• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

西藏班公湖-怒江缝合带西段去申拉组泥质硅质岩的发现及其地质意义

刘文, 尹显科, 吴建亮, 雷传扬, 王波, 尹滔, 李威, 袁华云, 张伟, 裴亚伦

刘文, 尹显科, 吴建亮, 雷传扬, 王波, 尹滔, 李威, 袁华云, 张伟, 裴亚伦. 2019: 西藏班公湖-怒江缝合带西段去申拉组泥质硅质岩的发现及其地质意义. 地质通报, 38(4): 484-493.
引用本文: 刘文, 尹显科, 吴建亮, 雷传扬, 王波, 尹滔, 李威, 袁华云, 张伟, 裴亚伦. 2019: 西藏班公湖-怒江缝合带西段去申拉组泥质硅质岩的发现及其地质意义. 地质通报, 38(4): 484-493.
LIU Wen, YIN Xianke, WU Jianliang, LEI Chuanyang, WANG Bo, YIN Tao, LI Wei, YUAN Huayun, ZHANG Wei, PEI Yalun. 2019: The discovery of Qushenla Formation argillaceous cherts in the western part of the Bangong Co-Nujiang suture zone, Tibet and its significance. Geological Bulletin of China, 38(4): 484-493.
Citation: LIU Wen, YIN Xianke, WU Jianliang, LEI Chuanyang, WANG Bo, YIN Tao, LI Wei, YUAN Huayun, ZHANG Wei, PEI Yalun. 2019: The discovery of Qushenla Formation argillaceous cherts in the western part of the Bangong Co-Nujiang suture zone, Tibet and its significance. Geological Bulletin of China, 38(4): 484-493.

西藏班公湖-怒江缝合带西段去申拉组泥质硅质岩的发现及其地质意义

基金项目: 

中国地质调查局项目《班公湖-怒江成矿带铜多金属矿产资源基地调查》 DD20160026

详细信息
    作者简介:

    刘文(1990-), 男, 硕士, 工程师, 从事区域地质、矿产地质调查工作。E-mail:liuwen2009.hi@163.com

  • 中图分类号: P595

The discovery of Qushenla Formation argillaceous cherts in the western part of the Bangong Co-Nujiang suture zone, Tibet and its significance

  • 摘要:

    首次在班公湖-怒江缝合带西段去申拉组中发现了泥质硅质岩,呈2个层位产出。为探讨泥质硅质岩的沉积环境、成因及与班-怒特提斯洋西段构造演化的关系,进行岩石学和地球化学分析,结果显示,第一层位泥质硅质岩Al2O3/(Al2O3+Fe2O3)、Ce/Ce*、(La/Ce)N、V/(Ni+V)、Ce/La、Ceanom、Euanom平均值分别为0.60、0.80、1.24、0.72、1.84、-0.08、0.01,第二层位泥质硅质岩相应比值平均值分别为0.65、0.83、1.16、0.77、1.97、-0.07、0.02。结合泥质硅质岩的Fe2O3/TiO2-Al2O3/(Al2O3+Fe2O3)、(La/Ce)N-Al2O3/(Al2O3+Fe2O3)、Hf/3-Th-Ta关系图解,表明第一、二层位泥质硅质岩形成于活动大陆边缘,沉积时水-岩界面为水体分层不强烈的厌氧环境。U-Th、Zn-Ni-Co、La-Ce、La/Yb-REE关系图解和稀土元素特征指示了第一、二层位泥质硅质岩为热水成因,热水活动与玄武岩岩浆活动有关,第二层位泥质硅质岩沉积时热水活动更强烈。去申拉组泥质硅质岩的岩石学、地球化学特征表明,狮泉河地区班-怒特提斯洋至少在早白垩世仍具有一定规模的洋盆,其闭合时间应晚于约109Ma,进一步限定了洋盆的闭合时间。

    Abstract:

    The Qushenla Formation argillaceous cherts, which occur along two horizons, were found for the first time in the western part of the Bangong Co-Nujiang suture. In order to discuss depositional environment and origin of argillaceous cherts and infer the closure of the western part of Bangong Co-Nujiang Tethys Ocean, the authors made a systematic analysis of petrology and geochemistry of argillaceous cherts in this study. The ratios of Al2O3/(Al2O3+Fe2O3), Ce/Ce*, (La/Ce)N, V/(Ni+V), Ce/La, Ceanom, Euanom of argillaceous cherts in the first horizon are 0.60, 0.80, 1.24, 0.72, 1.84, -0.08, 0.01 respectively, while their ratios in the second horizon are 0.65, 0.83, 1.16, 0.77, 1.97, -0.07, 0.02 respectively. Considering the diagrams of Fe2O3/TiO2 vs. Al2O3/(Al2O3+ Fe2O3), (La/Ce)N vs. Al2O3/(Al2O3 + Fe2O3) and Hf/3-Th-Ta, the authors hold that these characteristics indicate that all of argillaceous cherts tended to occur in an active continental margin setting and an anoxic environment. The diagrams of U-Th, ZnNi-Co, La-Ce and La/Yb-REE and the characteristics of REE demonstrates that the argillaceous cherts of the two horizons originated from hydrothermal sediments, closely related to basalt magmatism event, and the activities of hot water might have been more pronounced in the second horizon. These data provide petrologic and geochemical evidence for the evolution of Bangong CoNujiang Tethys Ocean. In Shiquanhe area there might have existed a certain scale ocean basin in the Early Cretaceous, which was closed at a time later than 109Ma.

  • 致谢: 在野外地质调查和样品采集过程中,项目组成员提供了极大的帮助,审稿专家提出了建设性意见,在此表示衷心的感谢。
  • 图  1   研究区大地构造位置(a)[14]及地质图(b)

    (据参考文献修改)
    ①-昆仑缝合带; ②-金沙江缝合带; ③-双湖缝合带; ④-班公湖-怒江缝合带; ⑤-雅鲁藏布江缝合带; 1-第四系; 2-牛堡组; 3-竟柱山组; 4-郎山组; 5-去申拉组; 6-沙木罗组; 7-聂尔错岩群; 8-晚白垩世花岗岩; 9-早白垩世花岗闪长岩; 10-早白垩世闪长岩; 11-湖泊; 12-平行不整合; 13-角度不整合界线; 14-区域性断裂; 15-一般断裂; 16-性质不明断层; 17-平移断层; 18-实测剖面及采样位置

    Figure  1.   Simplified tectonic map (a) and geological map (b) of the study area

    图  2   岩性柱状图、野外露头与显微镜下照片

    a-玄武质火山角砾岩; b-玄武岩与泥质硅质岩整合接触; c-泥质硅质岩; d-泥质硅质岩镜下照片(正交偏光); 1-砾岩; 2-泥质硅质岩; 3-玄武岩; 4-玄武质凝灰岩; 5-玄武质火山角砾岩; 6-板岩; 7-粉砂质板岩; 8-第一层位泥质硅质岩; 9-第二层位泥质硅质岩

    Figure  2.   The column, outcrops and characteristics of rocks under microscope

    图  3   泥质硅质岩稀土元素配分曲线

    Figure  3.   NASC-normalized REE patterns of argillaceous cherts

    图  4   泥质硅质岩Al2O3/(Al2O3+Fe2O3)-Fe2O3/TiO2(a)与Al2O3/(Al2O3+ Fe2O3)-(La/Ce)N(b)图解

    (底图据参考文献[13])

    Figure  4.   Plots of Fe2O3/TiO2 versus Al2O3/(Al2O3+ Fe2O3) (a)and (La/Ce)N versus Al2O3/(Al2O3+ Fe2O3)(b)of argillaceous cherts

    图  5   泥质硅质岩Hf/3-Th-Ta三角图解

    (底图据参考文献[19])
    CAB—钙碱性岩;IAT—初生拉斑玄武岩;N-MORE—N型洋脊玄武岩;E-MORE+WPT—E型洋脊玄武岩+板内拉斑玄武岩;WPAB—板内碱性玄武岩

    Figure  5.   Plots of Hf/3-Th-Ta of argillaceous cherts

    图  6   泥质硅质岩Th-U关系图解

    (底图据参考文献[26])
    Ⅰ—TAG热水沉积区;Ⅱ—Galapagos热水沉积物区;Ⅲ—Amphittite热水沉积物区;Ⅳ—红海海水沉积物区;Ⅴ—中太平洋中脊热水沉积物区;Ⅵ—Langban热水沉积物区;Ⅶ—锰结核区;Ⅷ—普通深海沉积物区;Ⅸ—铝土矿区;Ⅹ—古老石化的热水沉积物区

    Figure  6.   Plots of Th-U of argillaceous cherts

    图  7   泥质硅质岩Zn-Ni-Co(a)与Ce-La(b)图解

    (a底图据参考文献[28];b底图据参考文献[29-30])

    Figure  7.   Plots of Zn-Ni-Co (a) and La-Ce (b) of argillaceous cherts

    图  8   泥质硅质岩Ce/La-La/Yb(a)与REE-La/Yb(b)图解

    (a底图据参考文献[31];b底图据参考文献[32])
    Ⅰ—深海沉积物;Ⅱ—铁锰结核及铁镁岩;Ⅲ—海相玄武岩;1—球粒陨石;2—大洋拉斑玄武岩;3—大陆拉斑玄武岩;4—碱性玄武岩;5—花岗岩;6—金伯利岩;7—碳酸盐岩;8—沉积岩

    Figure  8.   Plots of Ce/La-La/Yb (a) and REE-La/Yb (b) of argillaceous cherts

    表  1   研究区泥质硅质岩主量、微量和稀土元素分析结果

    Table  1   Analyses of main elements, trace elements and REE of argillaceous cherts in the study area

    样品号 PM9-1 PM9-2 PM9-3 PM9-4 PM9-5 PM9-6 PM9-7 PM9-8 PM9-9 PM9-10
    岩性 泥质桂质岩(第一层位) 泥质硅质岩(第二层位)
    Al2O3 7.03 10.32 7.85 8.34 8.44 9.34 10.42 10.50 13.30 8.47
    BaO < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.02 0.01 0.01
    CaO 1.24 1.8 1.88 2.29 2.51 4.69 0.49 1.18 3.37 0.60
    Cr2O3 0.01 0.01 0.01 0.01 0.01 0.01 < 0.01 0.01 0.02 0.01
    TFe2O3 4.65 5.95 5.43 5.57 6.34 5.92 4.13 4.60 9.37 4.91
    K2O 0.35 0.98 0.17 0.18 0.13 0.05 0.38 1.93 0.40 0.72
    MgO 1.93 2.78 2.22 2.66 2.71 2.85 1.56 1.98 4.77 2.35
    MnO 0.10 0.13 0.10 0.10 0.12 0.12 0.08 0.14 0.18 0.15
    Na2O 1.89 2.50 1.84 2.01 1.64 1.41 4.13 1.79 2.66 2.48
    P2O5 0.18 0.09 0.05 0.09 0.06 0.05 0.04 0.08 0.05 0.05
    SiO2 80.49 72.65 78.69 76.93 75.62 73.70 77.08 74.49 62.78 78.13
    SO3 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.03 < 0.01
    SrO 0.02 0.02 0.04 0.04 0.05 0.02 0.01 0.01 0.05 0.01
    TiO2 0.32 0.43 0.29 0.33 0.34 0.33 0.30 0.39 0.43 0.32
    烧失量 1.5 2.25 1.73 1.85 1.97 1.67 1.64 2.82 3.42 1.98
    Ag 0.01 0.07 0.02 0.03 < 0.01 0.03 < 0.01 0.01 0.02 0.04
    As 1.4 8.6 3.5 3.6 2.2 15.3 3.2 13.9 19.4 0.6
    Ba 60 170 40 30 30 10 80 170 40 120
    Co 10.8 13.7 13.3 15.6 16.4 11.2 6.7 7.3 20.6 14.6
    Mo 0.64 0.45 1.25 0.67 0.56 0.78 0.28 0.13 0.31 0.40
    Ni 38.4 50.4 37.7 45.2 44.6 32.5 20.8 21.4 43.3 40.7
    Pb 9.0 8.8 8.9 14.6 7.0 488.0 1.7 6.2 8.5 8.6
    Sb 0.40 0.83 < 0.05 < 0.05 0.69 0.51 0.58 0.84 1.74 0.22
    Sc 10.2 15.9 14.5 14.3 17.0 19.5 12.4 14.5 36.6 13.6
    Sr 185.0 206.0 343.0 403.0 477.0 193.0 71.3 48.9 450.0 106.0
    U 0.8 1.0 0.5 0.6 0.7 0.4 0.4 0.8 0.5 0.7
    W 0.7 0.5 0.4 0.5 0.5 0.3 0.4 1.0 0.5 0.6
    Zn 50 67 58 61 65 57 20 59 94 59
    Hf 1.6 2.3 1.2 1.6 1.7 1.2 2.3 2.4 1.3 1.4
    Th 4.41 5.53 3.35 3.79 4.23 2.27 2.55 3.58 1.60 3.60
    Ta 0.36 0.45 0.26 0.31 0.33 0.16 0.17 0.20 0.13 0.26
    V 88 140 100 122 113 117 64 67 231 110
    La 17.7 19.5 11.6 16.3 15.3 8.0 10.8 12.8 6.3 12.2
    Ce 32.1 36.7 21.2 27.8 29.9 14.9 21.6 26.7 12.0 24.3
    Pr 4.42 4.93 3.13 3.66 3.69 2.11 2.80 3.52 1.73 3.12
    Nd 16.6 18.2 11.4 14.0 14.1 8.6 10.8 14.1 7.1 11.6
    Sm 3.35 3.75 2.33 2.84 2.82 2.06 2.45 3.31 1.99 2.42
    Eu 0.72 0.80 0.61 0.75 0.67 0.57 0.54 0.80 0.60 0.58
    Gd 3.39 3.77 2.50 2.96 2.92 2.39 2.91 3.39 2.62 2.51
    Tb 0.52 0.58 0.38 0.49 0.47 0.41 0.49 0.57 0.48 0.39
    Dy 3.11 3.50 2.40 2.96 2.84 2.68 2.98 3.48 3.10 2.37
    Ho 0.67 0.74 0.50 0.62 0.59 0.60 0.66 0.75 0.70 0.51
    Er 1.86 2.13 1.52 1.79 1.81 1.81 2.07 2.33 2.12 1.52
    Tm 0.27 0.31 0.22 0.26 0.25 0.26 0.30 0.34 0.33 0.23
    Yb 1.83 2.12 1.53 1.85 1.81 1.93 2.19 2.51 2.36 1.52
    Lu 0.26 0.31 0.23 0.28 0.26 0.28 0.34 0.39 0.36 0.23
    ΣREE 86.80 97.34 59.55 76.56 77.43 46.60 60.93 74.99 41.79 63.50
    Al/(Al+Fe) 0.60 0.63 0.59 0.60 0.57 0.61 0.72 0.70 0.59 0.63
    Fe/Ti 14.53 13.84 18.72 16.88 18.65 17.94 13.77 11.79 21.79 15.34
    V/(Ni+V) 0.70 0.74 0.73 0.73 0.72 0.78 0.75 0.76 0.84 0.73
    Ce/Ce* 0.79 0.82 0.77 0.78 0.87 0.79 0.86 0.87 0.79 0.86
    Eu/Eu* 0.94 0.93 1.11 1.13 1.02 1.12 0.88 1.05 1.13 1.03
    (La/Ce)N 1.26 1.21 1.25 1.34 1.17 1.22 1.14 1.09 1.20 1.15
    (La/Yb)N 0.94 0.89 0.73 0.85 0.82 0.40 0.48 0.49 0.26 0.78
    Ceanom -0.09 -0.07 -0.09 -0.10 -0.05 -0.09 -0.05 -0.05 -0.09 -0.05
    Euanom -0.03 -0.03 0.04 0.05 0.01 0.05 -0.06 0.02 0.05 0.01
    注:北美页岩数据据参考文献[15], Al/(Al+Fe)=Al2O3/(Al2O3+Fe2O3), Fe/Ti=Fe2O3/TiO2, Ce/Ce*=2CeN/(LaN+PrN), Eu/Eu*=2EuN/(SmN+GdN), Ceanom=log[3CeN/(2LaN+NdN)], Euanom=log[2EuN/(SmN+GdN)], 其中下角标N为北美页岩标准化; 主量元素含量单位为%, 微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • 曲晓明, 王瑞江, 辛洪波, 等.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学[J].地球化学, 2009, 38(6):523-535. doi: 10.3321/j.issn:0379-1726.2009.06.002
    潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001

    Chen S S, Shi R D, Zou H B, et al. Late Triassic island-arc-backarc basin development along the Bangong-Nujiang suture zone (central Tibet):Geological, geochemical and chronological evidence from volcanic rocks[J]. Lithos, 2015, 230:30-45. doi: 10.1016/j.lithos.2015.05.009

    Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002

    邱瑞照, 周肃, 邓晋福, 等.西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代[J].中国地质, 2004, 31(3):262-268. doi: 10.3969/j.issn.1000-3657.2004.03.004
    杜德道, 曲晓明, 王根厚, 等.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J].岩石学报, 2011, 27(7):1993-2002. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107008
    曲晓明, 辛洪波, 赵元艺, 等.西藏班公湖中特提斯洋盆的打开时间:镁铁质蛇绿岩地球化学与锆石U-Pb LA-ICP-MS定年结果[J].地学前缘, 2010, 17(3):53-63. http://d.old.wanfangdata.com.cn/Periodical/dxqy201003005

    Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22(4):253. doi: 10.1029-2001TC001332/

    徐梦婧, 李才, 吴彦旺, 等.西藏果芒错蛇绿混杂岩中硅质岩的地球化学特征及其形成环境[J].地质通报, 2014, 33(7):1061-1066. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20140713&flag=1
    李硕, 宋亮, 崔玉斌, 等.西藏班公湖-怒江成矿带中段南侧硅质岩地质地球化学特征[J].矿床地质, 2010, 29(S1):1103-1104. http://d.old.wanfangdata.com.cn/Conference/7412981
    冯彩霞.班公湖-怒江缝合带西段改则硅质岩地球化学特征及沉积环境[J].矿床地质, 2011, 30(5):773-786. doi: 10.3969/j.issn.0258-7106.2011.05.002
    雷卞军, 阙洪培, 胡宁, 等.鄂西古生代硅质岩的地球化学特征及沉积环境[J].沉积与特提斯地质, 2002, 22(2):70-79. doi: 10.3969/j.issn.1009-3850.2002.02.010

    Murray R W. Chemical criteria to identify the depositional environment of chert:general principles and applications[J]. Sedimentary Geology, 1994, 90(3/4):213-232. doi: 10.1016-0037-0738(94)90039-6/

    Zhang K J, Xia B D, Wang G M, et al. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 2004, 116(9):1202-1221. doi: 10.1130/B25388.1

    Haskin M A, Haskin L A. Rare Earths in European Shales:A Redetermination[J]. Science, 1966, 154(3748):507-509. http://cn.bing.com/academic/profile?id=6a28f27ba593abe779849234a7e91c71&encoded=0&v=paper_preview&mkt=zh-cn

    Hans W K. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7):1217-1232. doi: 10.1016/0016-7037(95)00038-2

    李胜荣, 高振敏.湘黔地区牛蹄塘组黑色岩系稀土特征——兼论海相热水沉积岩稀土模式[J].矿物学报, 1995, 15(2):225-229. doi: 10.3321/j.issn:1000-4734.1995.02.017
    高振敏, 罗泰义, 李胜荣.黑色岩系中贵金属富集层的成因:来自固定铵的佐证[J].地质地球化学, 1997, (1):18-23.

    Quinby-Hunt M S, Wilde P. The provenance of low-calcic black shales[J]. Mineralium Deposita, 1991, 26(2):113-121. http://cn.bing.com/academic/profile?id=96297d4b60c9fb9aef506da55cba889c&encoded=0&v=paper_preview&mkt=zh-cn

    Murray R W, Buchholtz Ten Brink M R, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology, 1990, 18(3):268-271. doi: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2

    Murray R W, Tenbrink M, Russ G P. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California:Assessing REE sources to fine-grained marine sediments[J]. Geochimica et Cosmochimica Acta, 1991, 55(7):1875-1895. doi: 10.1016/0016-7037(91)90030-9

    Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/3):65-82. http://cn.bing.com/academic/profile?id=4c8572403a4ff1558aa9a3b3b8287c1d&encoded=0&v=paper_preview&mkt=zh-cn

    赵百胜, 刘家军, 王建平, 等.白云鄂博群黑色岩系微量元素地球化学特征及地质意义[J].现代地质, 2007, 21(1):87-94. doi: 10.3969/j.issn.1000-8527.2007.01.010

    Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296(5854):214-219. doi: 10.1038/296214a0

    Wilde P, Erdtmann B D. The whole-rock cerium anomaly:A potential indicator of eustatic sea-level changes in shales of the anoxic facies[J]. Sedimentary Geology, 1996, 101(1/2):43-53. doi: 10.1016-0037-0738(95)00020-8/

    Bostroem K, Rydell H, Joensuu O, et al. Langban:an exhalative sedimentary deposit?[J]. Economic Geology, 1979, 74:1002-1011. doi: 10.2113/gsecongeo.74.5.1002

    Hogdahl O T. Neutron Activation Analysis of Lanthanide Elements in Sea Water[J]. Advance in Chemistry, 1968, 73:308-325. doi: 10.1021/advances

    Choi J H, Hariya Y. Geochemistry and depositional environment of Mn oxide deposits in the Tokoro Belt, northeastern Hokkaido, Japan[J]. Economic Geology, 1992, 87(5):1265-1274. doi: 10.2113/gsecongeo.87.5.1265

    Nagender Nath B, Pluger W L, Roelandts I. Geochemical constraints on the hydrothermal origin of ferromanganese encrustations from the Rodriguez Triple Junction, Indian Ocean[J]. Geological Society of London, 1997, 119:199-211. doi: 10.1144/GSL.SP.1997.119.01.13

    Toth J R. Deposition of submarine crusts rich in manganese and iron[J]. Geological Society of America Bulletin, 1980, 91(1):44-54. doi: 10.1130/0016-7606(1980)91<44:DOSCRI>2.0.CO;2

    Kunzendorf H, Stoffers P, Gwozdz R. Regional variations of REE patterns in sediments from active plate boundaries[J]. Marine Geology, 1988, 84(3/4):191-199. doi: 10.1016-0025-3227(88)90100-4/

    Allègre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth & Planetary Science Letters, 1978, 38(1):1-25. http://cn.bing.com/academic/profile?id=e88d81a7f1827807ccac5a71e233c673&encoded=0&v=paper_preview&mkt=zh-cn

    曹圣华, 罗小川, 唐峰林, 等.班公湖-怒江结合带南侧弧-盆系时空结构与演化特征[J].中国地质, 2004, 31(1):51-56. doi: 10.3969/j.issn.1000-3657.2004.01.007
    卢书炜, 任建德, 杜凤军, 等.从尼玛地区地质新资料看中特提斯洋的构造演化[J].沉积与特提斯地质, 2003, 23(3):35-39. doi: 10.3969/j.issn.1009-3850.2003.03.004
    许志琴, 杨经绥, 李海兵, 等.青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力[J].中国地质, 2006, 33(2):221-238. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602001
    李光明, 冯孝良, 黄志英, 等.西藏冈底斯构造带中段多岛弧-盆系及其演化[J].沉积与特提斯地质, 2000, (4):38-46. doi: 10.3969/j.issn.1009-3850.2000.04.004
    莫宣学, 潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束[J].地学前缘, 2006, 13(6):43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007
    尹安.喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长[J].地球学报, 2001, 22(3):193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001
    范建军, 李才, 胡培远, 等.西藏改则地区仲岗洋岛的特征——兼论班公湖-怒江缝合带的闭合时限[C]//广州: 全国岩石学与地球动力学研讨会, 2013: 475-476.

    Fan J J, Li C, Xie C M, et al. The evolution of the BangongNujiang Neo-Tethys ocean:Evidence from zircon U-Pb and LuHf isotopic analyses of Early Cretaceous oceanic islands and ophiolites[J]. Tectonophysics, 2015, 655:27-40. doi: 10.1016/j.tecto.2015.04.019

    朱弟成, 潘桂棠, 莫宣学, 等.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J].地质学报, 2006, 80(9):1312-1328. doi: 10.3321/j.issn:0001-5717.2006.09.008

    Bao P S, Xiao X C, Su L, et al. Geochemical characteristics and isotopic dating for the Dongcuo ophiolite, Tibet Plateau[J]. Science China Earth Sciences, 2007, 50(5):660-671. doi: 10.1007/s11430-007-0045-5

    范建军.班公湖-怒江洋中西段晚中生代汇聚消亡时空重建[D].吉林大学博士学位论文, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016084526.htm
    陈国荣, 刘鸿飞, 蒋光武, 等.西藏班公湖-怒江结合带中段沙木罗组的发现[J].地质通报, 2004, 23(2):193-194. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20040232&flag=1

    Wu H, Li C, Xu M J, et al. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 2015, 97:51-66. doi: 10.1016/j.jseaes.2014.10.014

    吴浩, 李才, 胡培远, 等.藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义[J].地质通报, 2014, 33(11):1804-1814. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20141116&flag=1
    杜德道.西藏班公湖-怒江缝合带(中段和西段)的花岗岩地球化学特征及其构造环境[D].中国地质大学(北京)硕士学位论文, 2012. http://cdmd.cnki.com.cn/Article/CDMD-11415-1012364864.htm
    孙立新.班公湖-怒江缝合带中段晚侏罗世-白垩纪碰撞作用的沉积响应[D].中国地质大学(北京)博士学位论文, 2005. http://cdmd.cnki.com.cn/article/cdmd-11415-2005102549.htm

    Wang W L, Aitchison J C, Lo C H, et al. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet[J]. Journal of Asian Earth Sciences, 2008, 33(1/2):122-138.

    王保弟, 许继峰, 曾庆高, 等.西藏改则地区拉果错蛇绿岩地球化学特征及成因[J].岩石学报, 2007, 23(6):1521-1530. doi: 10.3969/j.issn.1000-0569.2007.06.026
    李金祥, 李光明, 秦克章, 等.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报, 2008, 24(3):531-543. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803013
    王艺云, 唐菊兴, 胡为正, 等.西藏日土白垩纪酸性侵入岩年代学及地球化学特征——对班公湖-怒江中特提斯洋盆闭合时限的制约[J].成都理工大学学报(自然科学版), 2017, 44(1):109-119. doi: 10.3969/j.issn.1671-9727.2017.01.13

    Liu D L, Huang Q S, Fan S Q, et al. Subduction of the BangongNujiang Ocean:constraints from granites in the Bangong Co area, Tibet[J]. Geological Journal, 2014, 49(2):188-206. doi: 10.1002/gj.v49.2

    李华亮, 高成, 李正汉, 等.西藏班公湖地区竟柱山组时代及其构造意义[J].大地构造与成矿学, 2016, 40(4):663-673. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201604004

    Liu W L, Xia B, Zhong Y, et al. Age and composition of the Rebang Co and Julu ophiolites, central Tibet:implications for the evolution of the Bangong Meso-Tethys[J]. International Geology Review, 2014, 56(4):430-447. doi: 10.1080/00206814.2013.873356

    郑有业, 许荣科, 张刚阳, 等.西藏日土岩基三宫岩石序列地球化学、年代学及构造意义[J].岩石学报, 2008, 24(2):368-376. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200802016
    史仁灯.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J].科学通报, 2007, 52(2):223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016
    郑有业, 许荣科, 马国桃, 等.锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲的时间约束[J].岩石学报, 2006, 22(4):895-904. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604013
    史仁灯.西藏班公湖MOR型和SSZ型两套蛇绿岩的厘定及大地构造意义[D].中国地质科学院博士学位论文, 2005. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213426.htm
    邱瑞照, 邓晋福, 周肃, 等.青藏高原西部蛇绿岩类型:岩石学与地球化学证据[J].地学前缘, 2005, 12(2):277-291. doi: 10.3321/j.issn:1005-2321.2005.02.029
    刘庆宏, 肖志坚, 曹圣华, 等.班公湖-怒江结合带西段多岛弧盆系时空结构初步分析[J].沉积与特提斯地质, 2004, 24(3):15-21. doi: 10.3969/j.issn.1009-3850.2004.03.002

    Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53(2):3-14. http://d.old.wanfangdata.com.cn/Periodical/dqkx201806009

    Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245:7-17. doi: 10.1016/j.lithos.2015.06.023

    四川省地质调查院. 1: 25万革吉县幅地质图. 2013.
图(8)  /  表(1)
计量
  • 文章访问数:  3489
  • HTML全文浏览量:  511
  • PDF下载量:  2340
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-24
  • 修回日期:  2017-05-26
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2019-04-14

目录

    /

    返回文章
    返回