 52
    D15726-3-44 586 618 2383 0.26 0.190 0.005 0.026 0.001 0.053 0.001 165 3 177 5 317 45
    D15726-3-46 935 102 431 0.24 3.484 0.059 0.234 0.001 0.108 0.002 1355 16 1523 14 1761 28
    D15726-3-51 1162 1030 1755 0.59 0.313 0.007 0.038 0.001 0.060 0.001 240 2 276 5 583 44
    下载: 导出CSV

    表  2   花岗岩LA-ICP-MS锆石U-Th-Pb同位素测定结果

    Table  2   LA-ICP-MS zircon U-Th-Pb dating results for granite

    样品号 含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb Th U 207Pb/235U 206Pb/238U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb
    17LS03-1-01 26 351 394 0.9 0.318 0.015 0.045 0.001 0.051 0.002 286 7 280 11 220 91
    17LS03-1-02 23 424 327 327 1.3 0.259 0.012 0.039 0.001 0.050 0.003 243 6 234 10 169 130
    17LS03-1-03 33 300 543 0.6 0.437 0.017 0.043 0.001 0.074 0.003 272 6 368 12 1031 69
    17LS03-1-04 20 176 177 1.0 0.557 0.021 0.075 0.002 0.054 0.002 466 10 450 14 365 76
    17LS03-1-05 67 334 846 0.4 0.540 0.014 0.073 0.002 0.054 0.001 453 11 438 9 376 57
    17LS03-1-06 30 417 565 0.7 0.311 0.027 0.039 0.001 0.059 0.005 244 4 275 21 554 189
    17LS03-1-07 24 357 398 0.9 0.285 0.012 0.038 0.001 0.054 0.003 243 5 255 9 383 106
    17LS03-1-09 29 478 306 1.6 0.377 0.012 0.047 0.001 0.059 0.002 295 6 325 9 554 69
    17LS03-1-10 56 75 111 0.7 6.218 0.149 0.367 0.009 0.124 0.003 2013 41 2007 21 2007 43
    17LS03-1-11 66 330 743 0.4 0.607 0.016 0.079 0.003 0.057 0.002 489 16 482 10 483 72
    17LS03-1-12 24 124 248 0.5 0.672 0.020 0.083 0.001 0.058 0.002 516 8 522 12 543 66
    17LS03-1-13 317 610 878 0.7 3.527 0.082 0.275 0.005 0.093 0.002 1564 27 1533 18 1488 40
    17LS03-1-14 79 105 103 1.0 10.231 0.261 0.464 0.010 0.160 0.004 2458 46 2456 24 2453 39
    17LS03-1-15 68 235 1428 0.2 0.400 0.012 0.056 0.001 0.052 0.001 350 8 342 8 280 56
    17LS03-1-16 54 553 1267 0.4 0.277 0.008 0.039 0.001 0.051 0.002 248 4 248 7 243 67
    17LS03-1-17 16 113 164 0.7 0.688 0.028 0.060 0.001 0.083 0.003 373 9 531 17 1270 61
    17LS03-1-18 24 255 167 1.5 0.556 0.023 0.071 0.001 0.056 0.002 444 8 449 15 465 91
    17LS03-1-19 22 252 382 0.7 0.318 0.009 0.045 0.001 0.051 0.001 284 5 281 7 256 60
    17LS03-1-20 31 336 445 0.8 0.377 0.011 0.051 0.001 0.054 0.001 320 8 325 8 367 57
    17LS03-1-21 27 300 494 0.6 0.314 0.010 0.043 0.001 0.053 0.001 273 6 277 8 306 63
    17LS03-1-22 37 180 416 0.4 0.631 0.022 0.082 0.002 0.056 0.001 505 10 497 13 443 56
    17LS03-1-23 17 186 208 0.9 0.487 0.023 0.048 0.001 0.073 0.003 301 6 403 16 1033 88
    17LS03-1-24 19 172 336 0.5 0.324 0.010 0.048 0.001 0.049 0.002 301 7 285 8 146 72
    17LS03-1-25 58 207 1353 0.2 0.332 0.010 0.047 0.001 0.051 0.001 294 7 291 7 261 50
    17LS03-1-26 80 505 856 0.6 0.681 0.028 0.076 0.002 0.064 0.002 473 14 527 17 743 47
    17LS03-1-27 24 208 432 0.5 0.355 0.015 0.046 0.001 0.056 0.002 289 7 308 11 443 78
    17LS03-1-28 30 257 593 0.4 0.314 0.018 0.042 0.001 0.054 0.002 265 8 277 14 350 97
    下载: 导出CSV

    表  3   狼山地区枕状玄武岩主量、微量和稀土元素分析结果

    Table  3   Major elements, trace elements and REE compositions of pillow basalt in the Langshan area

    样品号 D15726-1 D15726-2 D15726-3 D15726-4 D15726-5 D15726-6 D15726-7 D15726-8 D15726-9
    SiO2 56.21 52.79 53.32 53.07 54.24 54.74 52.32 52.68 51.75
    Al2O3 13.57 13.66 13.68 13.30 13.90 13.57 13.91 13.54 13.93
    CaO 8.09 9.17 9.33 9.23 8.93 9.13 13.91 9.34 8.84
    Fe2O3 3.34 3.77 3.83 3.75 3.60 4.24 3.21 3.87 3.73
    FeO 5.08 6.48 6.13 6.16 5.77 4.83 3.90 6.48 6.81
    K2O 0.39 0.53 0.60 0.64 0.44 0.38 1.08 0.59 0.52
    MgO 5.63 6.88 6.40 6.82 6.16 6.03 5.84 6.79 7.08
    MnO 0.15 0.18 0.17 0.18 0.17 0.17 0.19 0.17 0.18
    Na2O 4.61 3.56 3.61 3.51 4.08 4.17 2.28 3.56 3.63
    P2O5 0.15 0.15 0.16 0.15 0.14 0.15 0.16 0.16 0.15
    TiO2 1.16 1.15 1.19 1.13 1.11 1.11 1.23 1.19 1.18
    烧失量 0.65 0.84 0.87 0.93 0.78 0.79 0.88 0.76 1.07
    Ga 13.60 17.90 15.80 15.40 16.30 16.20 14.60 16.20 17.90
    Rb 10.90 15.50 20.30 22.00 12.50 12.10 56.00 20.70 14.40
    Sr 168.00 290.00 323.00 233.00 201.00 166.00 477.00 221.00 210.00
    Cd 0.16 0.17 0.15 0.13 0.12 0.17 0.21 0.17 0.14
    Cs 0.69 1.24 1.71 1.89 2.52 1.17 7.63 1.75 1.38
    Ba 376.00 219.00 383.00 450.00 202.00 210.00 547.00 215.00 198.00
    Pb 4.91 4.11 5.40 5.39 3.88 3.68 3.99 5.20 4.88
    Th 1.58 1.65 1.66 1.64 1.59 1.69 1.77 1.80 1.81
    U 0.43 0.39 0.43 0.40 0.42 0.42 0.49 0.45 0.43
    Nb 5.10 5.21 5.42 4.97 5.09 4.94 5.66 5.39 5.18
    Ta 0.29 0.30 0.32 0.33 0.30 0.29 0.33 0.32 0.31
    Zr 104.00 109.00 109.00 103.00 104.00 105.00 113.00 111.00 107.00
    Hf 2.76 2.89 2.99 2.78 2.82 2.85 3.07 3.05 3.11
    Ti 7076.00 7264.00 7190.00 6899.00 6961.00 7095.00 7887.00 7728.00 7264.00
    W 1.66 0.90 1.02 1.18 0.88 0.87 1.83 1.20 1.11
    As 4.17 4.38 4.76 3.48 9.50 12.80 3.65 4.30 3.89
    La 11.50 14.90 15.10 15.30 13.40 14.00 15.80 16.20 15.60
    Ce 26.80 31.20 31.50 31.80 28.40 30.10 32.60 34.00 32.60
    Pr 3.70 4.23 4.31 4.27 3.78 4.08 4.27 4.53 4.38
    Nd 15.70 17.60 18.30 17.60 16.20 17.20 17.40 19.00 18.50
    Sm 3.78 3.85 4.20 3.86 3.55 3.77 3.77 3.97 3.74
    Eu 0.93 1.22 1.20 0.98 1.00 1.12 1.19 1.16 1.25
    Gd 3.75 4.14 4.06 4.24 3.68 3.79 3.93 3.83 3.47
    Tb 0.59 0.64 0.66 0.60 0.55 0.60 0.60 0.63 0.61
    Dy 3.21 3.39 3.41 3.18 3.06 3.29 3.25 3.37 3.30
    Ho 0.58 0.64 0.63 0.59 0.58 0.59 0.60 0.62 0.66
    Er 1.62 1.77 1.77 1.70 1.62 1.74 1.67 1.76 1.71
    Tm 0.26 0.27 0.27 0.27 0.27 0.27 0.25 0.27 0.27
    Yb 1.64 1.66 1.62 1.58 1.51 1.71 1.61 1.70 1.63
    Lu 0.22 0.24 0.24 0.22 0.22 0.23 0.24 0.25 0.24
    Sc 29.60 30.80 30.70 28.80 31.10 29.20 33.60 32.40 30.70
    Y 16.60 16.90 17.10 15.80 16.60 16.60 16.90 17.10 16.50
    Mg# 55.40 55.42 54.38 56.06 54.95 55.45 60.55 54.87 54.40
    ∑REE 74.28 85.75 87.27 86.19 77.82 82.49 87.18 91.29 87.96
    ∑HREE 11.87 12.75 12.66 12.38 11.49 12.22 12.15 12.43 11.89
    ∑LREE 62.41 73.00 74.61 73.81 66.33 70.27 75.03 78.86 76.07
    (La/Nb)N 5.03 6.44 6.69 6.95 6.37 5.87 7.04 6.84 6.86
    δEu 0.75 0.93 0.88 0.74 0.84 0.90 0.94 0.90 1.04
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • Sengör A, Natal'In B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435):299-307. doi: 10.1038/364299a0

    Sengör A, Natal'In B A. Paleotectonics of Asia: Fragments of a synthesis[C]//Yin A, Harrison M. The tectonic evolution of Asia. Cambirdge: Cambirdge University Press, 1996: 486-640 https://www.tib.eu/en/search/id/BLCP%3ACN015296678/Paleotectonics-of-Asia-fragments-of-a-synthesis/

    Yakubchuk A. The Baikalide-Altaid, Transbaikal-Mongolian and North Pacific orogenic collages: similarity and diversity of structural patterns and metallogenic zoning[C]//Blundell D J, Neubauer F, VonQuadt A. Geological Society Special Publication, 2002: 273-297. https://www.researchgate.net/publication/238424472_The_Baikalide_-_Altaid_Transbaikal-Mongolian_and_North_Pacific_orogenic_collages_Similarity_and_diversity_of_structural_patterns_and_metallogenic_zoning

    Yakubchuk A. Architecture and mineral deposit settings of the Altaid orogenic collage:A revised model[J]. Journal of Asian Earth Sciences, 2004, 23(5):761-779. doi: 10.1016/j.jseaes.2004.01.006

    Badarch G, Dickson Cunningham W, Windley B F. A new terrane subdivision for Mongolia:implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1):87-110. http://cn.bing.com/academic/profile?id=361925d352f63875b28fdc41de0d9164&encoded=0&v=paper_preview&mkt=zh-cn

    Li J Y. Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4):207-224. http://cn.bing.com/academic/profile?id=e77fd6a5ce2d0c1b863e92f716eaa12f&encoded=0&v=paper_preview&mkt=zh-cn

    Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the geological society, 2007, 164(1):31-47. doi: 10.1144/0016-76492006-022

    Jahn B, Wu F Y, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 2000, 91(1/2):181-193. doi: 10.1017-S0263593300007367/

    Jahn B M. The central Asian orogenic belt and growth of the continental crust in the Phanerozoic[C]//Malpas J, Fletcher C, Ali J R, et al. Geological Society Special Publication, 2004: 73-100. https://pubs.geoscienceworld.org/books/book/1600/chapter/107377119/the-central-asian-orogenic-belt-and-growth-of-the

    Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(1069):1-8. http://cn.bing.com/academic/profile?id=4f70f4625c75e2c67f49e664df0bc8b5&encoded=0&v=paper_preview&mkt=zh-cn

    Xiao W J, Kroener A, Windley B. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic[J]. International Journal of Earth Sciences, 2009, 98(6):1185-1188. doi: 10.1007/s00531-009-0418-4

    Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex:Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5/6):348-370. http://cn.bing.com/academic/profile?id=b42c4d9d72e5c848c38ba5fc348ce34a&encoded=0&v=paper_preview&mkt=zh-cn

    Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4):1342-1364. doi: 10.1016/j.gr.2012.05.015

    田荣松, 解国爱, 张进, 等.内蒙古狼山地区新元古代狼山群变形特征及区域构造意义[J].地质论评, 2017, (5):1180-1192. http://d.old.wanfangdata.com.cn/Periodical/dzlp201705005

    Wang Z Z, Han B, Feng L, et al. Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2015, 97:337-351. doi: 10.1016/j.jseaes.2014.08.005

    吴亚飞, 曾键年, 曹建劲, 等.内蒙古东升庙海西期岩体锆石UPb年龄及Hf同位素特征[J].地质科技情报, 2013, (6):22-30. http://www.cnki.com.cn/article/cjfdtotal-dzkq201306005.htm

    Liu Q, Zhao G C, Sun M, et al. Early Paleozoic subduction processes of the Paleo-Asian Ocean:Insights from geochronology and geochemistry of Paleozoic plutons in the Alxa Terrane[J]. Lithos, 2016, 262:546-560. doi: 10.1016/j.lithos.2016.07.041

    鲁有朋, 俞胜, 张永全, 等.内蒙狼山地区中生代构造演化及年代学特征[J].甘肃地质, 2015, (2):24-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsdzxb201502004
    张进, 李锦轶, 刘建峰, 等.内蒙古狼山西南地区枕状玄武岩LA-ICP-MS锆石U-Pb年龄及意义[J].地质通报, 2013, 32(2/3):287-296. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201302008

    Xiao W J, Huang B C, Han C M, et al. A review of the western part of the Altaids:A key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 2010, 18:253-273. doi: 10.1016/j.gr.2010.01.007

    Ao S J, Xiao W J, Han C M, et al. Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China:Implications for late Paleozoic tectonic evolution of the southern Altaids[J]. Gondwana Research, 2010, 18(2/3):466-478. http://cn.bing.com/academic/profile?id=a0e31389001e1119b6fc34cd7bd148c6&encoded=0&v=paper_preview&mkt=zh-cn

    Liu M, Zhang D, Xiong G Q, et al. Zircon U-Pb age, Hf isotope and geochemistry of Carboniferous intrusions from the Langshan area, Inner Mongolia:Petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 2016, 120:139-158. doi: 10.1016/j.jseaes.2016.01.005

    Lin L N, Xiao W J, Wan B, et al. Geochronologic and geochemical evidence for persistence of south-dipping subduction to late Permian time, Langshan area, Inner Mongolia (China):Significance for termination of accretionary orogenesis in the southern Altaids[J]. American Journal of Science, 2014, 314(2):679-703. doi: 10.2475/02.2014.08

    彭润民, 翟裕生, 王建平, 等.内蒙狼山新元古代酸性火山岩的发现及其地质意义[J].科学通报, 2010, (26):2611-2620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201026008

    Dan W, Li X H, Guo J H, et al. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China:Evidence from in situ zircon U-Pb dating and Hf-O isotopes[J]. Gondwana Research, 2012, 21(4):838-864. http://cn.bing.com/academic/profile?id=498baf5a6a438b46358bab88e36480c3&encoded=0&v=paper_preview&mkt=zh-cn

    Hu J M, Gong W B, Wu S J, et al. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 2014, 255:756-770. doi: 10.1016/j.precamres.2014.08.013

    彭润民, 翟裕生, 韩雪峰, 等.内蒙古狼山造山带构造演化与成矿响应[J].岩石学报, 2007, (3):679-688. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200703014
    彭润民.内蒙东升庙矿区狼山群中石英角斑岩的发现及意义[J].矿床地质, 1993, (3):273-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0400390175
    彭润民, 翟裕生, 王志刚, 等.内蒙古狼山炭窑口热水喷流沉积矿床钾质"双峰式"火山岩层的发现及其示踪意义[J].中国科学(D辑), 2004, (12):1135-1144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200412006
    张永全.内蒙古狼山西段花岗岩-闪长岩类地球化学特征及其构造意义[D].兰州大学硕士学位论文, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10730-1016025591.htm

    Dan W H, Li X, Wang Q, et al. An Early Permian (ca. 280Ma) silicic igneous province in the Alxa Block, NW China:A magmatic flare-up triggered by a mantle-plume?[J]. Lithos, 2014, 204:144-158. doi: 10.1016/j.lithos.2014.01.018

    Zhang J, Li J Y, Xiao W X, et al. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China:New constraints on the relationship between the North China Plate and the Alxa block[J]. Journal of Structural Geology, 2013, 57:38-57. doi: 10.1016/j.jsg.2013.10.002

    Darby B J, Gehrels G. Detrital zircon reference for the North China block[J]. Journal of Asian Earth Sciences, 2006, 26(6):637-648. http://cn.bing.com/academic/profile?id=a1f1c8e2a9a68bf5c01a34d439bd6dfc&encoded=0&v=paper_preview&mkt=zh-cn

    Liu Y S, Gao S, Hu Z, et al. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the TransNorth China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571. http://cn.bing.com/academic/profile?id=6e670e94216d07dcd3c8ccc5b2989818&encoded=0&v=paper_preview&mkt=zh-cn

    Liu Y S, Hu Z, Zong K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 15:1535-1546. doi: 10.2105-AJPH.92.8.1218/

    Ludwig K R. User's Manual for Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center Special Publication, 2003:1-77.

    李怀坤, 耿建珍, 郝爽, 等.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物学报, 2009, (S1):600-601. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb2009z1311

    Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards[J]. Chemical Geology, 2003, 200(1/2):171-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d51065afa7beda69a287e9109108367

    Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1993, 19(2):290-300. doi: 10.1016-0012-821X(73)90129-5/

    Condie K C. Geochemical changes in basalts and andesites across the Archean-Proterzoic boundary-inentification and significance[J]. Lithos, 1989, 23(1/2):1-18. https://www.researchgate.net/publication/223658712_Geochemical_changes_in_baslts_and_andesites_across_the_Archean-Proterozoic_boundary_Identification_and_significance

    Wilson B M. Igneous petrogenesis:A global tectonic approach[M]. London:Unwin Hyman, 1989.

    Le Maitre R W, P B, A D. A classification of igneous rocks and glossary of terms[M]. Oxford:Blackwell Scientific, 1989:1-193.

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343. doi: 10.1016/0009-2541(77)90057-2

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144-GSL.SP.1989.042.01.19/

    耿元生, 周喜文.阿拉善地区新元古代岩浆事件及其地质意义[J].岩石矿物学杂志, 2010, 29(6):779-795. doi: 10.3969/j.issn.1000-6524.2010.06.014
    耿元生, 王新社, 吴春明, 等.阿拉善变质基底古元古代晚期的构造热事件[J].岩石学报, 2010, (4):1159-1170. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004013
    李俊建, 沈保丰, 李惠民, 等.内蒙古西部巴彦乌拉山地区花岗闪长岩质片麻岩的单颗粒锆石U-Pb法年龄[J].地质通报, 2004, 23(12):1243-1245. doi: 10.3969/j.issn.1671-2552.2004.12.013
    耿元生, 王新社, 沈其韩, 等.内蒙古阿拉善地区前寒武纪变质岩系形成时代的初步研究[J].中国地质, 2007, (2):251-261. doi: 10.3969/j.issn.1000-3657.2007.02.006
    张建军.华北地块北缘西段巴彦诺尔公-狼山地区二叠纪牙马图岩体岩浆混合成因及其意义探讨[D].中国地质大学(北京)硕士学位论文, 2012. http://xueshu.baidu.com/usercenter/paper/show?paperid=ec075b749af45226a911ada8d25b0c66&site=xueshu_se&hitarticle=1
    张拴宏, 赵越, 刘建民, 等.华北地块北缘晚古生代——早中生代岩浆活动期次、特征及构造背景[J].岩石矿物学杂志, 2010, (6):824-842. doi: 10.3969/j.issn.1000-6524.2010.06.017
    吴素娟.阿拉善地块东北缘变质变形研究及其大地构造意义[D].中国地质科学院博士学位论文, 2014. http://cdmd.cnki.com.cn/Article/CDMD-82501-1014269100.htm
    李俊建.内蒙古阿拉善地块区域成矿系统[D].中国地质大学(北京)博士学位论文, 2006. http://cdmd.cnki.com.cn/article/cdmd-11415-2006065347.htm

    Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China):Implications for subduction-related metasomatism in the upper mantle[J]. Precambrian Research, 2007, 152(1):27-47. doi: 10.1016-j.precamres.2006.09.002/

    Dong Y P, Zhang G W, Hauzenberger C, et al. Palaeozoic tectonics and evolutionary history of the Qinling orogen:Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks[J]. Lithos, 2011, 122(1):39-56. http://cn.bing.com/academic/profile?id=a51da55bdeaa7afea0b1b2a9694be823&encoded=0&v=paper_preview&mkt=zh-cn

    Taylor S R, Mclennan S M. The continental crust:Its composition and evolution[J]. Physics of the Earth and Planetary Interiors, 1986, 42, 3:196-197. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7b034b121c08912757b660fdefe8747e

    邓晋福, 刘翠, 冯艳芳, 等.关于火成岩常用图解的正确使用:讨论与建议[J].地质论评, 2015, 61(4):717-734. http://d.old.wanfangdata.com.cn/Periodical/dzlp201504002
    张旗.如何正确使用玄武岩判别图[J].岩石学报, 1990, 2:87-94. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199002011.htm
    夏林圻, 夏祖春, 徐学义, 等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志, 2007, (1):77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011

    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S. Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 1982: 528-548. https://www.researchgate.net/publication/304749002_Trace_Element_Characteristics_of_Lavas_from_Destructive_Plate_Boundaries

    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British tertiary volcanic province[J]. Earth and Planetary Science Letters, 1980, 50(1):11-30. doi: 10.1016/0012-821X(80)90116-8

    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margin[C]//Hawkesworth C J, Norry M J. Continental Basalts and Mantle Xenoliths. Nantwich, Cheshire: Shiva Publications, 1983: 230-249. http://orca.cf.ac.uk/8626/

    Zheng R G, Wu T R, Zhang W, et al. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids:Geochronological and geochemical evidences from ophiolites[J]. Gondwana Research, 2014, 25(2):842-858. doi: 10.1016/j.gr.2013.05.011

    史兴俊, 童英, 王涛, 等.内蒙古西部阿拉善地区哈里努登花岗岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J].地质通报, 2012, 31(5):662-670. doi: 10.3969/j.issn.1671-2552.2012.05.003

    Feng J Y, Xiao W J, Windley B, et al. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China:Implications for Late Permian accretionary tectonics in the southern Altaids[J]. Journal of Asian Earth Sciences, 2013, 78(SI):114-142. http://cn.bing.com/academic/profile?id=295d41b1c90d7770326821e50c3e04cd&encoded=0&v=paper_preview&mkt=zh-cn

    杨奇荻, 张磊, 王涛, 等.内蒙古阿拉善地块北缘沙拉扎山晚石炭世岩体地球化学特征与LA-ICP-MS锆石U-Pb年龄[J].地质通报, 2014, 33(6):776-787. doi: 10.3969/j.issn.1671-2552.2014.06.002
    李锦轶, 张进, 曲军峰.华北与阿拉善两个古陆在早古生代晚期拼合——来自宁夏牛首山沉积岩系的证据[J].地质论评, 2012, (2):208-214. doi: 10.3969/j.issn.0371-5736.2012.02.002

    Zhang J, Li J Y, Xiao W X, et al. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China:New constraints on the relationship between the North China Plate and the Alxa block[J]. Journal of Structural Geology, 2013, 57:38-57. doi: 10.1016/j.jsg.2013.10.002

    Yuan W, Yang Z Y. The Alashan Terrane did not amalgamate with North China block by the Late Permian:Evidence from Carboniferous and Permian paleomagnetic results[J]. Journal of Asian Earth Sciences, 2015, 104:145-159. http://cn.bing.com/academic/profile?id=6c4ee0517c76a39770a0655cb55de217&encoded=0&v=paper_preview&mkt=zh-cn

    Zhang S H, Zhao Y, Song B, et al. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton:Geochronology, petrogenesis, and tectonic implications[J]. Geological Society of American Bulletin, 2009, 121(1/2):181-200. http://cn.bing.com/academic/profile?id=7870f3167c03ca074e3bd28062f05de4&encoded=0&v=paper_preview&mkt=zh-cn

    任康绪, 阎国翰, 牟保磊, 等.阿拉善断块富碱侵入岩岩石地球化学和Nd、Sr、Pb同位素特征及其意义[J].地学前缘, 2005, (2):292-302. doi: 10.3321/j.issn:1005-2321.2005.02.030
    张文, 吴泰然, 冯继承, 等.阿拉善地块北缘古大洋闭合的时间制约:来自乌力吉花岗岩体的证据[J].中国科学:地球科学, 2013, (8):1299-1311.
    宁夏回族自治区地质局区域调查队.中华人民共和国区域地质调查报告(磴口幅,1∶20万).1979
图(10)  /  表(3)
计量
  • 文章访问数:  3796
  • HTML全文浏览量:  312
  • PDF下载量:  2498
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-25
  • 修回日期:  2019-01-01
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2019-05-14

目录

    /

    返回文章
    返回