Magnetic fabric study of the Late Jurassic-Early Cretaceous strata in Baoji area of Lhasa block
-
摘要:
拉萨和羌塘地块拼合形成了青藏高原的核心,但迄今对两者的具体拼合时间仍存在激烈的争论。为进一步寻找约束两者碰撞时限的地质证据,对拉萨地块晚侏罗世-早白垩世地层的磁组构特征进行研究。结果显示:晚侏罗世地层磁组构特征显示其遭遇过较强的构造应力,吐卡日组地层磁化率主轴k1方位与地层面斜交,但经地层校正后,k1方位与区域褶皱方向一致,表明应力方位为北北东-南南西向;萨波直不勒组地层k1方位在地层校正前平行于层面,指示了垂直于主压应力的方向,推断晚侏罗世地层磁组构记录了同一期应力,应力方向均为北北东-南南西向。早白垩世多尼组地层磁组构显示其后期遭受的构造应力场强度弱,且与晚侏罗世应力并非同一期。因此,通过对比晚侏罗世与早白垩世地层的磁组构特征,认为保吉地区晚侏罗世地层磁组构记录了北北东-南南西向较强的构造应力,推断该期应力来源于拉萨-羌塘地块的碰撞拼合事件,而多尼组地层并未受该期应力场的影响,仅记录了区域褶皱隆起时的应力场。
Abstract:The Lhasa and Qiangtang blocks are at the heart of the Tibetan Plateau. However, the time for the specific combination of the two blocks is still in heated controversy. To further find geological evidence that can constrain the time limit between the two blocks, the authors studied the characteristics of the magnetic fabric of the Late Jurassic-Early Cretaceous strata in Lhasa block. According to the results obtained, the magnetic structure of Late Jurassic strata encountered strong tectonic stress, and the principal axis k1 of the magnetic susceptibility of the Tukari Formation was oblique to the ground plane. After the stratigraphic correction, the k1 azimuth and regional fold direction consensus indicate that the stress azimuth was NNE-SSW; the k1 orientation of the Sabozhibule Formation was parallel to the plane (NNE-SSW) before the stratigraphic correction, indicating the direction perpendicular to the principal compressive stress and inferring the late tilting. The Late Jurassic formation magnetic structure recorded the same period of stress, and the stress direction was NNE-SSW. The Early Cretaceous Duoni Formation magnetic structure shows that the subsequent tectonic stress field intensity was weak, and was not in the same period as the Late Jurassic stress. Therefore, by comparing the magnetic fabric characteristics of the Late Jurassic and Early Cretaceous strata, the authors concluded that the magnetic fabric of the Late Jurassic in Baoji area recorded a strong tectonic stress in NNE-SSW, and that the stress in this period originated from the LhasaQiangtang block collision event, while the Duoni Formation was not affected by the stress field, only the stress field of the regional fold uplift was recorded.
-
Keywords:
- Baoji area /
- Late Jurassic-Early Cretaceous /
- Tukari Formation /
- magnetic fabric
-
西藏神公地区位于冈底斯构造带南部,分布有大量的钙碱性系列火成岩,形成于晚侏罗世—古近纪,其中以林子宗群中酸性火成岩为主体岩系,该套岩系自下而上划分为典中组、年波组、帕那组。以往研究表明[1-3],该套火成岩系的形成与新特提斯洋俯冲闭合及随后的印度-欧亚大陆碰撞事件关系密切,蕴含丰富的陆块碰撞的动力学信息,因此得到广泛的关注。
近年来,典中组火成岩的喷发时间及形成环境的研究一直是印度-欧亚板块碰撞活动研究的热点。周肃等[4]利用Ar-Ar定年得到林周盆地典中组火成岩的年龄值为64.4~60.5Ma;聂国永等[5]通过堆龙德庆县马区典中组底部底砾岩的研究认为,印度-欧亚大陆的碰撞时限约为65Ma;胡新伟等[6]测得措勤地区典中组火成岩的K-Ar同位素年龄值为63.9Ma,且稀土元素特征表现为轻稀土元素富集,负Eu异常,微量元素Rb、Ba、K、Th、U富集,Ti、P、Sr、Ta亏损,并认为典中组火成岩源于俯冲带幔源基性岩浆与陆壳重熔酸性岩浆的不同比例混合;梁银平等[7]利用U-Pb测年得到朱诺地区典中组上部流纹质凝灰岩的年龄值为64.8±1.6Ma,并指出典中组火成岩具有岛弧火成岩的特点。
本文在前人研究成果的基础上,对冈底斯构造带神公地区典中组顶底中酸性火成岩进行了锆石U-Pb同位素定年及主量、稀土和微量元素测试,进一步厘定该地区典中组火成岩的形成时限,同时探讨其构造环境意义,为青藏高原的构造演化提供新的依据。
1. 区域地质背景
冈底斯构造带位于青藏高原南部,呈近东西向展布,长约2000km,北以班公湖-怒江结合带为界,南以印度河-雅鲁藏布江缝合带为界,构成南北宽100~300km的带状岩浆岩分布区,指示了裂隙式喷发的特征[8]。研究区位于冈底斯构造带的次一级构造单元隆格尔-工布江达弧背断隆带的神公地区(图 1),区内白垩纪—古近纪中酸性火成岩广泛分布,记录了印度-欧亚板块碰撞过程的岩浆活动信息。晚侏罗世末期,欧亚陆块南缘的特提斯洋开始向北俯冲消减,至晚白垩世,俯冲消减持续进行,海水下降明显,沉积了一套海相-陆相红色砂泥岩,至晚白垩世末期,特提斯洋俯冲消减速度加快,最终形成岛弧背景下的火山喷发活动。
典中组中酸性火成岩厚度为635.7~1200m,岩石类型主要包括安山岩、流纹岩、英安岩,以及相应的火山碎屑岩,另少见火山集块岩,与下伏晚白垩世设兴组紫红色泥砂岩之间呈角度不整合接触关系,底部局部可见底砾岩,上部与年波组火山-沉积岩系呈平行不整合接触。
2. 样品及实验条件
研究区典中组火成岩出露面积广,主要为一套中酸性火成岩,岩石类型主要有英安岩、安山岩、流纹岩,以及相应的火山碎屑岩。另外,在底部可见基性玄武安山岩。对主要岩石类型简要描述如下。
英安岩:灰绿色,斑状结构,块状构造,斑晶含量约25%,几乎都由石英组成,偶见斜长石斑晶,基质含量约75%,主要由隐晶长英质成分组成,部分硅化重结晶形成细粒集合体状石英和少量鳞片状绢云母,集合体状石英多呈完全长条状(图 2-a、d)。
玄武安山岩:浅灰绿色,斑状、聚斑结构,基质为玻基交织结构,块状构造。主要由斑晶和基质组成。斑晶:斜长石占10%~20%,呈自形板状晶及聚斑产出,轻微碳酸盐化,具环带结构,以中性斜长石为主;基质占70%~80%,由微细晶斜长石和玻璃质、铁质、磁铁矿和少量橄榄石组成,组成玻基交织结构,橄榄石呈半自形粒状细晶产出(图 2-b)。
安山岩:浅灰色,斑状结构,基质具微晶结构,块状构造。主要由斑晶、基质组成。斑晶:斜长石微晶,占25%~30%,半自形柱状,碎裂纹发育,有隐约的环带构造,偶见角闪石,半自形柱状;基质以斜长石微晶为主,占60%~65%,呈定向-半定向排列,有强绿帘石化、绿泥石化,少见微小的杏仁体,由绿泥石、硅质充填(图 2-c)。
以神公地区典中组火成岩为研究对象,采集火成岩样品12件。选取顶底的DPM013TW19(英安岩)、DPM013TW25(玄武质安山岩)样品进行LAICP-MS锆石U-Pb同位素测试,测试结果见表 1。同时,对10件样品分别进行主量、微量和稀土元素测试,测试结果见表 2。
表 1 典中组火成岩LA-ICP-MS锆石U-Th-Pb测试分析结果Table 1. LA-ICP-MS zircon U-Th-Pb data of Dianzhong Formation igneous rocks测点号 Pb Th U Th/U 同位素比值 锆石年龄/Ma 含量/10-6 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ DMP013TW25玄武安山岩 1 2.44 186 183 1.01 0.0726 0.0064 0.0101 0.0002 71.2 6.1 64.7 1.4 2 3.15 252 252 1.00 0.0693 0.0033 0.0097 0.0001 68.0 3.1 62.2 0.9 3 2.01 166 161 1.03 0.0687 0.0035 0.0098 0.0001 67.5 3.3 62.9 0.8 4 2.75 240 201 1.20 0.0687 0.0042 0.0101 0.0002 67.4 4.0 64.8 1.1 5 2.59 245 195 1.26 0.0667 0.0036 0.0100 0.0001 65.5 3.4 64.3 0.8 6 3.61 327 265 1.23 0.0698 0.0038 0.0104 0.0001 68.5 3.6 66.7 0.9 7 2.60 223 192 1.16 0.0677 0.0035 0.0106 0.0001 66.5 3.4 67.7 0.9 8 2.35 216 171 1.26 0.0703 0.0043 0.0105 0.0002 69.0 4.1 67.3 1.0 9 2.37 229 178 1.29 0.0639 0.0029 0.0100 0.0001 62.9 2.7 64.2 0.7 10 2.44 208 185 1.12 0.0679 0.0030 0.0102 0.0001 66.7 2.9 65.6 0.7 11 4.89 326 395 0.83 0.0666 0.0019 0.0102 0.0001 65.5 1.8 65.5 0.5 12 2.60 213 198 1.08 0.0656 0.0026 0.0103 0.0001 64.5 2.5 66.2 0.7 13 2.21 177 169 1.05 0.0697 0.0032 0.0104 0.0001 68.4 3.1 66.4 0.8 14 2.55 205 199 1.03 0.0673 0.0029 0.0102 0.0001 66.1 2.8 65.7 0.7 15 1.82 140 143 0.98 0.0671 0.0034 0.0102 0.0001 66.0 3.2 65.6 0.8 DMP013TW19英安岩 1 11.63 856 1074 0.80 0.0591 0.0015 0.0092 0.0001 58.3 1.5 59.0 0.5 2 18.64 1742 1726 1.01 0.0591 0.0012 0.0088 0.0001 58.3 1.2 56.3 0.4 3 15.45 1287 1420 0.91 0.0605 0.0013 0.0088 0.0001 59.6 1.3 56.2 0.4 4 19.06 2034 1686 1.21 0.0586 0.0012 0.0089 0.0001 57.9 1.2 57.2 0.4 5 19.15 1776 1739 1.02 0.0596 0.0012 0.0089 0.0001 58.7 1.1 57.4 0.4 6 13.55 1345 1203 1.12 0.0609 0.0015 0.0092 0.0001 60.1 1.5 58.9 0.5 7 17.80 1486 1674 0.89 0.0576 0.0011 0.0089 0.0001 56.9 1.1 56.9 0.4 10 20.10 1553 1863 0.83 0.0623 0.0012 0.0090 0.0001 61.4 1.2 57.9 0.4 11 29.39 3774 2441 1.55 0.0594 0.0010 0.0088 0.0001 58.6 1.0 56.7 0.4 12 19.98 1744 1832 0.95 0.0600 0.0012 0.0089 0.0001 59.1 1.1 57.2 0.4 13 20.97 2026 1922 1.05 0.0574 0.0011 0.0088 0.0001 56.6 1.1 56.4 0.4 14 13.62 975 1251 0.78 0.0614 0.0015 0.0092 0.0001 60.5 1.4 59.0 0.5 16 18.79 1730 1679 1.03 0.0609 0.0013 0.0090 0.0001 60.0 1.2 57.6 0.4 18 14.83 830 1419 0.59 0.0604 0.0014 0.0092 0.0001 59.5 1.3 59.2 0.5 19 21.17 2025 1863 1.09 0.0572 0.0012 0.0091 0.0001 56.5 1.1 58.2 0.4 20 23.78 1976 2136 0.93 0.0597 0.0011 0.0090 0.0001 58.9 1.0 57.6 0.4 表 2 典中组火成岩主量、微量、稀土元素测试分析结果Table 2. Analytical results of major elements, trace elements and REE in Dianzhong Formation igneous rocks样品号 XT-01 XT-02 XT-03 XT-04 XT-05 XT-06 XT-07 XT-08 XT-09 XT-10 岩性 安山岩 流纹岩 安山岩 安山岩 安山岩 英安岩 英安岩 流纹岩 流纹岩 粗面岩 SiO2 60.58 73.97 59.57 60.72 61.36 69.08 68.45 74.13 70.28 66.57 TiO2 0.65 0.12 0.99 0.85 0.92 0.63 0.53 0.27 0.27 0.31 Al2O3 15.12 13.88 16.34 16.00 15.49 15.02 14.42 13.17 14.73 15.79 CaO 4.52 0.42 3.71 4.29 4.38 0.77 2.17 0.32 1.56 1.90 Fe2O3 2.16 0.22 5.03 3.54 3.94 2.59 0.80 1.69 1.28 1.34 FeO 3.14 1.39 2.04 2.64 2.48 1.20 3.88 0.85 1.10 2.54 Na2O 3.03 2.53 4.12 3.41 3.32 2.83 3.11 2.60 3.67 3.30 K2O 2.30 5.43 2.12 3.15 2.21 4.89 4.18 5.67 5.77 5.56 P2O5 0.43 0.20 0.25 0.25 0.25 0.19 0.14 0.11 0.08 0.11 H2O+ 1.95 1.09 0.01 1.79 0.01 2.22 1.34 0.78 0.59 0.98 CO2 0.26 0.13 0.21 0.62 0.10 0.18 0.04 0.09 0.26 0.13 总量 94.16 99.37 94.39 97.25 94.47 99.59 99.06 99.68 99.58 98.52 Na2O+K2O 5.34 7.95 6.23 6.56 5.53 7.73 7.29 8.26 9.44 8.87 K2O/Na2O 0.76 2.15 0.51 0.92 0.67 1.73 1.34 2.18 1.57 1.68 La 89.63 19.36 37.91 49.87 35.13 88.71 94.02 120.23 81.92 107.53 Ce 122.40 33.55 75.87 80.52 67.37 130.86 132.86 152.44 101.00 141.84 Pr 16.70 4.28 8.22 10.77 7.83 13.60 17.14 17.58 12.75 18.05 Nd 61.67 15.06 30.74 40.02 32.18 43.93 61.43 53.50 42.44 62.21 Sm 10.60 3.13 6.06 6.85 5.86 6.52 10.30 7.83 6.63 9.83 Eu 2.11 0.63 1.54 1.56 1.46 1.31 2.10 0.94 1.10 1.73 Gd 7.87 2.78 5.76 6.17 4.95 5.79 8.95 6.68 4.97 7.23 Tb 1.19 0.55 0.92 1.06 0.86 0.95 1.55 1.12 0.76 1.06 Dy 5.30 2.45 5.22 5.22 4.97 4.50 7.72 5.57 3.41 4.62 Ho 0.96 0.45 0.98 1.06 0.99 0.86 1.49 1.11 0.65 0.85 Er 2.62 1.10 3.06 2.91 2.94 2.52 4.21 3.19 1.86 2.47 Tm 0.42 0.21 0.49 0.49 0.46 0.42 0.69 0.54 0.31 0.41 Yb 2.56 1.08 3.33 3.13 3.07 2.61 4.12 3.41 1.94 2.74 Lu 0.38 0.16 0.48 0.43 0.44 0.37 0.56 0.48 0.27 0.38 ƩREE 324.44 84.78 180.57 210.07 168.52 302.95 347.13 374.62 260.01 360.97 LREE/HREE 14.23 8.67 7.92 9.26 8.02 15.81 10.86 15.95 17.35 17.25 δEu 0.74 0.70 0.86 0.79 0.89 0.70 0.72 0.42 0.61 0.65 (La/Yb)N 20.75 10.64 6.77 9.46 6.80 20.21 13.56 20.96 25.13 23.30 (La/Sm)N 5.28 3.87 3.91 4.55 3.75 8.50 5.70 9.60 7.72 6.84 (Gd/Yb)N 1.88 1.58 1.06 1.21 0.99 1.36 1.33 1.20 1.58 1.62 Rb 258.23 347.34 87.21 129.19 53.23 284.46 166.71 381.11 389.52 340.45 Th 40.58 17.22 14.53 14.82 12.60 45.05 23.16 79.09 65.02 55.65 U 9.01 5.68 3.61 2.73 3.52 4.77 2.58 2.81 14.78 13.62 Hf 7.10 2.83 5.02 5.78 5.60 7.89 12.66 6.89 6.73 8.37 Zr 179.44 61.98 153.13 210.97 126.79 266.02 484.43 188.95 202.28 186.32 Sr 1091.50 54.44 356.04 397.59 441.04 220.30 203.97 87.84 422.45 723.20 V 106.22 8.84 113.52 89.26 124.10 51.02 28.05 18.57 25.30 52.23 Pb 35.38 76.15 25.29 32.58 20.35 64.26 44.50 51.07 60.49 51.39 Co 19.04 0.85 15.13 8.92 17.64 6.61 4.47 2.77 2.43 4.36 Y 30.87 12.32 28.41 29.67 28.76 24.52 49.16 33.31 20.14 28.22 Nb 13.95 12.95 11.03 10.38 11.25 8.14 13.81 17.79 7.26 24.65 Tb 0.49 0.55 1.13 1.06 0.93 0.95 1.55 1.12 0.76 0.73 Zn 58.63 24.50 96.54 82.98 60.73 73.77 95.64 30.56 45.30 71.43 Sb 0.84 1.36 0.53 0.47 0.64 1.15 0.32 0.50 0.75 1.35 Ta 0.92 0.67 0.76 0.73 0.71 0.65 1.01 1.24 0.58 1.43 Rb/Sr 0.24 6.38 0.24 0.32 0.12 1.29 0.82 4.34 0.92 0.47 Nb/Ta 15.16 19.33 14.51 14.21 15.84 12.52 13.67 14.35 12.51 17.23 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 在中国地质大学地质过程与矿产资源国家重点实验室使用激光剥蚀等离子体质谱仪分析完成锆石U-Pb同位素测试,激光束直径32μm,以氦为载气,以标准锆石91500为外标进行同位素分馏校正,数据采用ICPMSDataCal10.2软件处理,详细的实验操作见Liu等[9]。主量、微量、稀土元素均在西南冶金地质测试中心完成,其中主量元素采用XRF法测定,微量、稀土元素采用ICP-MS法测定。
3. 锆石U-Pb同位素年龄
典中组底部和顶部玄武安山岩样品DPM013TW25和英安岩样品DPM013TW19的锆石特征相似,均呈无色透明、长柱状或短柱状,且自形程度较高,在CL图像上可见明显岩浆成因特征的振荡生长环带(图 3)。另外,底部样品DPM013TW25锆石的Th/U值为0.83~1.29,平均值为1.04;顶部样品DPM013TW19锆石的Th/U值为0.59~1.55,平均值为0.79(表 1),也反映了岩浆成因特征[10]。
测试结果表明,底部样品(DPM013TW25)15个测点的206Pb/238U年龄值分布于62.2~67.7Ma之间,在U-Pb谐和图(图 4-a)上,这些测点均落于谐和线上或其附近,给出的206Pb/238U年龄加权平均值为65.37±0.58Ma(2σ;MSWD=1.7),指示了典中组底部火成岩的形成时代,代表了典中组岩浆活动的起始时间,同时,也代表了林子宗火成岩最初的形成年龄。顶部样品(DPM013TW19)16个测点的206Pb/238U年龄值分布于56.2~59.2Ma之间,在UPb谐和图(图 4-b)上,这些测点均落于谐和线上或附近,给出的206Pb/238U年龄加权平均值为57.42±0.20Ma(2σ;MSWD=4.9),指示了典中组顶部火成岩的形成时代,同时也代表了典中组岩浆活动的终止时间。
4. 地球化学特征
本次研究选取研究区典中组10件火成岩样品分别进行主量、微量和稀土元素分析,测试结果见表 2。
4.1 主量元素
主量元素测试结果表明,典中组火成岩样品的SiO2含量为60.58%~74.13%,平均值为66.47%,Al2O3含量为13.17% ~15.79%,平均值为14.99%,全碱(Na2O+K2O)含量为5.35%~9.44%,平均值为7.32%,里特曼组合指数为1.63~3.34,平均值为2.33,属钙碱性系列岩石。在TAS图解(图 5-a)中,典中组火成岩样品点落入中酸性火成岩区域,位于亚碱性岩石范围;在Na2O-K2O图解(图 5-b)中,除2个样品外,其余样品点均落在钾玄岩范围。K2O/Na2O值介于0.51~2.18之间,平均值为1.35,而钾玄岩的出现被认为是大洋岩石圈俯冲结束,陆内汇聚开始的重要标志[7, 13]。总体看,研究区典中组火成岩样品与杨辉等[14]报道的西藏马乡地区和胡新伟等[6]报道的西藏措勤地区典中组火成岩类似,以钙碱性系列岩石为主,显示富碱、富硅的特征。
4.2 稀土元素
稀土元素因地球化学性质相似,在地质作用过程中往往表现为相似的地球化学行为,具有良好的成岩指示信息,而广泛应用于成岩流体性质及成岩环境分析的研究中[15]。研究区典中组10个火成岩样品的稀土元素分析结果如表 2所示。稀土元素总量(∑REE)普遍偏高,除1个样品较低(84.78×10-6)外,其余样品的∑REE值多为168.52×10-6~374.62×10-6,平均值为281.03×10-6;轻、重稀土元素比值偏大,在7.92~17.35之间,平均值为12.53,(La/Yb)N值分布在6.77~25.13之间,平均值为15.76,反映轻重稀土元素经历了较强的分馏作用,呈现轻稀土元素富集、重稀土元素相对亏损的特征。另外,(La/Sm)N值在3.75~9.60之间,(Gd/Yb)N值在0.99~1.88之间,反映LREE(轻稀土元素)相对HREE(重稀土元素)经历了更高程度的分馏作用。
从稀土元素球粒陨石标准化配分图解(图 6-a)可以看出,研究区典中组火成岩稀土元素配分曲线表现为轻稀土元素富集、重稀土元素相对亏损的右倾形态。另外,Eu具明显的负异常,δEu值分布在0.42~0.89之间,平均值为0.71,可能与岩浆结晶分异造成的斜长石析出有关[17]。典中组火成岩样品的稀土元素组成特征与区内同时期的钙碱性中酸性火成岩类似。
图 6 典中组火成岩稀土元素配分模式(a)和微量元素蛛网图(b)(原始地幔数据据参考文献[16])Figure 6. REE patterns (a) and primitive mantle-normalized trace element patterns (b) of Dianzhong Formation igneous rocks4.3 微量元素
研究区典中组10组火成岩微量元素测试结果见表 2,Sr、Zr、Hf、Ce等元素含量普遍偏高,且接近于贾建称等[18]测定的林子宗群火成岩微量元素值。Rb/Sr值在0.12~6.38之间,平均值为1.52,高于陆壳均质0.24[8],另外,Nb/Ta值在12.51~19.33之间,平均值为14.94,介于地幔标志值17.5[16]和地壳标志值11~12[19]之间,说明典中组火成岩的岩浆来源和地幔、地壳有关,可能为二者以不同比例混合的产物。典中组火成岩的微量元素原始地幔标准化蛛网图(图 6-b)与前人的研究结果相似[6, 14],表现为明显的“峰谷”特征,即Rb、Th、U、Pb等大离子亲石元素富集,Nb、Ta、Ti亏损,并呈“槽谷”形态。Nb、Ta、Ti的槽谷形态可能与俯冲碰撞环境有关[8, 20],且明显的Ti谷也说明有陆壳物质的混入。因此认为,典中组火成岩是在俯冲碰撞背景下,幔源和壳源岩浆以不同比例混合形成的。
5. 讨论
通过对典中组顶底岩浆锆石U-Pb同位素定年可知,典中组岩浆活动发生在65.37±0.58~57.42± 0.20Ma之间,与冈底斯构造带其他地区典中组火成岩测得的年龄值基本一致,表明典中组岩浆活动开始于晚白垩世,结束于古新世末,同时进一步确认林子宗群火成岩的形成时期为晚白垩世,与印度-欧亚板块开始发生碰撞的时间65/70Ma基本吻合[8]。主量元素分析表明,研究区典中组火成岩样品的里特曼组合指数平均值为2.33,属钙碱性系列岩石,TAS图解中,典中组火成岩样品基本分布在中酸性火成岩区域,位于亚碱性岩石范围,稀土元素组成特征也说明研究区典中组火成岩属钙碱性中酸性火成岩范畴,同时,K2O/Na2O值较高,平均值为1.35;在Na2O-K2O图解中,典中组火成岩样品基本落在钾玄岩范围,指示了俯冲造山的构造背景。结合前人的锶、氧同位素研究结果[6],典中组火成岩为壳源岩浆和幔源岩浆以不同比例混合的产物。大离子亲石元素Rb、Th、U、Pb的富集,Nb、Ta、Ti等元素的亏损进一步说明俯冲背景下岩浆中陆壳物质的混入。前人[6, 17]对冈底斯地区典中组火成岩形成的构造环境分析结果表明,典中组火成岩在相关图解中落入火山弧区域,指示其形成于俯冲造山的构造环境,且与古新世喜马拉雅特提斯洋壳向北大规模俯冲产生的远程效应有关。结合区域地质背景,认为典中组火成岩形成于印度-欧亚板块碰撞期间的白垩纪末—古近纪初,为俯冲构造背景下的造山带环境中幔源和壳源岩浆以不同比例混合的产物。
6. 结论
(1)冈底斯构造带神公地区典中组底部火成岩样品DPM013TW25锆石U- Pb年龄为65.37 ± 0.58Ma,顶部火成岩样品DPM013TW19锆石U-Pb年龄为57.42±0.20Ma,指示典中组火成岩形成的年龄时限为65.37~57.42Ma,限定典中组火山活动发生在白垩纪末—古近纪初,也指示了林子宗群火成岩最开始形成的时期,同时也限定了林子宗群火成岩与下伏地层之间不整合接触面的形成时间。
(2)典中组火成岩主要为一套钙碱性系列中酸性火成岩,与区内同时期火成岩类似,Rb、Th、U、Pb等大离子亲石元素富集,Nb、Ta、Ti等因亏损呈现“槽谷”形态,Rb/Sr值在0.12~6.38之间,Nb/Ta值在12.51~19.33之间,表明典中组火成岩中含有大量陆壳成分,为俯冲碰撞背景下的岛弧环境中幔源岩浆和壳源岩浆混合的产物,可能与新特提斯洋关闭引起的洋壳俯冲作用有关。
致谢: 感谢中国科学院地质与地球物理研究所朱日祥、潘永信院士在论文撰写过程中给予的意见,感谢北京大学地球与空间科学学院黄宝春教授在实验过程及数据分析过程中的指导,感谢中国地质科学院纪占胜老师及其团队的孙倩、何继富、石秋圆等同学,以及藏族向导罗布、觉阿师傅在野外采样时的指导与帮助。 -
图 11 保吉地区晚侏罗世—早白垩世地层采样剖面与AMS赤平投影图(地理坐标系)及相应地质图
(地质图中的代号、线型图例同图 1)
Figure 11. The Late Jurassic-Early Cretaceous sampling profiles, AMS stereogram (geographic coordinate system) and corresponding gelogical map in Baoji Area
-
潘桂棠, 李兴振, 王立全, 等.青藏高原及邻区大地构造单元初步划分[J].地质通报, 2002, 21(11):701-708. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2002011160&flag=1 潘裕生.青藏高原的形成与隆升[J].地学前缘, 1999, 6(3):153-163. doi: 10.3321/j.issn:1005-2321.1999.03.015 许志琴, 杨经绥, 侯增谦, 等.青藏高原大陆动力学研究若干进展[J].中国地质, 2016, 43(1):1-42. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201601001 黄汲清, 陈国铭, 陈炳蔚, 等.特提斯-喜马拉雅构造域初步分析[J].地质学报, 1984, 1(1):1-17. http://www.cnki.com.cn/Article/CJFDTotal-DZXE198401000.htm 文力, 魏鹏飞, 常华进, 等.青藏高原周边地区河流分形特征与地貌、构造活动耦合关系[J].地质通报, 2018, 37(6):965-974. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180601&flag=1 Yin A, Harrison T M. Geologic Evolution of the HimalayanTibetan Orogen[J]. Earth and Planetary Science Letters, 2000, (28):211-280.
Metcalfe I. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:1-33. doi: 10.1016/j.jseaes.2012.12.020
蒲宗文, 杨振宇, 仝亚博, 等.青藏高原东南缘保山地体上新世地壳旋转变形运动的古地磁学研究及构造意义[J].地质通报, 2018, 37(5):759-775. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180502&flag=1 Clark M K, Royden L H. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8):703. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
Chung S L, Lo C, Lee T, et al. Diachronous uplift of the Tibetan plateau starting 40 Myr ago[J]. Nature, 1998, 394:769-733. doi: 10.1038/29511
Ding L, Xu Q, Yue Y H, et al. The Andean-type Gangdese Mountains:Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392:250-264. doi: 10.1016/j.epsl.2014.01.045
Kapp P, DeCelles P G, Leier A L, et al. The Gangdese retroarc thrust belt revealed[J]. GSA Today, 2007, 17(7):4. doi: 10.1130/GSAT01707A.1
Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. GSA Bulletin, 2005, 117(7):865. doi: 10.1130/B25595.1
Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology, 1997, 25(8):719-722. doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
范建军, 李才, 王明, 等.班公湖-怒江缝合带洞错混杂岩物质组成、时代及其意义[J].地质通报, 2018, 37(8):1417-1427. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180806&flag=1 Li Y L, He J, Wang C S, et al. Cretaceous volcanic rocks in south Qiangtang Terrane:Products of northward subduction of the Bangong-Nujiang Ocean?[J]. Journal of Asian Earth Sciences, 2015, 104:69-83. doi: 10.1016/j.jseaes.2014.09.033
Song P P, Ding L, Li Z Y, et al. Late Triassic paleolatitude of the Qiangtang block:Implications for the closure of the Paleo-Tethys Ocean[J]. Earth and Planetary Science Letters, 2015, 424:69-83. doi: 10.1016/j.epsl.2015.05.020
Song P P, Ding L, Li Z Y, et al. An early bird from Gondwana:Paleomagnetism of Lower Permian lavas from northern Qiangtang (Tibet) and the geography of the Paleo-Tethys[J]. Earth and Planetary Science Letters, 2017, 475:119-133. doi: 10.1016/j.epsl.2017.07.023
Huang Q T, Liu W L, Xia B, et al. Petrogenesis of the Majiari ophiolite (western Tibet, China):Implications for intra-oceanic subduction in the Bangong-Nujiang Tethys[J]. Journal of Asian Earth Sciences, 2017, 146:337-351. doi: 10.1016/j.jseaes.2017.06.008
Zhu D C, Wang Q, Zhao Z D, et al. Magmatic record of IndiaAsia collision[J]. Scientific Reports, 2015, 5(1):14289. doi: 10.1038/srep14289
Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. GSA Bulletin, 2007, 119(7/8):917-933. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d5fa47df1c2238edd961f9c8cbdf6ac
Liu W L, Xia B, Zhong Y, et al. Age and composition of the Rebang Co and Julu ophiolites, central Tibet:implications for the evolution of the Bangong Meso-Tethys[J]. International Geology Review, 2014, 56(4):430-447. doi: 10.1080/00206814.2013.873356
Huang T T, Xu J F, Chen J L, et al. Sedimentary record of Jurassic northward subduction of the Bangong-Nujiang Ocean:insights from detrital zircons[J]. International Geology Review, 2016, 59(2):166-184. http://cn.bing.com/academic/profile?id=af41d243151e46798826fd133337322a&encoded=0&v=paper_preview&mkt=zh-cn
Li J X, Qin K Z, Li G M, et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet:Petrogenetic and tectonic implications[J]. Lithos, 2014, 198/199:77-91. doi: 10.1016/j.lithos.2014.03.025
Chen W W, Zhang S H, Ding J, et al. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane, central Tibet[J]. Gondwana Research, 2017, 41:373-389. doi: 10.1016/j.gr.2015.07.004
Zhang K J, Xia B, Zhang Y X, et al. Central Tibetan MesoTethyan oceanic plateau[J]. Lithos, 2014, 210/211:278-288. doi: 10.1016/j.lithos.2014.09.004
Liu D L, Huang Q S, Fan S Q, et al. Subduction of the BangongNujiang Ocean:constraints from granites in the Bangong Co area, Tibet[J]. Geological Journal, 2014, 49(2):188-206. doi: 10.1002/gj.v49.2
Zhang K J, Zhang Y X, Tang X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the IndoAsian collision[J]. Earth-Science Reviews, 2012, 114(3/4):236-249.
Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14. doi: 10.1016/j.jseaes.2011.12.018
Yan M D, Zhang D W, Fang X M, et al. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block:Implications for the evolution of the Paleo- and Meso-Tethys[J]. Gondwana Research, 2016, 39:292-316. doi: 10.1016/j.gr.2016.01.012
Yang Y T, Guo Z X, Luo Y J. Middle-Late Jurassic tectonostratigraphic evolution of Central Asia, implications for the collision of the Karakoram-Lhasa Block with Asia[J]. EarthScience Reviews, 2017, 166:83-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7389f5baf00f239d925ff8249aaf1f0
李超, 肖传桃, 龚文平, 等.班公湖-怒江缝合带中段构造演化再探讨[J].长江大学学报(自然科学版), 2011, 8(3):41-43. http://d.old.wanfangdata.com.cn/Periodical/cjdxxb-rkxb201103014 仲昭, 纪占胜, 武桂春, 等.西藏班戈县保吉乡纳木错西下石炭统珊瑚动物群的发现及其意义[J].地质论评, 2017, 63(增刊):349-350. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9146506 刘振宇, 贾海明, 黄维平, 等.西藏1:5万班戈县西南地区四幅区调成果与展望[J].中国地质调查, 2015, 2(7):8-12. http://d.old.wanfangdata.com.cn/Periodical/xzyj201503017 孙倩, 纪占胜, 廖卫华, 等.西藏班戈县保吉地区萨波直不勒组珊瑚化石的发现及其意义[J].地质论评, 2017, 63(S1):323-324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9146510 孟亚洲, 纪占胜, 廖卫华, 等.西藏保吉地区晚侏罗世珊瑚动物群的发现及其意义[J].地质学报, 2016, 90(5):833-847. doi: 10.3969/j.issn.0001-5717.2016.05.001 孟亚洲, 纪占胜, 姚建新, 等.西藏班戈县扎穷地区古生界混杂岩块中发现中生代化石[J].地质学报, 2017, 91(4):812-821. doi: 10.3969/j.issn.0001-5717.2017.04.008 梁寿生, 夏金宝.藏北班戈地区海相白垩系[J].青藏高原地质文集, 1983, 3(6):181-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001808476 武桂春, 纪占胜, 姚建新, 等.纳木错西岸白云岩的时代修订及油浸现象发现的意义[J].地质学报, 2017, 8(12):2865-2879. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201712020 陈国荣, 陈玉禄, 张宽忠, 等.班戈县幅地质调查新成果及主要进展[J].地质通报, 2004, 23(5):520-524. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20040593&flag=1 Hrouda F E. Magnetic anisotropy of rocks and its application in geology and geophysics[J]. Geophysical Surveys, 1982, 5(1):37-82. doi: 10.1007/BF01450244
Somma R. The south-western side of the Calabrian Arc (Peloritani Mountains):Geological, structural and AMS evidence for passive clockwise rotations[J]. Journal of Geodynamics, 2006, 41(4):422-439. doi: 10.1016/j.jog.2005.11.001
Jackson M, Taux L. Anisotropy of Magnetic Susceptibility and Remanence:Developments in the Characterization of Tectonic, Sedimentary and Igneous Fabric[J]. Reviews of Geophysics, 1991, 29(S1):371-376. doi: 10.1002/rog.1991.29.issue-s1
潘永信, 朱日祥.磁组构研究现状[J].地球物理学进展, 1998, 13(1):53-60. http://cdmd.cnki.com.cn/Article/CDMD-11415-1013265919.htm 王中蛟, 李学森.岩石磁各向异性分析及在构造地质学中的应用[J].云南地质, 2013, 32(1):106-109. doi: 10.3969/j.issn.1004-1885.2013.01.028 王开, 贾东, 罗良, 等.磁组构与构造变形[J].地球物理学报, 2017, 60(3):1007-1026. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201302019 罗良, 贾东, 陈竹新, 等.川西北磁组构演化及其揭示的应变特征[J].地质通报, 2006, 25(11):1342-1348. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2006011232&flag=1 Pueyo Anchuela Ó, Pueyo E L, Pocoví Juan A, et al. Vertical axis rotations in fold and thrust belts:Comparison of AMS and paleomagnetic data in the Western External Sierras (Southern Pyrenees)[J]. Tectonophysics, 2012, 532/535:119-133. doi: 10.1016/j.tecto.2012.01.023
Royden L H, B Clark B, Hilst R D. The Geological Evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892):1054-1058. doi: 10.1126/science.1155371
Bakhtari H R, Frizon De Lamotte D, Aubourg C, et al. Magnetic fabrics of Tertiary sandstones from the Arc of Fars (Eastern Zagros, Iran)[J]. Tectonophysics, 1998, 284(3/4):299-316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6186492ae466351b69358b25d7177b6c
Borradaile G J, Henry B. Tectonic applications of magnetic susceptibility and its anisotropy[J]. Earth-Science Reviews, 1997, 42(1):49-93. doi: 10.1016-S0012-8252(96)00044-X/
Parés J M, Pluijm B A V D, Dinarèsturell J. Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain)[J]. Tectonophysics, 1999, 307(1):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b13c318ca7871ead49856d73ab625dc2
Flinn D. The deformation matrix and the deformation ellipsoid[J]. Journal of Structural Geology, 1979, 1(4):299-307. doi: 10.1016/0191-8141(79)90004-X
Jelinek V. Characterization of the magnetic fabric of rocks[J]. Tectonophysics, 1981, 79(3):63-67. doi: 10.1016-0040-1951(81)90110-4/
Woodcock N H. Specification of fabric shapes using aneigenvalue method[J]. GSA Bulletin, 1977, 88(9):1231. doi: 10.1130/0016-7606(1977)88<1231:SOFSUA>2.0.CO;2
Ran B, Wang C S, Zhao X X, et al. New paleomagnetic results of the early Permian in the Xainza area, Tibetan Plateau and their paleogeographical implications[J]. Gondwana Research, 2012, 22(2):447-460. doi: 10.1016/j.gr.2011.11.014
Zhou Y N, Cheng X, Yu L, et al. Paleomagnetic study on the Triassic rocks from the Lhasa Terrane, Tibet, and its paleogeographic implications[J]. Journal of Asian Earth Sciences, 2016, 121:108-119. doi: 10.1016/j.jseaes.2016.02.006
中国地质科学院地质力学研究所.中华人民共和国1: 25万区域地质调查报告(当雄县幅). 2003. -
期刊类型引用(5)
1. 黄永高,韩飞,康志强,冯佐海,李应栩,李光明. 西藏南木林盆地林子宗群火山岩年代学和地球化学特征. 地球科学. 2024(03): 822-836 . 百度学术
2. 吴浩,徐祖阳,严维兵,郝宇杰,刘海永. 西藏中部聂尔错地区辉绿岩锆石U-Pb年龄与地球化学特征:对新特提斯洋板片断离的指示. 中国地质. 2023(06): 1804-1816 . 百度学术
3. 曾成,闫茂强,沈志远,高强,魏俊浩,毛国正,邓永明. 西藏谢通门县切琼地区典中组流纹岩锆石U-Pb年龄、Hf同位素及地球化学特征. 大地构造与成矿学. 2022(01): 154-174 . 百度学术
4. 周鹏,荣峰,周连河,刘恭喜,范源,万忠焱,尼玛洛卓. 冈底斯中段格达地区典中组火山岩锆石 U-Pb年龄和地球化学特征. 中国地质调查. 2022(03): 76-86 . 百度学术
5. 王元青,李茜,白滨,张兆群,徐冉成,王晓阳,张欣玥. 中国古近纪岩石地层划分和对比. 地层学杂志. 2021(03): 402-425 . 百度学术
其他类型引用(1)