• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

内蒙古格勒敖包奥陶纪岩体锆石U-Pb年龄及地球化学特征

曹磊, 苏茂荣, 周飞, 李磊, 杨宝宏

曹磊, 苏茂荣, 周飞, 李磊, 杨宝宏. 2019: 内蒙古格勒敖包奥陶纪岩体锆石U-Pb年龄及地球化学特征. 地质通报, 38(4): 632-642. DOI: 10.12097/gbc.dztb-38-4-632
引用本文: 曹磊, 苏茂荣, 周飞, 李磊, 杨宝宏. 2019: 内蒙古格勒敖包奥陶纪岩体锆石U-Pb年龄及地球化学特征. 地质通报, 38(4): 632-642. DOI: 10.12097/gbc.dztb-38-4-632
CAO Lei, SU Maorong, ZHOU Fei, LI Lei, YANG Baohong. 2019: Zircon U-Pb age and geochemical characteristics of Ordovician pluton in Geleaobao, Inner Mongolia. Geological Bulletin of China, 38(4): 632-642. DOI: 10.12097/gbc.dztb-38-4-632
Citation: CAO Lei, SU Maorong, ZHOU Fei, LI Lei, YANG Baohong. 2019: Zircon U-Pb age and geochemical characteristics of Ordovician pluton in Geleaobao, Inner Mongolia. Geological Bulletin of China, 38(4): 632-642. DOI: 10.12097/gbc.dztb-38-4-632

内蒙古格勒敖包奥陶纪岩体锆石U-Pb年龄及地球化学特征

基金项目: 

中国地质调查局项目《二连-东乌旗成矿带西乌旗和白乃庙地区地质矿产调查》 DD20160041

《内蒙古1:5万阿格廷查干陶乐盖等六幅区域矿产地质调查》 DD2016041-17

详细信息
    作者简介:

    曹磊(1990-), 男, 助理工程师, 从事地质矿产及区域地质调查工作。E-mail:296095330@qq.com

  • 中图分类号: P534.42;P597+.3

Zircon U-Pb age and geochemical characteristics of Ordovician pluton in Geleaobao, Inner Mongolia

  • 摘要:

    内蒙古格勒敖包位于兴蒙造山带内,对该区奥陶纪岩浆岩的研究,有助于进一步认识该造山带早古生代的构造格局及其演化。正长花岗岩和斑状二长花岗岩样品LA-ICP-MS锆石年龄为441.6±3.7~454.9±4.6Ma,形成时代为奥陶纪。经地球化学分析,岩体为高钾钙碱性系列;铝饱和指数显示其为过铝质花岗岩。岩石富集大离子亲石元素(LILEs)Rb、Th、U、K,亏损Ba、Sr;富集高场强元素(HFSEs)La、Ce、Nd、Zr,亏损Nb、P、Ti;稀土元素总量为38.7×10-6~120.23×10-6,轻稀土元素较重稀土元素分异明显,分馏程度较高,表现出较弱的负Eu异常。综合区域地质资料,认为格勒敖包奥陶纪岩浆源区为上地壳物质的部分熔融,其形成环境为弧后盆地,在古亚洲洋向北俯冲之后经历了岛弧岩浆作用旋回,为弧后伸张阶段的产物。

    Abstract:

    The Geleaobao area of Inner Mongolia is located in the Xingmeng orogenic belt. By studying the Ordovician magmatic rocks in this area, researchers can further understand the structure and evolution of the Early Paleozoic strata in this orogenic belt. The ages of the LA-ICP-MS zircons of syenite and mottled monzogranite samples studied in this work are 441.6±3.7Ma to 454.9±4.6Ma. The age of formation is Ordovician. Geochemical analysis shows that the pluton has high-K calc-alkaline characteristics. Aluminum saturation index shows that it is peraluminous granite. The characteristics of trace elements in rocks indicate that they are enriched in large ionic lithophilic elements (LILEs) Rb, Th, U, K, depleted in Ba, Sr; enriched in high field strength elements (HFSEs) La, Ce, Nd, Zr, and depleted in Nb, P, Ti. The total amount of rare earths in the rocks is 38.7×10 -6 to 120.23×10 -6, and the light rare earths exhibit obvious differences in heavier rare earths, with higher fractionation and weaker negative Eu anomalies. Based on regional geological data, it is believed that the source region of the Ordovician magma in the Geleaobao area is partially melted upper crustal materials, and the formation environment was a back-arc basin. After the subduction of the ancient Asian Ocean to the north, it experienced an island-arc magmatic process cycle, being product of extension stage.

  • 大兴安岭地区发育广泛花岗岩和火山岩,其岩石成因及构造背景一直是国内外地质学者研究的热点。最新的测年结果显示,这些花岗岩和火山岩主要形成于中生代,少数形成于新元古代和古生代,并对大兴安岭地区岩浆作用的年代学格架和地球化学属性有了一定的认识[1-3],但是由于大兴安岭地区植被覆盖严重,导致部分地区晚中生代岩浆岩的年代学和地球化学数据较缺乏,阻碍了对该区岩浆作用和区域构造演化的深刻认识。

    近年来,地质工作者按岩性、岩石组合特征及区域对比,将大兴安岭中部地区晚中生代火山岩划分为南、北两部分,北部主要包括七一牧场组、吉祥峰组、上库力组、伊列克得组,南部主要包括塔木兰沟组、满克头鄂博组、玛尼吐组、白音高老组、梅勒图组,南、北两部分火山岩岩石组合可进行对比,但是对于同一期火山岩不同岩石获得的年龄数据往往具有较大的变化范围,有的甚至相差几十百万年[4-8],表明这种划分方案的合理性仍值得商榷,或许直接用不同岩浆期次来表示不同时代的火山岩比较合理,即用晚侏罗世中基性火山岩、晚侏罗世酸性火山岩、早白垩世中性火山岩、早白垩世酸性火山岩等分别代表不同时代的火山岩。

    本次选取大兴安岭中部柴河—蘑菇气地区出露的早白垩世中性火山岩,在野外调查和岩相学研究的基础上,通过岩石学、年代学、岩石地球化学等的系统研究,确定大兴安岭中部柴河—蘑菇气地区早白垩世中性火山岩的岩石成因特点,探讨其反映的区域构造背景。

    大兴安岭位于中亚造山带东段,大地构造位置处于西伯利亚板块和华北板块之间(图 1[9],其古生代经历了多个微陆块碰撞拼合时期[10-14],构造演化与古亚洲洋的闭合密切相关,中、新生代受太平洋构造域和蒙古-鄂霍茨克构造域的叠加和改造。

    图  1  研究区大地构造位置(据参考文献[9]修改)
    F1—牡丹江断裂;F2—敦化-密山断裂;F3—伊通-佳木斯断裂;F4—西拉木伦-长春-延吉断裂;F5—贺根山-扎兰屯-黑河断裂;F6—塔源-喜桂图断裂;F7—得尔布干断裂
    Figure  1.  Tectonic map of Chaihe-Moguqi area in central Da Hinggan Mountains

    柴河—蘑菇气地区位于大兴安岭中部,晚中生代侏罗纪—白垩纪以陆相火山岩地层和陆相碎屑沉积岩地层为主,主要包括中侏罗世万宝组、晚侏罗世塔木兰沟组、木瑞组、满克头鄂博组和早白垩世玛尼吐组、白音高老组、梅勒图组、大磨拐河组。其中早白垩世玛尼吐组以中性火山岩及火山碎屑岩为主,主要分布在天池、蛤蟆沟、柴河、新立屯、蘑菇气、中和、山泉等地区(图 2),主要岩性有灰绿色-灰紫色安山岩(图 3)、英安岩、安山质晶屑凝灰熔岩、凝灰角砾熔岩等。

    图  2  大兴安岭中部柴河—蘑菇气地区地质简图
    Figure  2.  Geological sketch map of the Chaihe-Moguqi area, central Da Hinggan Mountains
    图  3  早白垩世中性火山岩安山岩手标本(a)及显微照片(b)(Pl—斜长石)
    Figure  3.  Hand specimen(a) and microscopic photographs(b) for the Early Cretaceous intermediate volcanic rocks

    锆石用重液和磁选相结合从粉碎的岩石样品中分选出来,再在双目镜下提纯。锆石被嵌于树脂样靶中并抛光,之后渡上50nm厚的纯金。阴极发光(CL)图像在中国地质科学院北京离子探针中心制成,主要是查明锆石内部结构,以便准确选点。锆石U-Pb定年在天津地质矿产研究所完成。测试仪器为NEPTUNE多接收器电感耦合等离子体质谱仪(MC-ICP-MS)和氟化氩准分子激光剥蚀系统(NEW WAVE 193nm FX)联机[15]。激光剥蚀斑束直径为35μm,激光剥蚀样品的深度为20~40μm。实验中采用氦作为剥蚀物质的载气。锆石年龄计算采用源自澳大利亚Macquarie大学的标准锆石GJ-1作为外标,元素含量采用人工合成玻璃NIST SRM610作为外标[16]。具体实验操作流程见参考文献[17]。样品的同位素比值和元素含量处理采用Glitter(ver4.0)程序计算,普通Pb采用Anderson的3D坐标法校正[18],年龄加权平均值及谐和图采用Isoplot(v. 3.00)[19]绘制。单个测试点的同位素比值和同位素年龄误差为1σ,206Pb/238U年龄加权平均值置信度为95%。

    样品的主量和微量元素分析在天津地质矿产研究所和自然资源部哈尔滨矿产资源监督测试中心完成。挑选新鲜未风化样品洗净、烘干后,用玛瑙研钵研磨至200目的粉末,用于主量和微量元素分析。主量元素采用X射线荧光光谱分析(XRF),微量元素的分析采用等离子质谱法(ICP-MS)完成,详细的主量、微量元素分析实验原理和分析步骤见参考文献[20]。

    在LA-ICP-MS锆石U-Pb定年的基础上,进行了锆石原位Hf同位素测定工作。锆石原位Hf同位素分析在天津地质矿产研究所完成,测试仪器为NEPTUNE多接收器电感耦合等离子体质谱仪和氟化氩准分子激光剥蚀系统联机,激光束斑直径为50μm。详细的分析方法见参考文献[15]。分析过程中标准锆石GJ-1的176Hf/177Hf值为0.282000 ± 0.000040。用实验测得的176Hf/177Hf和176Lu/177Hf值计算初始176Hf/177Hf值。176Lu的半衰期采用1.865× 10-11/a[21]。计算εHf(t)值时采用的现在的(176Hf/177Hf)DM和(176Lu/177Hf)DM值分别为0.28325和0.0384[22]。Hf模式年龄的计算见参考文献[22-24]。

    样品Z11-84岩性为安山质角砾凝灰熔岩,共24个锆石分析点,分析结果见表 1。锆石多为短柱状和粒状,少数为长柱状,粒度为50~200μm,长宽比为1:1~3:1。CL图像显示(图 4-a),这些锆石内部具有典型的环带结构,Th/U值为0.65~1.10,指示这些锆石属于岩浆锆石。在锆石U-Pb谐和图(图 4-b)中,样品Z11-84的锆石U-Pb年龄测定数据点全部位于谐和线上及其附近,206Pb/238U年龄加权平均值为139±1Ma(MSWD=0.59),时代为早白垩世,代表了安山质角砾凝灰熔岩的形成年龄。

    表  1  研究区早白垩世中性火山岩测年结果
    Table  1.  Data of zircons for the Early Cretaceous intermediate volcanic rocks in study area
    样品号 岩性 年龄/Ma 采样位置 方法 数据来源
    Z11-84 安山质角砾凝灰熔岩 139±1 碾子山北 LA-ICP-MS A
    P010-5-2 英安岩 141±5 苏河屯 LA-ICP-MS B
    P9B2-2 安山岩 137±2 青年林场北山 SHRIMP C
    P11B11-3 角闪玄武安山岩 131±3 河中林场 SHRIMP C
    TW1 安山岩 133±7 哈布气林场 Rb-Sr D
    DH2011RZ27 安山岩 141±2 新立屯 LA-ICP-MS E
      注:A—本文数据;B—吉林省区域地质矿产调查所提供数据;C—吉林大学刘正宏教授提供数据;D—辽宁省地质矿产调查院提供数据;E—中国地质调查局沈阳地质调查中心提供数据;Z11-84采样点坐标为北纬47°39′51″、东经122°51′34″
    下载: 导出CSV 
    | 显示表格
    图  4  早白垩世中性火山岩锆石阴极发光(CL)图像(a)及U-Pb年龄谐和图(b)(实线圈表示U-Pb同位素打点位置,虚线圈表示Lu-Hf分析点位置)
    Figure  4.  CL images (a) and U-Pb concordia diagram(b) of zircons for the Early Cretaceous intermediate volcanic rocks

    结合笔者收集的年龄数据(表 2)可知,研究区早白垩世中性火山岩的形成年龄介于140~130Ma之间。

    表  2  早白垩世中性火山岩测年数据
    Table  2.  Age statistics for the Early Cretaceous intermediate volcanic rocks
    分析号 Th/10-6 U/10-6 Th/U 同位素比值 年龄/Ma
    206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb
    Z11-84.1 26 33 0.80 0.021 0.0005 0.1767 0.0176 0.0608 0.0053 134 3 165 16 875 447
    Z11-84.2 46 42 1.10 0.0222 0.0004 0.1950 0.0161 0.0639 0.0047 141 2 181 15 1120 343
    Z11-84.4 27 39 0.69 0.0213 0.0006 0.1506 0.0182 0.0513 0.0033 136 4 142 17 146 598
    Z11-84.5 28 33 0.86 0.0217 0.0005 0.1719 0.0189 0.0574 0.0049 138 3 161 18 852 497
    Z11-84.6 20 26 0.78 0.0211 0.0006 0.1571 0.0197 0.0539 0.0069 135 4 148 19 181 625
    Z11-84.7 41 42 0.98 0.0216 0.0004 0.2040 0.0114 0.0685 0.0048 138 3 189 11 1662 207
    Z11-84.8 40 47 0.86 0.0219 0.0003 0.1742 0.0126 0.0576 0.0045 140 2 163 12 514 316
    Z11-84.9 33 43 0.78 0.0218 0.0003 0.1635 0.0125 0.0544 0.0042 139 2 154 12 755 322
    Z11-84.10 23 31 0.75 0.0219 0.0004 0.1714 0.0103 0.0567 0.0037 140 3 161 10 1997 220
    Z11-84.11 27 39 0.70 0.0218 0.0004 0.1474 0.0158 0.0490 0.0049 139 3 140 15 147 587
    Z11-84.12 27 32 0.83 0.0216 0.0005 0.2013 0.0115 0.0677 0.0058 138 3 186 11 2164 196
    Z11-84.13 40 50 0.79 0.0220 0.0003 0.1660 0.0099 0.0547 0.0030 140 2 156 9 1222 233
    Z11-84.14 27 36 0.75 0.0222 0.0004 0.1502 0.0176 0.0491 0.0039 142 2 142 17 152 565
    Z11-84.15 25 33 0.76 0.0217 0.0005 0.1671 0.0096 0.0558 0.0055 138 3 157 9 1787 208
    Z11-84.16 43 55 0.79 0.0215 0.0005 0.1815 0.0101 0.0611 0.0039 137 3 169 9 2076 194
    Z11-84.17 29 41 0.72 0.0219 0.0003 0.1750 0.0125 0.0579 0.0045 140 2 164 12 1447 281
    Z11-84.18 48 54 0.87 0.0220 0.0003 0.1899 0.0096 0.0625 0.0042 140 2 177 9 1329 199
    Z11-84.19 24 33 0.72 0.0219 0.0005 0.2673 0.0231 0.0887 0.0097 139 3 241 21 1398 365
    Z11-84.20 30 39 0.76 0.0215 0.0004 0.1525 0.0147 0.0514 0.0063 137 2 144 14 152 887
    Z11-84.21 28 36 0.77 0.0201 0.0008 0.1849 0.0132 0.0668 0.0063 128 5 172 12 1677 271
    Z11-84.22 29 40 0.71 0.0220 0.0007 0.1902 0.0174 0.0627 0.0074 140 4 177 16 697 377
    Z11-84.23 27 37 0.74 0.0220 0.0004 0.1838 0.0157 0.0607 0.0049 140 3 171 15 1502 339
    Z11-84.24 35 53 0.65 0.0220 0.0003 0.1636 0.0087 0.0539 0.0036 140 2 154 8 1034 216
    Z11-84.25 42 55 0.77 0.0217 0.0002 0.1806 0.0080 0.0602 0.0025 139 2 169 7 1203 177
    下载: 导出CSV 
    | 显示表格

    研究区早白垩世中性火山岩的主量和微量元素分析结果见表 3。早白垩世中性火山岩SiO2含量在55.1%~69.1%之间,TiO2含量介于0.39%~1.68%之间,Al2O3含量较高,在14.8%~18%之间,TFeO含量介于3.62% ~7.83%之间,MgO含量低,在0.45% ~ 3.74%之间,CaO含量较高,介于1.16%~6.57%之间,Na2O含量在1.73%~4.72%之间,K2O含量在1.66%~ 4.84%之间,整体为一套富钾钠、富铝,贫镁的岩石。在TAS图解(图 5)中,主要落在安山岩、粗面岩(标准矿物石英含量小于20%)内,属亚碱性系列,含铝指数A/CNK为0.80~1.13,属准铝质到弱过铝质岩石;在岩浆系列判别图解(图 6)中,主要落在高钾钙碱性系列。

    表  3  早白垩世中性火山岩主量、微量和稀土元素分析结果
    Table  3.  Major, trace and rare earth elements analyses of the Early Cretaceous intermediate volcanic rocks
    样品号 B1068-1 B2005-2 B2010-1 B2022-1 B2034-1 B2082-2-1 B3007-1 B4063-1 B5049-3 HfP38-2-1
    SiO2 58.40 55.40 62.30 68.40 60.90 63.80 69.10 67.00 55.10 60.42
    T1O2 0.98 1.68 0.44 0.39 0.76 0.66 0.55 0.58 1.09 0.91
    Al2O3 16.90 15.70 15.30 15.70 16.35 16.60 14.80 15.10 16.90 18.00
    Fe2O3 3.62 6.65 2.36 1.78 2.29 3.41 2.47 1.99 3.46 2.90
    FeO 3.52 1.85 1.20 1.02 2.95 1.12 0.62 2.02 4.70 1.52
    MnO 0.10 0.11 0.07 0.04 0.10 0.07 0.06 0.08 0.13 0.11
    MgO 2.67 3.15 1.67 0.45 1.96 1.40 0.45 1.38 3.74 1.74
    CaO 5.28 6.57 4.06 2.08 5.06 2.74 1.16 2.29 5.78 3.81
    Na2O 4.27 3.25 1.73 4.56 3.05 4.50 3.99 3.75 3.37 4.72
    K2O 1.66 2.12 3.01 3.80 3.01 3.58 4.84 4.43 2.74 3.36
    P2O5 0.27 0.91 0.12 0.08 0.24 0.23 0.12 0.17 0.37 0.37
    烧失量 1.78 2.14 7.36 1.09 2.67 1.47 1.29 0.64 1.82 1.94
    总计 99.45 99.53 99.62 99.40 99.34 99.58 99.45 99.43 99.20 99.80
    σ 2.28 2.33 1.16 2.75 2.05 3.14 2.99 2.79 3.09 3.75
    A/CNK 0.92 0.80 1.13 1.02 0.93 1.02 1.06 1.00 0.89 0.98
    Na2O+K2O 5.93 5.37 4.74 8.36 6.06 8.08 8.83 8.18 6.11 8.08
    Cr 30.20 70.60 17.80 15.90 20.60 16.50 14.20 24.50 30.00 3.21
    Rb 24.8 32.4 100 94.9 64.1 86.1 115 76.4 39.4 101.4
    Sr 563 807 1480 388 668 571 491 400 671 664.4
    Ba 659 953 1190 1020 1020 979 1180 782 664 1065
    Th 4.14 3.48 6.02 6.75 4.84 7.32 6.58 8.26 3.6 9.69
    U 1.04 0.98 1.39 1.49 1.19 1.95 1.91 2.06 1.18 2.49
    Nb 6.76 17.2 6.81 7.34 6.34 9.18 9.25 9.42 6.78 7.69
    Ta 0.5 1.1 0.4 0.4 0.41 0.54 0.47 0.64 0.36 0.53
    Zr 224 405 235 290 190 247 271 210 158 194.8
    Hf 5.89 9.71 6.38 7.91 5.04 6.6 7.24 6.04 4.38 14.91
    La 24.2 60.4 26.2 26.3 24.1 32.6 30.6 27.8 19.3 32.62
    Ce 50 131 51.7 53.1 48.3 67.6 60.5 55.9 40 62.37
    Pr 6.99 16.8 6.6 6.1 5.96 8.1 8 7.21 5.98 7.19
    Nd 29.4 68.3 24.5 23.3 23 31.1 32.4 27.3 25.7 29.78
    Sm 6.01 12.2 4.44 4.11 4.22 5.51 6.09 4.98 5.4 5.75
    Eu 1.59 2.77 1.22 1.21 1.32 1.48 1.56 1.1 1.52 1.96
    Gd 4.84 9.27 3.63 3.32 3.62 4.43 4.79 4.08 4.43 4.15
    Tb 0.71 1.44 0.56 0.55 0.56 0.67 0.8 0.69 0.78 0.73
    Dy 4.15 6.74 3.04 3.03 2.9 3.72 4.76 3.79 4.13 3.67
    Ho 0.82 1.19 0.61 0.61 0.56 0.72 0.93 0.72 0.78 0.73
    Er 2.31 3.24 1.74 1.78 1.64 2.01 2.66 2 2.28 1.92
    Tm 0.35 0.44 0.27 0.28 0.25 0.32 0.4 0.31 0.33 0.3
    Yb 2.28 2.76 1.89 1.97 1.62 2.15 2.83 2.06 2.13 2.2
    Lu 0.35 0.42 0.31 0.31 0.26 0.34 0.44 0.32 0.32 0.27
    Y 22.2 31 16.8 16.6 15.4 20.2 24.9 18.8 21.6 20.3
    ∑REE 156.20 347.97 143.51 142.57 133.71 180.95 181.66 157.06 134.68 173.93
    LR/HR 7.48 11.43 9.52 9.63 9.37 10.19 7.90 8.90 6.45 9.99
    δEu 0.87 0.77 0.90 0.97 1.01 0.89 0.85 0.72 0.92 1.17
      注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV 
    | 显示表格
    图  5  早白垩世中性火山岩TAS图解
    Figure  5.  TAS diagram for the Early Cretaceous intermediate volcanic rocks
    图  6  早白垩世中性火山岩SiO2-K2O岩石系列判别图
    Figure  6.  SiO2-K2O diagram for the Early Cretaceous intermediate volcanic rocks

    早白垩世中性火山岩微量元素原始地幔标准化蛛网图(图 7-a)显示,样品主要富集大离子亲石元素(如Rb、K、LREE)和Ba、Sr元素,亏损高场强元素(如Ta、Nb、P、Ti),是壳源岩浆或岩浆被地壳物质混染的典型特征。

    图  7  早白垩世中性火山岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分模式图(b)
    (球粒陨石标准化值据参考文献[25];原始地幔标准化值据参考文献[26])
    Figure  7.  Primitive mantle-normalized trace element spider diagrams(a) and chondrite-normalized REE patterns(b) for the Early Cretaceous intermediate volcanic rocks

    稀土元素总量(ΣREE)在133.71 × 10-6~ 347.97×10-6之间,平均值为175.22×10-6,轻、重稀土元素比值LREE/HREE在6.45~11.43之间,平均值为9.09,轻、重稀土元素分馏明显,分馏系数(La/Yb)N介于6.50~15.70之间,平均值为9.89。球粒陨石标准化蛛网图(图 7-b)中,均呈右倾配分曲线模式,轻稀土元素富集、重稀土元素亏损,无明显Eu异常,δEu值介于0.72~1.17之间,平均值为0.91。

    在LA-ICP-MS锆石U-Pb定年的基础上,对早白垩世中性火山岩(Z11-84)进行了锆石原位Hf同位素分析,分析结果列于表 4

    表  4  早白垩世中性火山岩锆石原位Hf同位素分析结果
    Table  4.  In situ zircon Hf isotopic compositions of the Early Cretaceous intermediate volcanic rocks
    分析点 年龄/Ma 176Yb/l77Hf 176Lu/177Hf 176Hf/177Hf 176Hf/177Hf (corr) εHf(0) εHf(t) TDM1(Hf)/Ma TDM2(Hf)/Ma fLu/Hf
    Z11-84.1 134 0.0300 0.0000 0.0008 0.0000 0.282977 0.000019 0.282981 0.000019 7.4 10.26 0.7 382 482 -0.98
    Z11-84.2 141 0.0430 0.0001 0.0011 0.0000 0.282859 0.000025 0.282863 0.000025 3.2 6.21 0.9 553 714 -0.97
    Z11-84.4 136 0.0446 0.0001 0.0012 0.0000 0.282941 0.000023 0.282944 0.000023 6.1 8.96 0.8 439 556 -0.96
    Z11-84.5 138 0.0347 0.0003 0.0010 0.0000 0.282971 0.000024 0.282975 0.000024 7.2 10.12 0.9 393 493 -0.97
    Z11-84.6 135 0.0359 0.0001 0.0011 0.0000 0.282975 0.000019 0.282979 0.000019 7.3 10.18 0.7 388 487 -0.97
    Z11-84.7 138 0.0458 0.0001 0.0015 0.0000 0.282979 0.000025 0.282983 0.000025 7.5 10.35 0.9 386 479 -0.96
    Z11-84.8 140 0.0249 0.0001 0.0007 0.0000 0.282949 0.000023 0.282953 0.000023 6.4 9.40 0.8 421 534 -0.98
    Z11-84.9 139 0.0204 0.0000 0.0006 0.0000 0.282965 0.000020 0.282968 0.000020 6.9 9.93 0.7 398 504 -0.98
    Z11-84.10 140 0.0224 0.0000 0.0007 0.0000 0.282954 0.000020 0.282958 0.000020 6.6 9.57 0.7 414 525 -0.98
    Z11-84.11 139 0.0447 0.0002 0.0012 0.0000 0.282904 0.000023 0.282907 0.000023 4.8 7.73 0.8 492 628 -0.96
    Z11-84.12 138 0.0301 0.0001 0.0008 0.0000 0.282932 0.000025 0.282936 0.000025 5.8 8.73 0.9 446 570 -0.98
    Z11-84.14 142 0.0297 0.0002 0.0008 0.0000 0.282883 0.000025 0.282886 0.000025 4.0 7.08 0.9 515 666 -0.98
    Z11-84.15 138 0.0318 0.0001 0.0008 0.0000 0.282917 0.000032 0.282921 0.000032 5.3 8.23 1.1 467 599 -0.97
    Z11-84.16 137 0.0301 0.0001 0.0008 0.0000 0.282994 0.000025 0.282997 0.000025 8.0 10.91 0.9 359 448 -0.98
    Z11-84.17 140 0.0411 0.0001 0.0011 0.0000 0.282963 0.000023 0.282967 0.000023 6.9 9.84 0.8 406 510 -0.97
    Z11-84.18 140 0.0367 0.0001 0.0010 0.0000 0.282894 0.000030 0.282897 0.000030 4.4 7.42 1.1 503 646 -0.97
    Z11-84.19 139 0.0351 0.0001 0.0011 0.0000 0.282991 0.000028 0.282995 0.000028 7.9 10.84 1.0 365 453 -0.97
    Z11-84.20 137 0.0341 0.0000 0.0010 0.0000 0.282976 0.000024 0.282980 0.000024 7.4 10.28 0.8 385 483 -0.97
    Z11-84.22 140 0.0354 0.0001 0.0010 0.0000 0.282966 0.000028 0.282970 0.000028 7.0 10.00 1.0 399 501 -0.97
    下载: 导出CSV 
    | 显示表格

    碾子山北部早白垩世安山质角砾凝灰岩(Z11-84)中19颗锆石的初始176Hf/177Hf值为0.282863~ 0.282997,εHf(t)值介于+6.21~+10.91之间,其加权平均值为+8.96±0.71,单阶段模式年龄(TDM1)和二阶段模式年龄(TDM2)变化范围分别为359~553Ma和448~714Ma。

    由上可见,研究区早白垩世中性火山岩的锆石εHf(t)值均为正值,且具有年轻的二阶段模式年龄(TDM2),二阶段Hf模式年龄集中在新元古代和古生代。在t-εHf(t)图解(图 8)上[27],数据点全部落在球粒陨石演化线和亏损地幔演化线之间,同时落入兴蒙造山带东段范围内,说明早白垩世中性火山岩为地幔来源或来自新增生的年轻地壳物质,与中亚造山带内显生宙火成岩的Hf同位素组成相似[28-29]

    图  8  早白垩世火山岩t-εHf(t)图
    Figure  8.  t-εHf(t) diagrams for the Early Cretaceous intermediate volcanic rocks

    研究区早白垩世中性火山岩化学成分显示主要为安山岩、粗面岩等,主量元素总体呈现富钾钠、富铝、贫镁的特征,为准铝质-弱过铝质、高钾钙碱性岩石。研究表明,粗面质火山岩的成因主要包括玄武质岩浆的分异作用[30-32]、玄武质岩浆与流纹质岩浆的混合作用[33-34]和镁铁质地壳熔融[4, 35] 3种观点。研究区早白垩世中性火山岩中铁族元素Cr含量为3.21×10-6~30.20×10-6,远低于地幔橄榄岩源区部分熔融形成的原始玄武质岩浆(Cr=500×10-6~ 600×10-6),且在研究区缺乏同时期的基性岩,因此玄武质岩浆的分异作用很难解释本区大范围分布的中性火山岩。在La-La/Sm图解(图 9)中,早白垩世中性火山岩的La/Sm值与La呈正相关性,表明其为部分熔融形成。

    图  9  早白垩世中性火山岩La -La/Sm图解
    Figure  9.  La-La/Sm diagram for the Early Cretaceous intermediate volcanic rocks

    早白垩世中性火山岩富集大离子亲石元素(如Rb、K、LREE)和Ba、Sr元素,亏损高场强元素(如Ta、Nb、P、Ti);富集轻稀土元素(LREE)、亏损重稀土元素(HREE);Ce/Pb值主要介于2.87~4.10之间,平均值为3.36,与地壳平均值3.3相近[36];La/Nb值为2.85~4.24(平均值为3.52),明显高于原始地幔(0.94),接近陆壳的比值(2.2)。这些特征指示,早白垩世中性火山岩应该来源于下地壳岩石的部分熔融。研究区早白垩世安山质角砾凝灰岩(Z11-84)的锆石εHf(t)值均为正值(+6.21~+10.91),且具有年轻的二阶段模式年龄(TDM2=448~714Ma),二阶段Hf模式年龄集中在新元古代和古生代,与大兴安岭中部晚中生代安山岩的Sr-Nd同位素特征(具有低的Sr初始比值和正的εNd(t)值)一致[37],表明早白垩世中性火山岩的岩浆源区主要为地幔或新元古代和古生代期间从地幔新增生的地壳物质。Nb/Ta值集中在13.52~19.68(平均值为16.47),接近球粒陨石和原始地幔的平均值(17.5)[38-39],而高于地壳的Nb/Ta平均值(12~13)[40];Zr/Hf值集中在34.77~ 41.71(平均值为37.40),高于地壳的Zr/Hf平均值(33)[41],与地幔的平均值(37)接近[42],也反映了岩浆源区为从亏损地幔新增生的下地壳物质,所以保留了地幔的部分微量元素的特点。

    研究区早白垩世中性火山岩的SiO2含量为55.1%~69.1%,Al2O3为14.8%~18%,MgO为0.45%~ 3.74%,Y为15.4×10-6~31×10-6,Yb为1.62×10-6~ 2.83×10-6,Sr为388×10-6~1480×10-6,无负Eu异常,这些地球化学特征与埃达克岩接近[43-44]。在Yb-Sr/Yb图解(图 10[45]中,早白垩世中性火山岩部分样品也落入埃达克岩的区域内,结合其K2O的含量为1.66%~4.84%,平均值为3.26%,应为C型埃达克岩,而C型埃达克岩通常认为是玄武质岩浆底侵加厚的地壳底部引起下地壳部分熔融形成的[46]。早白垩世中性火山岩的Nb含量为6.34×10-6~17.20×10-6(平均值为8.68×10-6),Y含量为15.4×10-6~31×10-6(平均值为20.78×10-6),Zr/Y值为7.31~17.47(平均值为11.81),Rb/Sr值为0.04~0.24(平均值为0.13),Ba/Rb值主要集中在10.24~16.85(平均值为12.22),Ba/Sr值为0.80~2.63(平均值为1.60),这些微量元素特征均反映了研究区早白垩世中性火山岩与安第斯地区安山岩和大陆岛弧安山岩相似(表 5),可能与早先俯冲事件带来的流体影响有关[37]。综上所述,研究区早白垩世中性火山岩岩浆源区应为新元古代和古生代期间新增生的下地壳玄武质岩石的部分熔融,并可能受到早先俯冲事件带来的流体的影响。

    图  10  早白垩世中性火山岩Yb -Sr/Yb图解
    Figure  10.  Yb-Sr/Yb diagram for the Early Cretaceous intermediate volcanic rocks
    表  5  早白垩世中性火山岩微量元素特征与不同构造环境安山岩对比[37]
    Table  5.  Trace element characteristics of the Early Cretaceous intermediate volcanic rocks and a comparison with andesites
    安山岩类 Nb Y Zr/Y Rb/Sr Ba/Rb Ba/Sr
    研究区中性火山岩平均值 8.68 20.78 11.81 0.13 12.22 1.60
    安第斯安山岩平均值 10.0 15.0 14.6 0.11 10.0 1.05
    大陆岛弧安山岩平均值 9.4 22.0 5.4 0.09 8.2 1.16
    大洋岛弧低钾安山岩平均值 0.8 25.0 2.2 0.04 18.5 0.61
    大洋岛弧其他安山岩平均值 5.0 20.0 4.7 0.08 13.0 0.73
      注:Nb和Y的单位为10-6
    下载: 导出CSV 
    | 显示表格

    从侏罗纪开始,东北地区的构造格架与其前期历史相比发生了深刻的变化,由东西向构造转变为北东向和北北东向构造,进入环太平洋构造体系和蒙古-鄂霍茨克构造体系的演化阶段[47-48]。对于东北地区大面积晚中生代岩浆岩形成时的构造背景探讨也一直存在争议,主要观点有以下4种:①与地幔柱构造有关[49-51];②与蒙古鄂霍茨克洋的闭合和造山后垮塌有关[52-53];③与古太平洋板块的俯冲作用有关[7, 54];④与蒙古-鄂霍茨克洋闭合和古太平洋俯冲的共同作用有关[5, 55-56]

    研究发现,大兴安岭及其邻区并不存在环状火山岩带,同时中生代火山岩的形成时代范围较大,因此与喷发周期较短的地幔柱构造有关的作用模式很难解释中生代火山岩的时空分布问题[52, 57]。吉黑东部早—中侏罗世(173~190Ma)钙碱性火山岩组合的发现[58-59]和小兴安岭—张广才岭地区同时期双峰式火成岩组合的存在[55, 60-61],表明早侏罗世古太平洋板块向亚洲大陆斜向俯冲,吉黑东部早中侏罗世岩浆作用应该与本次俯冲事件有关。同时,对于吉黑东部火山岩的年代学研究显示,该区尚未发现164~140Ma的火山岩年龄,而145~130Ma的岩浆活动主要分布于松辽盆地以西的大兴安岭及满洲里地区[1, 4, 62-66],表明古太平洋板块的俯冲在中侏罗世晚期—早白垩世早期存在一个间歇期[47],暗示大兴安岭地区中侏罗世—早白垩世早期的岩浆作用与古太平洋板块的俯冲作用无关。早期由于蒙古-鄂霍茨克洋构造演化的研究程度较低,并且通常认为仅存在西伯利亚南缘的北向俯冲[67],而东北地区北缘则处于被动大陆边缘环境,因此很难将大兴安岭地区晚中生代的岩浆活动与蒙古-鄂霍茨克洋的演化联系到一起。近年来,随着蒙古-鄂霍茨克洋缝合带研究程度的提高,尤其是蒙古-鄂霍茨克洋存在向南俯冲的确定[68-70],越来越多的学者认为,大兴安岭地区晚中生代的岩浆活动应与蒙古-鄂霍茨克洋的闭合和造山后垮塌有关[53, 57]

    在(Y+Nb)-Rb构造环境判别图解(图 11)中[71],早白垩世中性火山岩落入后碰撞构造环境。早白垩世早期中性火山岩中部分样品具有C型埃达克岩的特点,表明研究区经历了陆壳加厚的过程。综上所述,大兴安岭中部柴河—蘑菇气地区早白垩世中性火山岩的形成与蒙古-鄂霍茨克洋闭合陆壳加厚之后的岩石圈伸展环境有关。

    图  11  早白垩世中性火山岩(Y+Nb)-Rb构造环境判别图
    VAG—火山弧花岗岩;ORG—洋中脊花岗岩;WPG—板内花岗岩;syn-COLG—同碰撞花岗岩;post-COLG—后碰撞花岗岩
    Figure  11.  (Y+Nb)-Rb discrimination diagram for the Early Cretaceous intermediate volcanic rocks

    通过对大兴安岭中部柴河—蘑菇气地区中性火山岩的岩相学、锆石U-Pb年代学、岩石地球化学和锆石原位Hf同位素研究,可以得出如下结论:大兴安岭中部柴河—蘑菇气地区早白垩世中性火山岩的形成年龄介于140~130Ma之间,岩浆源区应为新元古代和古生代期间新增生的下地壳玄武质岩石的部分熔融,并可能受到早先的俯冲事件带来的流体的影响,形成于蒙古-鄂霍茨克洋闭合陆壳加厚之后的岩石圈伸展环境。

    致谢: 成文过程中得到内蒙古自治区地质调查院正高级工程师武利文、王忠的指导,实验数据处理过程中得到内蒙古自治区岩浆活动成矿与找矿重点实验室肖建伟博士、呼日乐女士的帮助,特此表示衷心的感谢。
  • 图  1   格勒敖包地区地质简图(a)及大地构造位置[9] (b)

    Figure  1.   Geological sketch map of the Geleaobao area (a) and getectonic location (b)

    图  2   格勒敖包岩体野外露头(a、c)及显微照片(b、d)

    a、b—正长花岗岩;c、d—斑状黑云母二长花岗岩;Q—石英;Pl—斜长石;Kf—钾长石;Bi—黑云母;Ch—绿泥石

    Figure  2.   Field outcrop(a, c) and microphotographs(b, d) of the Geleaobao pluton

    图  3   部分锆石阴极发光(CL)图像

    Figure  3.   CL images of some zircons

    图  4   锆石 U-Pb谐和图

    Figure  4.   U-Pb concordia diagrams of zircons

    图  5   格勒敖包岩体主量元素关系图

    a—岩浆系统全碱-硅(TAS)分类[15];b—A.R-SiO2(碱度率)图解[16];c—SiO2-K2O图解[17];d-A/CNK-A/NK图解[18]
    1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗闪长岩; 6—花岗岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩; 13—副长石辉长岩;14—副长石二长闪长岩;15—副长石二长正长岩;16—副长正长岩;17—副长深成岩; 18—霓方钠岩/磷霞岩/粗白榴岩;Ir—Irvine分界线,上方为碱性,下方为亚碱性

    Figure  5.   Major element variation diagrams of Geleaobao pluton

    图  6   微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化配分模式图(b)

    (原始地幔、球粒陨石标准化值据参考文献[19])

    Figure  6.   Primitive mantle-normalized trace element spidergrams(a)and chondrite-normalized REE patterns (b)for the Geleaobao pluton

    图  7   格勒敖包岩体成因判别图解[20-21]

    a—花岗岩 Q-A-P S-I-A型判别图解;b—A型花岗岩分类 Nb-Y-Ce图解[21]; c—不同构造环境 A型花岗岩 Y/Nb-Ce/Nb图解[21]

    Figure  7.   Genetic discrimination diagrams of the Geleaobao pluton

    图  8   格勒敖包岩体构造判别图解

    a—花岗岩 SiO2-Al2O3构造环境判别图解[18];b—花岗岩构造环境(Y+Nb)-Rb判别图解[24];c—Rb/10-Hf-3Ta判别图解[26]; d—Rb/30-Hf-3Ta判别图解[26];syn-COLG—同碰撞花岗岩;WPG—板内花岗岩;VAG—火山弧花岗岩;ORG—洋脊花岗岩; IAG—岛弧花岗岩;CAG—大陆弧花岗岩;GCG—大陆碰撞花岗岩;POG—造山后花岗岩;RRG—与裂谷有关的花岗岩; CEUG—与大陆的造陆抬升有关的花岗岩

    Figure  8.   Tectonic discrimination diagrams of the GeLeAoBao pluton

    表  1   格勒敖包地区岩体LA-ICP-MS锆石U-Th-Pb测年结果

    Table  1   LA-ICP-MS zircon U-Th-Pb dating results of the Geleaobao granite pluton

    测点编号 含量/10-6 Th/U 同位素比值 同位素年龄/Ma
    U Pb 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb
    粗中粒正长花岗岩(样品TW4072)
    1 318 25 0.64 0.0737 0.0009 0.5665 0.0114 0.0557 0.0010 459 6 456 9 442 38
    2 1022 70 0.18 0.0699 0.0009 0.5849 0.0100 0.0608 0.0008 435 5 468 8 631 29
    3 518 36 0.16 0.0725 0.0009 0.5814 0.0105 0.0580 0.0008 451 5 465 8 531 32
    4 725 51 0.16 0.0719 0.0009 0.5925 0.0111 0.0596 0.0009 448 5 472 9 591 33
    5 567 39 0.22 0.0698 0.0008 0.5607 0.0100 0.0583 0.0008 435 5 452 8 540 32
    6 276 20 0.30 0.0737 0.0009 0.5918 0.0120 0.0582 0.0010 458 6 472 10 539 38
    7 440 32 0.18 0.0743 0.0009 0.5922 0.0114 0.0578 0.0009 462 6 472 9 524 35
    8 363 27 0.58 0.0700 0.0008 0.5360 0.0100 0.0556 0.0009 436 5 436 8 436 36
    9 399 30 0.44 0.0738 0.0009 0.5820 0.0112 0.0572 0.0009 459 6 466 9 499 34
    10 218 17 0.59 0.0721 0.0009 0.5633 0.0136 0.0567 0.0012 449 5 454 11 478 48
    11 804 54 0.13 0.0705 0.0008 0.5460 0.0092 0.0562 0.0008 439 5 442 7 460 30
    12 505 37 0.31 0.0739 0.0010 0.5441 0.0101 0.0534 0.0008 460 6 441 8 348 33
    13 301 22 0.39 0.0724 0.0009 0.5592 0.0117 0.0560 0.0010 451 6 451 9 453 40
    14 151 11 0.46 0.0709 0.0008 0.5624 0.0154 0.0575 0.0014 442 5 453 12 511 55
    15 409 31 0.53 0.0714 0.0009 0.5428 0.0102 0.0552 0.0009 444 5 440 8 421 35
    16 516 41 0.68 0.0734 0.0009 0.5694 0.0103 0.0563 0.0008 457 6 458 8 463 32
    18 702 50 0.25 0.0725 0.0009 0.5467 0.0096 0.0547 0.0008 451 6 443 8 400 31
    19 516 38 0.54 0.0708 0.0008 0.5264 0.0095 0.0539 0.0008 441 5 429 8 367 34
    20 353 26 0.53 0.0698 0.0008 0.5433 0.0103 0.0565 0.0009 435 5 441 8 472 37
    21 415 30 0.30 0.0738 0.0009 0.5594 0.0105 0.0550 0.0008 459 6 451 8 410 34
    23 207 16 0.50 0.0725 0.0009 0.5522 0.0142 0.0552 0.0013 451 6 446 11 421 51
    24 246 18 0.47 0.0712 0.0009 0.5351 0.0122 0.0546 0.0011 443 5 435 10 397 45
    25 476 33 0.15 0.0714 0.0009 0.5556 0.0101 0.0564 0.0008 445 5 449 8 468 33
    26 893 61 0.12 0.0716 0.0009 0.5557 0.0095 0.0563 0.0008 446 5 449 8 465 30
    27 458 34 0.28 0.0738 0.0010 0.5779 0.0115 0.0568 0.0009 459 6 463 9 482 34
    斑状中粒黑云母二长花岗岩(样品TW1132)
    3 659 47 0.22 0.0736 0.0009 0.5647 0.0098 0.0557 0.0008 458 6 455 8 440 31
    4 660 50 0.42 0.0739 0.0009 0.5671 0.0099 0.0557 0.0008 460 6 456 8 439 31
    5 885 60 0.16 0.0706 0.0008 0.5374 0.0090 0.0552 0.0007 440 5 437 7 421 30
    6 819 60 0.34 0.0733 0.0009 0.5657 0.0095 0.0560 0.0008 456 5 455 8 453 30
    7 673 47 0.24 0.0730 0.0009 0.5691 0.0100 0.0566 0.0008 454 6 457 8 476 31
    9 464 33 0.19 0.0731 0.0009 0.5426 0.0096 0.0538 0.0008 455 6 440 8 365 32
    10 183 15 0.52 0.0764 0.0010 0.5918 0.0148 0.0561 0.0012 474 6 472 12 457 48
    11 2702 198 0.22 0.0755 0.0010 0.5679 0.0101 0.0546 0.0007 469 6 457 8 394 30
    12 273 21 0.43 0.0770 0.0010 0.5694 0.0117 0.0538 0.0009 478 6 458 9 361 39
    13 494 35 0.26 0.0726 0.0009 0.5572 0.0095 0.0557 0.0008 452 5 450 8 441 31
    14 765 54 0.30 0.0729 0.0009 0.5751 0.0101 0.0571 0.0008 454 6 461 8 497 30
    15 221 16 0.34 0.0718 0.0008 0.5698 0.0118 0.0576 0.0010 447 5 458 9 515 40
    16 1128 89 0.80 0.0714 0.0009 0.5644 0.0094 0.0574 0.0008 444 5 454 8 507 29
    17 140 11 0.53 0.0760 0.0009 0.5736 0.0144 0.0549 0.0012 472 6 460 12 407 51
    18 832 58 0.28 0.0704 0.0008 0.5475 0.0095 0.0564 0.0008 439 5 443 8 469 32
    19 653 47 0.37 0.0704 0.0009 0.5545 0.0111 0.0570 0.0009 438 5 448 9 493 35
    21 505 37 0.20 0.0747 0.0009 0.5773 0.0102 0.0561 0.0008 464 6 463 8 457 31
    22 746 55 0.42 0.0713 0.0008 0.5482 0.0093 0.0558 0.0008 444 5 444 7 445 30
    23 363 27 0.28 0.0741 0.0009 0.5850 0.0111 0.0572 0.0009 461 6 468 9 501 34
    25 735 51 0.15 0.0733 0.0009 0.5582 0.0095 0.0552 0.0007 456 6 450 8 422 30
    26 448 37 0.86 0.0716 0.0009 0.5377 0.0095 0.0545 0.0008 446 5 437 8 392 33
    27 822 60 0.26 0.0747 0.0009 0.5738 0.0097 0.0558 0.0008 464 6 460 8 442 30
    29 683 51 0.30 0.0743 0.0010 0.5760 0.0102 0.0562 0.0008 462 6 462 8 462 31
    30 595 42 0.22 0.0735 0.0009 0.5554 0.0097 0.0549 0.0008 457 6 449 8 406 31
    下载: 导出CSV

    表  2   格勒敖包岩体主量、微量和稀土元素特征

    Table  2   Major, trace and rare earth element concentrations of the Geleaobao pluton

    样品号 TW4072 TW1132 TW0260 TW0145
    岩石名称 正长花岗岩 斑状黑云母 二长花岗岩 二长花岗岩
    SiO2 78.74 73.42 72.96 73.73
    TiO2 0.17 0.37 0.34 0.16
    Al2O3 11.47 13.46 13.64 14.03
    Fe2O3 0.71 0.21 0.72 0.83
    FeO 0.12 2.45 1.56 0.52
    MnO 0.014 0.057 0.06 0.039
    MgO 0.16 0.64 0.75 0.38
    CaO 0.22 1.77 1.24 0.6
    Na2O 3.1 3.72 3.2 3.09
    K2O 4.6 3.45 4.2 5.27
    P2O5 0.046 0.12 0.12 0.21
    烧失量 0.66 0.34 1.04 1.1
    DI 96.6 84.62 87.03 92.73
    SI 1.85 6.11 7.19 3.77
    σ 1.66 1.69 1.82 2.27
    A.R 4.86 2.78 2.98 3.67
    A/CNK 1.095 1.03 1.131 1.181
    Cs 1.8 13.2 10.4 13.2
    Rb 60.4 273 199 273
    Sr 550 99.6 109 99.6
    Ba 102 180 206 180
    Ga 23.4 14.4 14.6 14.4
    Nb 14.9 6.88 7.42 6.88
    Ta 1.15 1.58 1.15 1.58
    Zr 441 64 118 64
    Hf 12.4 2.46 3.84 2.46
    Th 17.9 6.18 9.1 6.18
    V 56.8 9.01 25.7 9.01
    Cr 22.7 9.25 11.4 9.25
    Co 12.3 1.06 3.58 1.06
    Ni 15.7 3.99 7.56 3.99
    Li 26 20 35.8 20
    Sc 11.2 3.89 7.16 3.89
    U 2.08 1.7 1.82 1.7
    La 6.63 23.9 15.6 9.08
    Ce 13 47.6 31.7 18.2
    Pr 1.98 5.84 4.29 2.54
    Nd 7.5 21.3 16.3 9.74
    Sm 1.78 4.27 3.6 2.41
    Eu 0.32 0.83 0.53 0.35
    Gd 1.57 4.59 3.4 2.16
    Tb 0.28 0.68 0.64 0.41
    Dy 1.88 3.95 4.46 2.75
    Ho 0.41 0.82 0.92 0.51
    Er 1.24 2.49 2.66 1.4
    Tm 0.26 0.41 0.44 0.23
    Yb 1.6 3.08 3 1.52
    Lu 0.25 0.47 0.46 0.24
    Y 9.96 22.2 25.1 13.7
    ∑REE 38.7 120.23 88 51.54
    HREE 7.49 16.49 15.98 9.22
    LREE 31.21 103.74 72.02 42.32
    LR/HR 4.17 6.29 4.51 4.59
    (La/Yb)N 2.97 5.57 3.73 4.28
    注:主量元素含量单位为%,微量和稀土元素为10-6
    下载: 导出CSV
  • 刘家义.内蒙贺根山地区蛇绿岩套研究及构造意义[C]//中国地质科学院文集(1982中英文合订本), 1985: 2.
    王树庆, 许继峰, 刘希军, 等.内蒙朝克山蛇绿岩地球化学:洋内弧后盆地的产物?[J].岩石学报, 2008, 24(12):2869-2879. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200812021
    黄波, 付冬, 李树才, 等.内蒙古贺根山蛇绿岩形成时代及构造启示[J].岩石学报, 2016, 32(1):158-176. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201601020
    徐备, 赵盼, 鲍庆中, 等.兴蒙造山带前中生代构造单元划分初探[J].岩石学报, 2014, 30(7):1841-1857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001

    Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6):1069-1090. http://cn.bing.com/academic/profile?id=4f70f4625c75e2c67f49e664df0bc8b5&encoded=0&v=paper_preview&mkt=zh-cn

    Li J Y. Permian Geodynamic Setting of Northeast China and Adjacent regions:Closure of the Paleo-Asian Ocean and dubduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4):207-224. http://cn.bing.com/academic/profile?id=e77fd6a5ce2d0c1b863e92f716eaa12f&encoded=0&v=paper_preview&mkt=zh-cn

    Jian P, Liu D Y, Kröner A, et al. Time scale of the early to midPaleozoic orogenic cycle of the longlived Central Asian Orogenic Belt, Inner Mongolia of China:implications for continental growth[J]. Lithos, 2008, 101(3/4):233-259. https://www.researchgate.net/publication/229097104_Time_scale_of_an_early_to_mid-Paleozoic_orogenic_cycle_of_the_long-lived_Central_Asian_Orogenic_Belt_Inner_Mongolia_of_China_Implications_for_continental_growth

    Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4):1342-1364. doi: 10.1016/j.gr.2012.05.015

    杨泽黎, 王树庆, 胡晓佳, 等.内蒙古吉尔嘎郎图早古生代岩体成因——年代学、地球化学及Nd-Hf同位素制约[J].地质通报, 2017, 36(8):1369-1384. doi: 10.3969/j.issn.1671-2552.2017.08.007
    赵利刚, 冉皞, 张庆红, 等.内蒙古阿巴嘎旗奥陶纪岩体的发现及地质意义[J].世界地质, 2012, 31(3):451-461. doi: 10.3969/j.issn.1004-5589.2012.03.002
    李红英, 周志广, 李鹏举, 等.内蒙古东乌珠穆沁旗晚奥陶世辉长岩地球化学特征及其地质意义[J].地质论评, 2016, 62(2):300-316. http://d.old.wanfangdata.com.cn/Periodical/dzlp201602005

    Hoskin P W O, Black L P. Metamorphic zircon formation by solidstate recrystallization of protolith igneous ziron[J]. Metamorphic Geol., 2000, 18:423-439. http://www.oalib.com/references/19203084

    Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53:27-62. doi: 10.2113/0530027

    Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):469-500. doi: 10.2113-0530469/

    Middlemost E A K. Naming materials in the magma/igneous rock system[J].Earth Science Reviews, 1994, 37(3/4):215-224. http://cn.bing.com/academic/profile?id=734bf86c098739b75858e5b7d1c062b4&encoded=0&v=paper_preview&mkt=zh-cn

    Wright J B. A simple alkalinity ratio and its application to questions of nonorogenic granite genesis[J]. Geological Magazine, 1969, 106(4):370-384. doi: 10.1017/S0016756800058222

    Peccerillo R, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contrib. Mineral. Petrol., 1976, 58:63-81. doi: 10.1007/BF00384745

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Bowden P. The geochemistry and mineralization of alkaline ring complexes in Africa (a review)[J]. Journal of African Earth Sciences, 1985, 3(1/2):17-39. http://cn.bing.com/academic/profile?id=3cc5e02b16ad50b923839fcf5ba3cbe1&encoded=0&v=paper_preview&mkt=zh-cn

    Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20:641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    张磊, 吕新彪, 刘阁, 等.兴蒙造山带东段大陆弧后A型花岗岩特征与成因[J].中国地质, 2013, 40(3):869-884. doi: 10.3969/j.issn.1000-3657.2013.03.018
    Eby G N, 王宾. A型花岗岩类的化学分类:岩石成因和构造意义[J].国外火山地质, 1994, (1):38-42. http://www.cnki.com.cn/Article/CJFDTOTAL-GWHD199401006.htm

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock seriesusing multicationic parameters[J]. Chem. Geol., 1985(48):43-55. http://cn.bing.com/academic/profile?id=cf476bac1fef15bdde5a43220ec07ed8&encoded=0&v=paper_preview&mkt=zh-cn

    潘桂棠, 陆松年, 肖庆辉, 等.中国大地构造阶段划分和演化[J].地学前缘, 2016, 23(6):1-23. http://d.old.wanfangdata.com.cn/Periodical/dxqy201606001

    Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[C]//Coward M P, Reis A C. Collision tectonics. Spec. Publ. Grol. Soc. Lond., 1986, 19: 67-81.

    内蒙古自治区地质调查院.内蒙古 1∶5万阿格廷查干陶乐盖等六幅区域矿产地质调查报告.2018.
图(8)  /  表(2)
计量
  • 文章访问数:  3471
  • HTML全文浏览量:  479
  • PDF下载量:  2114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-11
  • 修回日期:  2018-11-11
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2019-04-14

目录

/

返回文章
返回