• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

辽东王家堡子地区古元古代花岗岩地球化学特征、锆石U-Pb年龄、Hf同位素及其地质意义

杨仲杰, 王伟, 赵岩, 周永恒, 张璟, 孙守亮, 刘长纯

杨仲杰, 王伟, 赵岩, 周永恒, 张璟, 孙守亮, 刘长纯. 2019: 辽东王家堡子地区古元古代花岗岩地球化学特征、锆石U-Pb年龄、Hf同位素及其地质意义. 地质通报, 38(4): 603-618.
引用本文: 杨仲杰, 王伟, 赵岩, 周永恒, 张璟, 孙守亮, 刘长纯. 2019: 辽东王家堡子地区古元古代花岗岩地球化学特征、锆石U-Pb年龄、Hf同位素及其地质意义. 地质通报, 38(4): 603-618.
YANG Zhongjie, WANG Wei, ZHAO Yan, ZHOU Yongheng, ZHANG Jing, SUN Shouliang, LIU Changchun. 2019: Geochemistry and zircon U-Pb-Hf isotopes of Paleoproterozoic granitic rocks in Wangjiapuzi area, eastern Liaoning Province, and their geological significance. Geological Bulletin of China, 38(4): 603-618.
Citation: YANG Zhongjie, WANG Wei, ZHAO Yan, ZHOU Yongheng, ZHANG Jing, SUN Shouliang, LIU Changchun. 2019: Geochemistry and zircon U-Pb-Hf isotopes of Paleoproterozoic granitic rocks in Wangjiapuzi area, eastern Liaoning Province, and their geological significance. Geological Bulletin of China, 38(4): 603-618.

辽东王家堡子地区古元古代花岗岩地球化学特征、锆石U-Pb年龄、Hf同位素及其地质意义

基金项目: 

中国地质调查局项目《辽东-吉南成矿带永吉—凤城地区地质矿产调查》 DD20160049

详细信息
    作者简介:

    杨仲杰(1987-), 男, 工程师, 从事区域地质调查与固体矿产勘查工作。E-mail:147018374@qq.com

  • 中图分类号: P534.3;P597+.3

Geochemistry and zircon U-Pb-Hf isotopes of Paleoproterozoic granitic rocks in Wangjiapuzi area, eastern Liaoning Province, and their geological significance

  • 摘要:

    辽东王家堡子地区出露大量古元古代花岗质岩石,前人将其统称为花岗质混杂岩。通过详细的野外地质调查和室内综合研究,将该套花岗质混杂岩解体为条痕状黑云母二长花岗岩和片麻状黑云母二长花岗岩两类。岩石地球化学分析结果显示二者具有一致的地球化学特征。均显示高SiO2、富K2O、贫Al2O3的特征,K2O/Na2O=0.64~2.14,TiO2含量为0.16%~0.3%,MnO、MgO、CaO和P2O5的含量较低,铝指数A/CNK集中分布在1.06~1.1之间,A/NK在1.50~1.62之间,均属于过铝质高钾钙碱性系列;微量元素显示强烈亏损Nb、Ti、Ta等高场强元素,富集Rb、U、K等大离子亲石元素,具有明显的负Eu异常,具有A型花岗岩的特征。条痕状黑云母二长花岗岩大部分锆石为具有清晰振荡环带的岩浆锆石,LA-ICP-MS锆石U-Pb年龄为2188±13Ma,代表该岩石的岩浆结晶年龄。片麻状黑云母二长花岗岩大部分锆石具有明显的变质增生边,部分核部锆石具有清晰的振荡环带,LA-ICP-MS锆石U-Pb测年获得核部年龄为2214±16Ma,代表该岩石的岩浆结晶年龄;增生边年龄为1905±13Ma,应代表该岩石的变质年龄。条痕状黑云母二长花岗岩和片麻状黑云母二长花岗岩的Hf同位素模式年龄分别为2387~2584Ma和2474~2641Ma,平均地壳模式年龄分别为2495~2808Ma和2633~2868Ma,大于岩石形成年龄,暗示研究区古元古代花岗岩源区主要为太古宙基底,混有少量古元古代新生地壳。结合前人报道的埃达克质花岗闪长岩的形成环境,认为胶-辽-吉古元古代造山/活动带早期经历了2.2~2.15Ga的拉伸裂解过程和2.0Ga左右俯冲挤压的构造演化过程。

    Abstract:

    Paleoproterozoic granites are widely distributed in the Wangjiapuzi area of eastern Liaoning Province. In the past, some granitic plutons were considered as granitic melange in this area. In this paper, the authors divided the granitic melange into two types, i.e., striate biotite monzogranites and gneissic biotite monzogranites, on the basis of comprehensive studies of field observation, petrography, geochemistry and isotope chronology. The results of geochemical analysis show that the two components are homogeneous, having uniform geochemical characteristics. They all show high SiO2\, rich K2O and poor Al2O3 features, with K2O/Na2O being 0.64~2.14. Their TiO2 values are between 0.16% and 0.3%, with lower MnO, MgO, CaO and P2O5 content. The saturation index A/CNK is between 1.06 and 1.1, and A/NK is between 1.50 and 1.62, which suggests that the granodiorites should belong to the peraluminum calcium alkaline series. Some trace elements show that high field strength elements such as Nb, Ti, Ta are strongly depleted, with an obvious anomaly of negative Eu. All the geochemical characteristics suggest that they should belong to Atype granites.The most zircon grains of striate biotite monzogranites show clear oscillating zoning structures, and LA-ICP-MS zircon U-Pb weighted mean age is 2188±13Ma(MSWD=0.49), with the age of magma crystallization representing the age of the rock. The most zircons of gneissic biotite monzogranites show obvious metamorphic edge, zircons from the part of the nucleus show clear oscillating zoning structures. LA-ICP-MS nucleus zircon U-Pb weighted mean age is 2214±16Ma(MSWD=1.01), with the age of magma crystallization representing the age of the rock. LA-ICP-MS edge zircon U-Pb weighted mean age is 1905±13Ma(MSWD=4.5), representing the age of metamorphic rock. The model ages of these two types of granites obtained from Hf isotope are respectively 2387~2584Ma and 2474~2641Ma, the average of the crustal pattern is 2495~2808Ma and 2633~2868Ma, older than the age of rock formation. The source area of Paleoproterozoic granite in the study area was mainly Archean basement mixed with a small amount of Paleozoic Neoproterozoic crust. The formation environment of the dike granite diorite is reported by some geologists. It is shown that the early rising of the Jiao-Liao-Ji orogenic/activity belts experienced a tensile cracking process at about 2.2~2.15Ga, and then there was a process of subduction and compression around 2.0Ga.

  • 致谢: 河北省廊坊区域地质调查院实验室在锆石分选中给予了帮助,北京科荟测试技术有限公司在LA-ICP-MS锆石U-Pb及微量元素测试分析中给予了大力帮助,辽宁省地质矿产调查院豆世勇、邴智武、李艳斌等项目组成员在工作中给予支持,在此一并致谢。
  • 图  1   研究区大地构造简图(a)及区域地质简图(b)[25]

    Q—第四系;Pt1gx—盖县岩组;Pt1d—大石桥岩组;Pt1g—高家峪岩组;Pt1lr—里尔屿岩组;γK1—早白垩世花岗岩;γJ3—晚侏罗世花岗岩;γT3—晚三叠世花岗岩;δT3—晚三叠世闪长岩;ρPt1—古元古代伟晶岩;NPt1—古元古代变质基性岩;γδPt1—古元古代花岗闪长岩;strηγPt1—古元古代条痕状黑云母二长花岗岩;gnηγPt1—古元古代片麻状黑云母二长花岗岩;1—采样点;2—太古宙地质体;3—古元古代地质体;4—推测的古元古代地质体;5—未分的太古宙/元古宙地质体;6—研究区;7—断裂带;8—地质界线;9—断层

    Figure  1.   Tectonic map (a) and regional geological map(b) of the study area

    图版Ⅰ  

    a.条痕状黑云母二长花岗岩手标本照片;b.条痕状黑云母二长花岗岩正交偏光镜下显微照片;c.片麻状黑云母二长花岗岩手标本照片;d.片麻状黑云母二长花岗岩正交偏光镜下显微照片

    图版Ⅰ.  

    图  2   王家堡子地区古元古代花岗岩SiO2-(Na2O+K2O)图解(a)[32]和SiO2-K2O图解(b)[33-34]

    1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗闪长岩;6—花岗岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩;13—副长石辉长岩;14—副长石二长闪长岩;15—副长石二长正长岩;16—副长正长岩;17—副长深成岩;18—霓方钠岩/磷霞岩/粗白榴岩。Ir—Irvine分界线,上方为碱性,下方为亚碱性

    Figure  2.   SiO2 versus Na2O+K2O diagram (a) and SiO2 versus K2O diagram (b) for Paleoproterozoic granite in Wangjiapuzi area

    图  3   王家堡子地区古元古代花岗岩A/CNK-A/NK图解[35]

    Figure  3.   A/CNK versus A/NK diagram for Paleoproterozoic granite in Wangjiapuzi area

    图  4   王家堡子地区古元古代花岗岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

    (标准化值据参考文献[36])

    Figure  4.   Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element diagram (b) for Paleoproterozoic granite in Wangjiapuzi area

    图  5   王家堡子地区古元古代花岗岩锆石阴极发光(CL)图像及Hf同位素和U-Pb年龄测试位置

    (白色30μm实线圆圈代表变质锆石U-Pb年龄测试位置;黑色30μm实线圆圈代表岩浆锆石U-Pb年龄测试位置;白色50μm虚线圆圈代表岩浆锆石Hf同位素测试位置)

    Figure  5.   The CL images of zircons and the locations of Hf and U-Pb age analyses of Early Paleoproterozoic granite in Wangjiapuzi area

    图  6   王家堡子地区古元古代花岗岩LA-ICP-MS锆石U-Pb谐和图

    a—条痕状黑云母二长花岗岩;b—片麻状黑云母二长花岗岩

    Figure  6.   LA-ICP-MS U-Pb concordia diagram of zircon from Paleoproterozoic granite in Wangjiapuzi area

    图  7   王家堡子地区古元古代花岗岩A型花岗岩判别图解[48-51]

    Figure  7.   Discrimination diagrams of A-type granite for Paleoproterozoic granite in Wangjiapuzi area

    图  8   王家堡子地区古元古代花岗岩微量元素环境判别图解[52]

    a—Rb/30-Hf-3Ta图解;b—(Y+Nb)-Rb图解;ORG—洋中脊花岗岩;VAG—火山弧花岗岩;WPG—板内花岗岩;syn-COLG—同碰撞花岗岩

    Figure  8.   Tectonic discrimination diagrams for Paleoproterozoic granite in Wangjiapuzi area

    图  9   A1-A2型花岗岩Y/Nb-Ce/Nb(a)及Nb-Y-3Ga(b)分类图解[51]

    IAB—岛弧系列;OIB—洋岛系列

    Figure  9.   Plots of Ce/Nb versus Y/Nb (a) and Nb-Y-3Ga (b) for distinguishing between A1 and A2 granites

    图  10   SiO2-lgCaO/(K2O+Na2O)(a)[59]和Yb-Sr图解(b)[59]

    Ⅰ—高Sr低Yb型(埃达克型花岗岩);Ⅱ—低Sr高Yb型(喜马拉雅型花岗岩);Ⅲ—高Sr高Yb型(广西型花岗岩);Ⅳ—低Sr高Yb型(浙闽型花岗岩);Ⅴ—非常低Sr高Yb型(南岭型花岗岩)

    Figure  10.   SiO2-lgCaO/(K2O+Na2O)(a)and Yb-Sr(b)diagrams

    表  1   王家堡子地区古元古代花岗岩地球化学数据

    Table  1   The geochemical compositions of Paleoproterozoic granite in Wangjiabaozi area

    编号 DMJ-TY1 DMJ-TY2 DMJ-TY3 DMJ-TY4 DMJ-TY5 LHG-TY1 LHG-TY2 LHG-TY3 LHG-TY4 LHG-TY5
    岩性 条痕状黑云母二长花岗岩 片麻状黑云母二长花岗岩
    SiO2 76.10 75.10 76.40 75.11 77.04 76.30 76.50 75.80 75.84 77.31
    TiO2 0.24 0.19 0.22 0.30 0.24 0.16 0.16 0.16 0.19 0.20
    Al2O3 12.30 12.50 12.10 12.83 12.50 12.20 11.90 12.40 12.51 11.83
    Fe2O3 1.44 1.42 1.16 1.72 0.91 0.30 0.44 0.22 0.60 0.78
    FeO 0.48 0.58 0.45 0.42 0.26 1.51 1.42 1.48 1.21 1.22
    MnO 0.03 0.03 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.03
    MgO 0.31 0.31 0.24 0.32 0.20 0.26 0.24 0.36 0.18 0.21
    CaO 0.40 0.43 0.33 0.45 0.42 0.67 0.66 0.76 0.56 0.83
    Na2O 4.19 3.60 4.13 4.28 4.69 2.80 2.75 2.72 2.64 2.90
    K2O 3.71 4.48 3.57 3.62 3.01 5.09 4.89 5.38 5.64 4.06
    P2O5 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04
    H2O+ 0.72 0.80 0.70 0.58 0.33 0.28 0.42 0.40 0.28 0.32
    总计 99.94 99.47 99.35 99.68 99.65 99.64 99.45 99.75 99.72 99.74
    烧失量 0.79 0.83 0.76 0.74 0.54 0.46 0.45 0.48 0.42 0.47
    Cs 1.22 1.33 1.19 1.09 0.77 1.23 1.15 1.23 0.83 0.98
    Rb 105.00 123.00 101.00 87.64 75.95 185.00 169.00 198.00 182.14 155.25
    Sr 77.40 66.70 64.70 67.55 65.08 96.90 86.60 96.10 94.52 98.59
    Ba 1366.00 1423.00 1648.00 979.11 855.02 900.00 591.00 1253.00 885.03 661.52
    Ga 18.50 19.20 19.20 14.74 12.75 15.90 15.40 16.30 12.54 14.27
    Nb 24.10 22.10 52.20 24.64 22.04 11.00 14.50 10.90 17.25 15.45
    Ta 1.76 1.78 1.99 2.41 1.92 0.69 0.77 0.52 1.07 0.84
    Zr 298.00 320.00 197.00 340.88 186.53 165.00 209.00 98.60 210.62 233.64
    Hf 8.51 8.82 6.24 10.82 6.12 5.76 7.29 3.65 7.31 8.55
    Th 19.70 18.70 17.40 43.49 25.47 26.00 25.90 28.90 31.99 27.80
    V 5.92 3.66 2.24 4.33 2.35 10.90 10.30 9.32 8.88 10.48
    Cr 5.90 6.12 7.00 2.26 3.70 9.23 12.10 11.80 2.79 4.02
    Co 1.56 1.66 1.45 0.76 0.41 2.35 2.81 2.19 1.96 2.93
    Ni 1.97 1.13 1.36 0.30 3.03 3.08 2.17 1.82 1.44 3.53
    Sc 4.07 4.21 3.75 4.95 3.83 5.26 5.60 5.30 5.83 5.23
    U 2.08 1.84 1.63 6.25 1.81 3.17 3.07 3.10 4.03 3.80
    K 123.19 148.76 118.54 120.11 99.91 169.01 162.37 178.64 187.34 134.81
    Ti 1.11 0.88 1.01 1.39 1.09 0.74 0.74 0.74 0.87 0.94
    P 1.24 1.52 1.19 1.56 1.16 1.15 1.42 1.33 1.47 1.77
    La 33.40 39.90 35.30 40.70 30.49 63.60 62.90 70.80 63.09 64.29
    Ce 111.00 101.00 103.00 98.21 152.56 124.00 130.00 128.00 129.31 130.16
    Pr 8.60 9.05 9.30 10.77 7.36 14.80 14.70 15.60 15.66 15.73
    Nd 35.40 36.20 37.00 42.38 27.10 56.40 57.50 60.60 61.05 60.86
    Sm 6.76 7.08 7.63 8.40 5.04 10.10 10.00 11.10 11.48 11.38
    Eu 1.24 1.32 1.27 1.37 0.91 1.05 1.00 1.14 0.97 0.94
    Gd 6.57 6.78 7.15 7.53 5.46 9.52 9.56 9.62 10.17 10.24
    Tb 1.23 1.22 1.25 1.44 0.99 1.71 1.57 1.79 1.70 1.75
    Dy 8.17 7.40 8.24 9.47 6.61 9.49 10.10 9.91 9.96 11.66
    Ho 1.82 1.71 1.76 1.98 1.37 2.13 2.10 2.20 1.86 2.38
    Er 5.60 5.27 5.02 5.65 3.79 6.67 6.91 6.84 5.08 6.80
    Tm 0.84 0.81 0.83 0.99 0.67 1.00 1.06 0.99 0.90 1.20
    Yb 5.46 5.08 4.75 5.76 3.77 6.75 7.30 6.96 5.45 7.18
    Lu 0.78 0.81 0.73 0.79 0.49 1.01 1.13 1.03 0.75 1.02
    Y 49.60 46.30 46.50 45.47 31.19 55.80 61.00 58.20 50.99 61.65
    ΣREE 226.87 223.63 223.23 235.43 246.64 308.23 315.83 326.58 317.42 325.59
    LR/HR 6.45 6.69 6.51 6.01 9.65 7.05 6.95 7.30 7.85 6.71
    (La/Yb)N 4.12 5.29 5.01 4.77 5.45 6.35 5.81 6.86 7.80 6.04
    δEu 0.56 0.57 0.52 0.52 0.53 0.32 0.31 0.33 0.27 0.26
    δCe 1.57 1.25 1.36 1.13 2.42 0.96 1.01 0.90 0.98 0.97
    A/CNK 1.48 1.47 1.51 1.54 1.54 1.43 1.43 1.40 1.42 1.52
    A/NK 1.56 1.55 1.57 1.62 1.62 1.55 1.56 1.53 1.51 1.70
    Ga/Al 2.84 2.90 3.00 2.17 1.93 2.46 2.44 2.48 1.89 2.28
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表  2   王家堡子地区古元古代花岗岩LA-ICP-MS锆石U-Th-Pb数据

    Table  2   The LA-ICP-MS zircon U-Th-Pb isotopic data for Paleoproterozoic granite in Wangjiapuzi area

    测点号 Th U Th/U 同位素比值 年龄/Ma
    10-6 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    条痕状细粒黑云母二长花岗岩(岩浆锆石)
    DMJ-TW1-02 103 251 0.41 0.1354 0.0030 7.0685 0.1569 0.3768 0.0051 2169 38 2120 20 2062 24
    DMJ-TW1-03 90 260 0.34 0.1364 0.0026 8.6550 0.2322 0.4585 0.0105 2183 32 2302 24 2433 46
    DMJ-TW1-04 118 429 0.28 0.1346 0.0025 7.3313 0.1363 0.3926 0.0038 2159 33 2153 17 2135 17
    DMJ-TW1-05 84 206 0.41 0.1390 0.0030 7.7372 0.1814 0.4015 0.0056 2217 38 2201 21 2176 26
    DMJ-TW1-06 120 206 0.58 0.1387 0.0026 7.9190 0.1711 0.4110 0.0052 2211 27 2222 19 2219 24
    DMJ-TW1-07 162 264 0.61 0.1364 0.0026 7.4737 0.1393 0.3957 0.0048 2183 34 2170 17 2149 22
    DMJ-TW1-08 88 162 0.54 0.1366 0.0025 8.1610 0.1848 0.4311 0.0073 2184 31 2249 20 2311 33
    DMJ-TW1-09 97 188 0.52 0.1376 0.0027 8.0032 0.1670 0.4197 0.0055 2198 33 2231 19 2259 25
    DMJ-TW1-10 193 412 0.47 0.1377 0.0025 8.1553 0.1575 0.4271 0.0049 2198 33 2248 17 2293 22
    DMJ-TW1-11 96 269 0.36 0.1404 0.0029 9.0151 0.2101 0.4639 0.0080 2232 69 2340 21 2457 35
    DMJ-TW1-12 219 594 0.37 0.1392 0.0027 8.4511 0.1720 0.4378 0.0055 2217 33 2281 18 2341 25
    DMJ-TW1-13 97 198 0.49 0.1406 0.0031 8.5515 0.1993 0.4397 0.0069 2235 38 2291 21 2349 31
    DMJ-TW1-14 80 174 0.46 0.1348 0.0029 7.9468 0.1817 0.4257 0.0060 2161 38 2225 21 2286 27
    DMJ-TW1-16 85 172 0.49 0.1377 0.0029 8.0849 0.1770 0.4244 0.0056 2198 37 2241 20 2281 25
    DMJ-TW1-17 98 207 0.47 0.1384 0.0027 8.2722 0.1655 0.4325 0.0057 2209 35 2261 18 2317 26
    DMJ-TW1-18 745 679 1.10 0.1384 0.0022 7.8360 0.1468 0.4084 0.0049 2209 28 2212 17 2208 22
    DMJ-TW1-19 69 140 0.49 0.1368 0.0025 8.1477 0.1763 0.4291 0.0051 2187 33 2248 20 2302 23
    DMJ-TW1-20 95 184 0.52 0.1365 0.0025 8.1102 0.1541 0.4299 0.0053 2184 31 2243 17 2305 24
    DMJ-TW1-21 121 249 0.49 0.1361 0.0022 8.2333 0.1602 0.4367 0.0054 2177 28 2257 18 2336 24
    DMJ-TW1-22 128 199 0.64 0.1370 0.0026 7.9891 0.1481 0.4225 0.0052 2191 38 2230 17 2272 24
    DMJ-TW1-24 127 260 0.49 0.1356 0.0023 8.1550 0.1798 0.4341 0.0065 2173 29 2248 20 2324 29
    DMJ-TW1-25 98 183 0.54 0.1340 0.0026 8.2266 0.1837 0.4446 0.0068 2152 34 2256 20 2371 31
    片麻状黑云母二长花岗岩(岩浆锆石)
    LHG-TW1-02 354 487 0.73 0.1344 0.0025 7.5871 0.1830 0.4087 0.0079 2167 32 2183 22 2209 36
    LHG-TW1-03 107 167 0.64 0.1401 0.0024 7.6534 0.1477 0.3952 0.0052 2229 30 2191 17 2147 24
    LHG-TW1-06 120 251 0.48 0.1397 0.0025 7.4719 0.1504 0.3873 0.0056 2233 31 2170 18 2110 26
    LHG-TW1-07 166 518 0.32 0.1348 0.0026 7.2982 0.1375 0.3923 0.0045 2161 34 2149 17 2133 21
    LHG-TW1-10 46 107 0.43 0.1399 0.0032 8.0470 0.1878 0.4170 0.0058 2228 39 2236 21 2247 26
    LHG-TW1-12 69 188 0.37 0.1386 0.0028 7.4282 0.1585 0.3882 0.0052 2210 41 2164 19 2114 24
    LHG-TW1-13 46 74 0.62 0.1398 0.0035 7.9613 0.1931 0.4140 0.0066 2225 76 2227 22 2233 30
    LHG-TW1-22 325 486 0.67 0.1412 0.0025 7.7050 0.1473 0.3955 0.0050 2243 31 2197 17 2148 23
    LHG-TW1-24 22 49 0.44 0.1400 0.0039 8.1182 0.1961 0.4229 0.0061 2228 44 2244 22 2274 28
    LHG-TW1-26 173 344 0.50 0.1378 0.0023 7.4826 0.1450 0.3935 0.0052 2199 28 2171 17 2139 24
    LHG-TW1-27 148 293 0.50 0.1427 0.0023 7.9596 0.1441 0.4051 0.0062 2261 28 2226 16 2192 29
    LHG-TW1-29 95 261 0.37 0.1337 0.0025 7.4218 0.1334 0.4035 0.0058 2147 32 2164 16 2185 27
    LHG-TW1-31 476 1032 0.46 0.1396 0.0022 7.6871 0.1492 0.3993 0.0063 2222 28 2195 17 2166 29
    LHG-TW1-35 129 334 0.39 0.1373 0.0025 7.6853 0.1455 0.4062 0.0057 2194 32 2195 17 2197 26
    片麻状黑云母二长花岗岩(变质锆石)
    LHG-TW1-01 27 1736 0.02 0.1161 0.0019 5.3217 0.0917 0.3318 0.0041 1898 3 1872 15 1847 20
    LHG-TW1-04 21 1102 0.02 0.1216 0.0022 6.0296 0.1222 0.3589 0.0048 1980 33 1980 18 1977 23
    LHG-TW1-05 27 1612 0.02 0.1192 0.0020 5.6816 0.1884 0.3448 0.0091 1944 30 1929 29 1910 44
    LHG-TW1-09 34 1036 0.03 0.1203 0.0021 5.5380 0.1374 0.3338 0.0074 1961 31 1907 21 1857 36
    LHG-TW1-11 99 1070 0.09 0.1218 0.0020 5.3112 0.0869 0.3157 0.0032 1983 30 1871 14 1768 16
    LHG-TW1-14 108 783 0.14 0.1221 0.0020 5.7426 0.1132 0.3402 0.0043 1987 25 1938 17 1887 20
    LHG-TW1-16 30 1217 0.02 0.1169 0.0019 5.0694 0.0738 0.3145 0.0033 1909 29 1831 12 1763 16
    下载: 导出CSV

    表  3   王家堡子地区古元古代花岗岩Hf同位素数据

    Table  3   The Hf isotopic data for Paleoproterozoic granite in Wangjiapuzi area

    测点号 t/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(t) TDM1 TDM2C fLu/Hf TDM2
    条痕状细粒黑云母二长花岗岩(岩浆锆石)
    DMJ-TW1-1 2169 0.032345 0.000583 0.000845 0.000017 0.281471 0.000017 1.308435 2478 2664 -0.974565 2685
    DMJ-TW1-2 2183 0.05715 0.000595 0.001468 0.000018 0.281502 0.00002 1.787931 2476 2645 -0.955805 2665
    DMJ-TW1-3 2159 0.046318 0.000132 0.001193 0.000004 0.281481 0.000024 0.934703 2486 2679 -0.964063 2701
    DMJ-TW1-4 2217 0.062634 0.003388 0.001517 0.000062 0.281564 0.000021 4.65564 2393 2495 -0.954332 2508
    DMJ-TW1-5 2211 0.050586 0.001093 0.001297 0.000024 0.281513 0.00002 3.061893 2449 2588 -0.960938 2605
    DMJ-TW1-6 2183 0.046918 0.000465 0.001222 0.000008 0.281555 0.000019 4.03079 2387 2507 -0.9632 2522
    DMJ-TW1-7 2184 0.068025 0.001121 0.001753 0.000028 0.281479 0.000025 0.591901 2526 2719 -0.947206 2742
    DMJ-TW1-8 2198 0.054097 0.000727 0.001405 0.000015 0.281421 0.000019 -0.679125 2584 2808 -0.957693 2834
    DMJ-TW1-9 2198 0.037243 0.000078 0.000983 0.000002 0.281479 0.000019 2.031436 2476 2642 -0.970414 2662
    DMJ-TW1-10 2232 0.019261 0.000358 0.000529 0.000009 0.281411 0.00002 1.046258 2539 2728 -0.984069 2750
    DMJ-TW1-11 2217 0.027915 0.000054 0.000745 0.000001 0.28145 0.000023 1.760759 2500 2673 -0.977553 2693
    DMJ-TW1-12 2161 0.037113 0.001235 0.000987 0.000029 0.281471 0.000021 0.92969 2487 2681 -0.970273 2703
    条痕状细粒黑云母二长花岗岩(岩浆锆石)
    DMJ-TW1-13 2235 0.058243 0.000886 0.001523 0.000021 0.28155 0.000021 4.563515 2413 2515 -0.954147 2528
    DMJ-TW1-14 2198 0.050312 0.000595 0.001316 0.000014 0.281473 0.00002 1.314958 2506 2685 -0.960364 2707
    DMJ-TW1-15 2209 0.035817 0.000995 0.000961 0.000024 0.281467 0.000022 1.897692 2490 2658 -0.971058 2678
    DMJ-TW1-16 2209 0.100512 0.0005 0.002591 0.000009 0.281572 0.000021 3.172937 2452 2580 -0.921984 2597
    DMJ-TW1-18 2191 0.052137 0.000581 0.001401 0.000018 0.281468 0.00002 0.853993 2518 2708 -0.957802 2731
    DMJ-TW1-19 2173 0.034574 0.001489 0.000965 0.000037 0.281468 0.000019 1.078829 2490 2680 -0.970931 2702
    DMJ-TW1-20 2152 0.048473 0.000692 0.001349 0.000018 0.281466 0.000021 0.000384 2518 2731 -0.959378 2755
    片麻状黑云母二长花岗岩(岩浆锆石)
    LHG-TW1-1 2167 0.067667 0.001504 0.001709 0.00003 0.281477 0.00002 0.194987 2526 2730 -0.948546 2754
    LHG-TW1-2 2229 0.047869 0.001503 0.001163 0.000027 0.281454 0.000022 1.55738 2521 2694 -0.96498 2715
    LHG-TW1-3 2233 0.063995 0.000397 0.001628 0.000008 0.281461 0.00002 1.194901 2543 2720 -0.95098 2742
    LHG-TW1-4 2161 0.02993 0.000111 0.000834 0.000005 0.281415 0.00002 -0.849939 2553 2790 -0.974889 2817
    LHG-TW1-5 2228 0.025647 0.000414 0.000685 0.000009 0.281441 0.000019 1.798202 2508 2679 -0.979375 2699
    LHG-TW1-6 2210 0.03403 0.000169 0.000849 0.000005 0.281474 0.000021 2.315068 2474 2633 -0.97443 2652
    LHG-TW1-7 2240 0.045854 0.000365 0.001153 0.00001 0.281424 0.000026 0.766464 2562 2752 -0.965289 2775
    LHG-TW1-8 2225 0.02594 0.000248 0.000674 0.000005 0.281419 0.000025 0.97218 2537 2727 -0.9797 2750
    LHG-TW1-10 2228 0.059216 0.000713 0.001473 0.00001 0.281422 0.000028 -0.057426 2586 2793 -0.955651 2818
    LHG-TW1-11 2194 0.032945 0.000317 0.000854 0.000005 0.281437 0.000028 0.628359 2525 2725 -0.974294 2748
    LHG-TW1-15 2228 0.042088 0.000168 0.001112 0.000004 0.281468 0.000024 2.105915 2499 2660 -0.966523 2679
    LHG-TW1-16 2199 0.037014 0.000508 0.00096 0.000008 0.281406 0.000019 -0.498786 2573 2798 -0.9711 2823
    LHG-TW1-17 2243 0.057946 0.000601 0.001608 0.000009 0.28139 0.000029 -1.093963 2641 2868 -0.951578 2895
    LHG-TW1-18 2261 0.038603 0.001479 0.001009 0.00003 0.28144 0.000019 2.008621 2531 2692 -0.969622 2711
    注:εHf(t)根据每个样品锆石U-Pb年龄计算而得
    下载: 导出CSV
  • Windley B. Proterozoic Collisional and Accretionary Orogens[C]//Condie K C. Proterozoic Crustal Evolution.Amsterdam: Elsevier, 1992: 419-446.

    Smith T E. Volcanic Rocks of Early Proterozoic Greenstone Belts[C]//Condie K C. Proterozoic Crustal Evolution. Amsterdam: Elsevier, 1992: 7-54.

    Rogers J W, Santosh M. Confignration of Columbia, a Mesoproterozoic Supercontinent[J]. Gondwana Research, 2002, 5(1):5-22. doi: 10.1016/S1342-937X(05)70883-2

    Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited[J]. Precambrian Research, 2005, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002

    Faure M, Lin W, Monie P, et al. Palaeoproterozoic Arc Magmatism and Collision in Liaodong Peninsula(Northeast China)[J]. Terra Nova, 2004, 16(2):75-80. doi: 10.1111/ter.2004.16.issue-2

    Sun M, Armstrong R L, Lambert R S J, er al. Petrochemistry and Sr, Pb and Nd Isotopic Geochemistry of the Paleoproterozoic Kuandian Complex, the eastern Liaoning Province, China[J]. Precambrian Research, 1993, 63(1/2):171-190.

    Li S Z, Zhao G C, Santosh M, et al. Paleoproterozoi Tectonothermal Evolution and Deep Crustal Processes in the JiaoLiao-Ji Belt, North China Craton:A Review[J]. Geological Journal, 2011, 46(6):525-543. doi: 10.1002/gj.1282

    Zhai M G, Liu W J. Paleoproterozoic Tectonic History of the North China Craton:A Review[J]. Precambrian Research, 2003, 122(1/2/3/4):183-199.

    Zhai M G, Santosh M. The Early Precambrian Odyssey of North China Craton:A Synoptic Overview[J]. Gondwana Research, 2011, 20(1):6-25. doi: 10.1016/j.gr.2011.02.005

    杨明春, 陈斌, 闫聪.华北克拉通胶-辽-吉带古元古代条痕状花岗岩成因及其构造意义[J].地球科学与环境学报, 2015, 37(5), 31-51. doi: 10.3969/j.issn.1672-6561.2015.05.003
    张秋生, 杨振生.辽东半岛早期地壳与矿[M].北京:地质出版社, 1988:57.
    李三忠, 郝德峰, 赵国春, 等.丹东花岗岩的地球化学特征及其成因[J].岩石学报, 2004, 20(6):1417-1423. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200406011

    Li S Z, Zhao G C, Sun M, et al. Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton[J]. Joumal of Asian Earth Sciences, 2005, 24(5):659-674. doi: 10.1016/j.jseaes.2003.11.008

    Li S Z, Zhao G C, Sun M, et al. Are the South and North Liaohe groups of North China Craton different exotic terranes?Nd isotope constraints[J]. Gondwana Research, 2006, 9(1/2):198-208. doi: 10.1016-j.gr.2005.06.011/

    Li S Z, Zhao G C. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids:Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji Belt, in the Eastenr Block of the North China Craton[J]. Precambrian Research, 2007, 158(1/2):1-16.

    Luo Y, Sun M, Zhao G C, et al. LA-ICP-MS U-Pb zircon ages of the Liaohe Croup in the Eastern Block of the North China Craton:Constraints on the evolution of the Jiao-Liao-Ji Belt[J]. Precambrian Research, 2004, 134(3/4):349-371.

    Luo Y, Sun M, Zhao G C, et al. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups:Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research, 2008, 163(3/4):279-306.

    白瑾, 戴凤岩.中国早前寒武纪的地壳演化[J].地球学报, 1994, 15(Z1):73-84. http://d.old.wanfangdata.com.cn/Thesis/Y103276
    陈井胜, 蒋职权, 李崴崴, 等.辽宁本溪连山关地区辽河群浪子山组、里尔峪组形成时代及其地质意义[J].地质通报, 2018. 2018, 37(9):1693-1703. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180914&flag=1

    Faure M, Lin W, Monie P, et al. Palaeoproterozoic arcmagmatism and collision in Liaodong Peuiusula (north-east China)[J]. Terra Nova, 2004, 16(2):75-80. doi: 10.1111/ter.2004.16.issue-2

    Lu X P, Wu F Y, Guo J H, et al. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern Block in the North China Craton[J]. Precambrian Research, 2006, 146(3/4):138-164. doi: 10.1016-j.precamres.2006.01.009/

    贺高品, 叶惠义.辽东-吉南地区早元古代两种类型变质作用及其构造意义[J].岩石学报, 1998, 14(2):152-162. doi: 10.3321/j.issn:1000-0569.1998.02.003

    Zhao G C. Cawood P A. Li S G, et al. Amalgamation of the North China Craton:Key issues and discussion[J]. Precambrian Research, 2012, 222/223:55-76. doi: 10.1016/j.precamres.2012.09.016

    刘福来, 刘平华, 王舫, 等.胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展[J].岩石学报, 2015, 31(10):2816-2846. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201510002
    钟长汀, 邓晋福, 武永平, 等.华北克拉通北缘中段古元古代强过铝质花岗岩地球化学特征及其构意义[J].地质通报, 2006, 25(3):389-397. doi: 10.3969/j.issn.1671-2552.2006.03.008

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the TransNorth China Orogen:U-Pb Dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571.

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    Ludwig K R. User's manual for Isoplot 3. 0: A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003: 1-20

    Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chem. Geol., 2006, 234:105-126. doi: 10.1016/j.chemgeo.2006.05.003

    Goolaerts A, Mattielli N, De Jong J, et al. Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS[J]. Chem. Geol., 2004, 206:1-9. doi: 10.1016/j.chemgeo.2004.01.008

    Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation[J]. Chem. Geol., 2004, 209:121-135. doi: 10.1016/j.chemgeo.2004.04.026

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37(3/4):215-224.

    Le Maitre R W. A Classification of Igneous Rocks and Glossary of Term:Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Oxford, UK:Blackwell, 1989:1-193.

    Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor lements[J]. Lithos, 1989, 22(4):247-263.

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and process-es[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publicatin, 1989, 42(1): 313-345.

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantie:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochim Cosmochim Acta, 2000, 64:133-147. doi: 10.1016/S0016-7037(99)00343-9

    Soderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth Planet. Sci. Lett., 2004, 219:311-324. doi: 10.1016/S0012-821X(04)00012-3

    杨进辉, 吴福元, 谢烈文, 等.辽东矿洞沟正长岩成因及其构造意义:锆石原位微区U-Pb年龄和Hf同位素制约[J].岩石学报, 2007, 23(2):263-276. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702007
    王祥俭, 刘建辉, 冀磊.胶-辽-吉带辽东宽甸地区古元古代二长(正长)花岗质片麻岩的锆石U-Pb年代学、地球化学及成因[J].岩石学报, 2017, 33(9):2689-2707. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201709003
    郝德峰, 李二忠, 赵国春, 等.辽吉地区古元古代花岗岩成因及对构造演化的制约[J].岩石学报, 2004, 20(6):1409-1416. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200406010
    路孝平, 吴福元, 张艳斌, 等.吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景[J].岩石学报, 2004, 20(3):381-392. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403002
    路孝平, 吴福元, 林景仟, 等.辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架[J].地质科学, 2004, 39(1):123-138. doi: 10.3321/j.issn:0563-5020.2004.01.013

    Li Z, Chen B, Wei C J. Is the Paleoproterozoic Jiao-Liao-Ji Belt (North China Craton) a rift ntemational[J]. Journal of Earth Sciences, 2017, 106(1):355-375. doi: 10.1007/s00531-016-1323-2

    李超, 陈斌, 李壮, 等.辽东岫岩-宽甸地区古元古代条痕状花岗岩的岩石地球化学特征及其构造意义[J].岩石学报, 2017, 33(3):963-977. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201703021
    王鹏森, 董永胜, 李富强, 等.辽东黄花甸地区古元古代花岗质岩浆作用及其地质意[J].岩石学报, 2017, 33(3):2708-2724. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201709004

    Collies W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2):189-200. doi: 10.1007/BF00374895

    Whalen J B, Currie K L, Chappell B W. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202

    Eby G N. The A-type granitoids:A reviera of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1/2):15-134.

    Frost B R, Barnes C G, Colins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033

    Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7):641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25:956-983. doi: 10.1093/petrology/25.4.956

    Creaser R A, Price R C, Wormald R J. A-type granites revisited:Assessment of a residual-source model[J]. Geology, 1991, 19(2):163-166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2

    Patino Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25(8):743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2

    张旗, 王焰, 李承东, 等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报, 2006, 22(9):2249-2269. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609001

    King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371-391. doi: 10.1093/petroj/38.3.371

    张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J].岩石矿物学杂志, 2012, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014

    Allègre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1):1-25. doi: 10.1016/0012-821X(78)90123-1

    张旗, 王焰, 李承东, 等.花岗岩按照压力的分类[J].地质通报, 2006, 25(11):1274-1278. doi: 10.3969/j.issn.1671-2552.2006.11.004

    Zhao G C, Sun M, Wilde S A. Major tectonic units of the North China Craton and their Paleoproterozoic assembly[J]. Science in China(Series D), 2003, 46(1):23-38. doi: 10.1360/03yd9003

    翟明国, 彭澎.华北克拉通古元古代构造事件[J].岩石学报, 2007, 23(11):2665-2685. doi: 10.3969/j.issn.1000-0569.2007.11.001
    李富强, 董永胜, 王鹏森, 等.南辽河群斜长角闪岩的地球化学特征及地质意义:以三家子地区为例[J].世界地质, 2017, 36(1):82-92. doi: 10.3969/j.issn.1004-5589.2017.01.007
    高铂森, 董永胜, 李富强.辽东黄花甸地区南辽河群里尔峪组成因研究[J].岩石学报, 2017, 33(9):2725-2742. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201709005
    辽宁省地质局第五地质大队.辽宁省1: 5万王家堡子、板子屯、小偏岭等幅区域地质调查报告. 1981.
    辽宁省地质矿产调查院. 1: 25万丹东市、东港市幅区域地质调查成果报告. 2003.
图(11)  /  表(3)
计量
  • 文章访问数:  3271
  • HTML全文浏览量:  469
  • PDF下载量:  2330
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-01
  • 修回日期:  2018-07-15
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2019-04-14

目录

    /

    返回文章
    返回