The discovery of Nb-rich volcanic rock of the Qushenla Formation in Yema area of the western segment of Bangong Co-Nujiang suture in Tibet and its implications
-
摘要:
以班公湖-怒江缝合带西段的去申拉组玄武岩和安山岩为研究对象,进行了岩石锆石测年和地球化学研究。测年结果显示,安山岩形成于108.5±1.5Ma,属于早白垩世晚期。岩石地球化学特征表明,野马去申拉组玄武岩Nb含量为10.5×10-6~11.1×10-6,Al2O3含量为17.63%~17.96%(平均值17.74%),属于富Nb高铝玄武岩,为中钾钙碱性系列;安山岩属于高钾钙碱性系列岩石。野马火山岩轻、重稀土元素分异明显,其中玄武岩稀土元素总量为119.20×10-6~120.49×10-6,(La/Yb)N值为5.17~5.53;安山岩稀土元素总量为179.97×10-6~184.75×10-6,(La/Yb)N值为13.83~15.12;二者在微量元素上表现出不同程度的富集轻稀土元素和大离子亲石元素,Nb、Ta、Ti等高场强元素相对亏损,具低Cr、Ni,高Sr、Nb、Zr含量,发育岛弧火山岩相关特征。其岩浆源区受俯冲流体的影响较大,后经历了不同程度的铁镁矿物的结晶分离作用。综合分析认为,野马去申拉组火山岩可能形成于弧后盆地构造环境下,是班公湖-怒江特提斯洋岩石圈南向俯冲过程中板片断离导致软流圈地幔上涌,诱发弧后拉张背景下的直接岩浆响应。
Abstract:The volcanic rocks from Qushenla Formation in Yema area is located in the west segment of Bangong Co-Nujiang suture zone, in reverse fault contact with the diabase slice of Bangong Co-Nujiang opiolite melange belt in the north. In this paper, detailed LA-ICP-MS zircon U-Pb dating geochronological and element geochemical studies were carried out for the basalt and andesite in the Qushenla Formation. The U-Pb dating of zircon from andesite yielded a weighted average age of 108.5±1.5Ma, indicating that the andesites were formed at the middle-late stages of Early Cretaceous. Lithogeochemical characteristics show that the Nb-rich basalts in Yema area are characterized by obvious enrichment of Nb and Al2O3, with the values of Nb being 10.5×10-6~11.1×10-6 and Al2O3 being 17.63%~17.96%, averaging 17.74%, suggesting Nb-rich, high-alumina basalt of calc alkaline series. The andesites belong to high-K calc alkaline series. All the volcanic rocks in Yama area are characterized by enriched LREE and relatively depleted HREE. The total REE of basalts are 119.20×10-6~120.49×10-6, with (La/Yb)N from 5.17 to 5.53, and the ∑REE of andesites are 179.97×10-6~184.75×10-6 and their (La/Yb)N range from 13.83 to 15.12. On primitive mantle-normalized trace element diagrams, the basalts and andesite display different degrees of enrichment of LIFEs (e.g., Rb, U, K), relative depletion of HFSE (Nb, Ta, Ti) with high content of Sr, Nb, Zr but low content of Cr, Ni, similar to features of island arc rocks. The magma source region was mainly influenced by the subduction fluid and underwent different degrees of fractionation crystallization of femic minerals with uplifting. A comprehensive study shows that the basalt and andesite of Qushenla Formation in Yema area were probably formed in the backarc tectonic rocks, which might have been the direct magma response to slab break-off caused by asthenosphere upwelling back-arcextension during the southward subduction of Bangong Co-Nujiang Tethyan Ocean at the late stage of Early Cretaceous.
-
Keywords:
- Nb-rich basalt /
- andesite /
- back-arc basin /
- Qushenla Formation /
- Bangong Co-Nujiang suture zone
-
致谢: 感谢野外工作过程中四川地调院西藏昂龙岗日1:5万区域地质调查项目组其他成员的热心帮助;感谢审稿专家提出的宝贵修改意见和建议。
-
图 6 去申拉组火山岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)
(标准化数据据参考文献[21])
Figure 6. Chondrite-normalized REE patterns (a) of primitive mantle-normalized trace element patterns (b) for volcanic rocks of Qushenla Formation
表 1 野马去申拉组安山岩LA-ICP-MS锆石Th-U-Pb分析结果
Table 1 LA-ICP-MS zircon U-Th-Pb analytical results of andesite from Qushenla Formation, Yema area
测点号 元素含量/10-6 238U/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U PbTotal 232Th 238U 比值 比值 ±1σ 比值 ±1σ 比值 ±1σ 年龄/Ma ±1σ 年龄/Ma ±1σ 年龄/Ma ±1σ PM4N1-03 16.9 1404 557 0.42 0.0512 0.0027 0.1218 0.0063 0.0173 0.0003 250 124 117 6 110 2 PM4N1-04 2.91 160 116 0.76 0.0475 0.0054 0.1056 0.0099 0.0165 0.0004 72 248 102 9 105 3 PM4N1-05 5.21 318 209 0.69 0.0549 0.0048 0.1236 0.0098 0.0166 0.0004 409 192 118 9 106 2 PM4N1-06 3.30 174 136 0.83 0.0502 0.0050 0.1136 0.0097 0.0174 0.0004 211 206 109 9 111 3 PM4N1-08 4.74 291 186 0.68 0.0491 0.0041 0.1144 0.0090 0.0170 0.0004 154 185 110 8 109 2 PM4N1-09 8.60 617 299 0.51 0.0440 0.0036 0.1051 0.0082 0.0175 0.0002 174 159 102 8 112 2 PM4N1-12 20.0 1892 601 0.33 0.0498 0.0029 0.1136 0.0065 0.0165 0.0002 183 139 109 6 105 2 PM4N1-13 3.56 176 151 0.90 0.0516 0.0053 0.1134 0.0103 0.0163 0.0004 333 237 109 9 104 2 PM4N1-14 14.6 1133 508 0.47 0.0487 0.0027 0.1107 0.0059 0.0164 0.0003 132 130 107 5 105 2 PM4N1-15 8.72 566 315 0.62 0.0465 0.0037 0.1068 0.0076 0.0172 0.0003 33 172 103 7 110 2 PM4N1-16 5.66 329 228 0.73 0.0560 0.0044 0.1300 0.0096 0.0168 0.0004 454 144 124 9 107 2 PM4N1-17 4.18 254 156 0.65 0.0537 0.0051 0.1224 0.0092 0.0171 0.0004 361 215 117 8 109 3 PM4N1-18 19.7 1620 610 0.42 0.0500 0.0027 0.1159 0.0062 0.0168 0.0003 195 131 111 6 108 2 PM4N1-19 5.23 282 206 0.78 0.0535 0.0047 0.1179 0.0090 0.0166 0.0004 350 169 113 8 106 2 PM4N1-20 103 10565 2471 0.25 0.0506 0.0015 0.1248 0.0037 0.0177 0.0002 233 67 119 3 113 1 PM4N1-21 2.15 104 85.7 0.86 0.0537 0.0064 0.1212 0.0118 0.0180 0.0006 361 264 116 11 115 4 PM4N1-22 2.17 115 85.8 0.78 0.0491 0.0072 0.1061 0.0139 0.0169 0.0006 154 311 102 13 108 3 PM4N1-23 11.56 882 413 0.51 0.0544 0.0038 0.1230 0.0080 0.0164 0.0003 387 159 118 7 105 2 PM4N1-24 6.79 451 261 0.60 0.0470 0.0039 0.1096 0.0088 0.0170 0.0003 50 189 106 8 108 2 表 2 野马玄武岩和安山岩主量、微量和稀土元素组成
Table 2 Major elements, trace elements and REE composition of the basalt and andesite, Yema area
岩性 玄武岩 安山岩 样号 PM4ZH1 PM4ZH2 PM4ZH3 PM4ZH4 PM4ZH5 PM4ZH6 PM4ZH7 PM4ZH8 PM4ZH9 Al2O3 17.96 17.66 17.72 17.63 18.34 17.2 17.05 17.08 17.06 BaO 0.05 0.04 0.03 0.03 0.07 0.06 0.07 0.07 0.08 CaO 9.82 9.3 9.67 9.57 4.05 4.92 4.78 5.24 4.29 TFe2O3 10.07 9.5 10.08 9.99 6.32 6.2 6.38 6.28 6.37 K2O 0.91 1.11 1.21 0.84 2.68 2.42 2.74 2.28 2.7 MgO 4.48 4.13 4.35 4.12 2.54 2.83 2.84 3.46 2.9 MnO 0.16 0.17 0.21 0.2 0.14 0.15 0.16 0.2 0.17 Na2O 3.37 3.58 3.25 3.53 5.59 4.81 4.85 4.48 5.24 P2O5 0.34 0.36 0.33 0.33 0.25 0.25 0.26 0.26 0.25 SiO2 49.76 50.99 50.27 50.32 58.55 58.69 58.09 57.99 59.01 TiO2 1.82 1.75 1.82 1.78 0.98 0.97 1.02 1.02 1 FeO 2.77 2.61 2.99 2.8 1.74 2.25 2.19 2.3 2.14 烧失量 1.4 1.33 1.02 1.31 1.1 1.6 1.65 1.47 1.46 总计 100.14 99.92 99.96 99.65 100.61 100.1 99.89 99.83 100.53 Rb 14.7 18.9 26.6 15.7 72.3 68.1 84.4 65.1 79.9 K 1310 1100 1600 1650 1470 1460 1650 1020 1371.111 Ba 361 339 280 292 646 562 649 583 741 Th 3.96 4.02 3.93 3.92 9.62 9.59 9.31 9.47 9.02 U 1.01 1.04 0.98 1.02 2.21 2.28 2.25 2.63 2.31 Nb 10.7 11.1 10.5 11 41.9 41.7 41 41.6 40.9 Sr 604 638 568 620 631 628 676 687 708 Nd 23.3 23.5 23.3 23 27.8 27.2 27.9 28 27.6 P 1450 1510 1470 1460 1100 1080 1120 1110 1070 Zr 139 143 139 139 247 246 241 243 240 Hf 3.9 3.9 3.8 3.7 6 5.8 5.6 5.8 5.5 Sm 5.58 5.71 5.73 5.58 5.18 4.94 5.1 5 5.03 Ti 10600 10300 10700 10500 5900 5800 6100 6000 5800 Ta 0.7 0.7 0.7 0.7 2.6 2.6 2.6 2.5 2.4 La 20.7 20.9 20.4 20.7 46 45.3 44.7 45.3 43.7 Ce 43.3 43.7 43.2 43.3 81.1 80.7 78.9 80.3 79.4 Pr 5.65 5.7 5.7 5.66 8.59 8.43 8.47 8.53 8.41 Nd 23.3 23.5 23.3 23 27.8 27.2 27.9 28 27.6 Sm 5.58 5.71 5.73 5.58 5.18 4.94 5.1 5 5.03 Eu 1.8 1.85 1.81 1.88 1.56 1.51 1.51 1.49 1.54 Gd 5.85 5.8 5.91 5.75 4.27 4.1 4.2 4.24 4.39 Tb 0.91 0.89 0.92 0.86 0.67 0.62 0.63 0.64 0.64 Dy 5.31 5.23 5.34 5.2 3.84 3.6 3.67 3.65 3.73 Ho 1.03 1.06 1.04 1.04 0.73 0.68 0.71 0.7 0.72 Er 2.9 2.82 2.91 2.85 2.23 2.02 2.17 2.07 2.07 Tm 0.4 0.41 0.41 0.41 0.31 0.29 0.3 0.3 0.3 Yb 2.7 2.55 2.56 2.61 2.15 2.02 2.08 2.02 2.13 Lu 0.37 0.37 0.38 0.36 0.32 0.3 0.31 0.31 0.31 U 1.01 1.04 0.98 1.02 2.21 2.28 2.25 2.63 2.31 注:主量元素含量单位为%,微量和稀土元素为10-6 -
潘桂堂, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 耿全如, 潘桂堂, 王立全, 等.班公湖-怒江、羌塘地块特提斯演化与成矿地质背景[J].地质通报, 2011, 30(8):1261-1274. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20110813&flag=1 朱弟成, 潘桂堂, 莫宣学, 等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报, 2006, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002 朱弟成, 莫宣学, 赵志丹, 等.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J].岩石学报, 2008, 24(3):401-412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803001 李金祥, 李光明, 秦克章, 等.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报, 2008, 24(3):531-543. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803013 康志强, 许继峰, 王保弟, 等.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境[J].地球科学-中国地质大学学报, 2009, 34(1):89-104. doi: 10.3321/j.issn:1000-2383.2009.01.009 康志强, 许继峰, 王保弟, 等.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?[J].岩石学报, 2010, 26(10):3106-16. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010022 Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110Ma magmatism in the northern Lhasa Terrane, Tibet:Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168:144-159. https://www.researchgate.net/publication/256806817_Compositional_diversity_of_ca_110_Ma_magmatism_in_the_northern_Lhasa_Terrane_Tibet_Implications_for_the_magmatic_origin_and_crustal_growth_in_a_continent-continent_collision_zone
Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2015, 245:7-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be4c438f22b463f182154e4494786812
Zhang K, Xia B, Wang G, et al. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 2004, 116(9):1202-1222. doi: 10.1130/B25388.1
Liu Y S, Hu Z C, Cao S, et al. In Situ Analysis of Major and Trace Elments of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2):34-43. http://cn.bing.com/academic/profile?id=f10fa454267bcd9d2c140163950f1005&encoded=0&v=paper_preview&mkt=zh-cn
Hoskin P W, Black L P. Metamorphic zircon formation by solid, state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20f7cb4f6d72be021ecb081c5fa74229
李伟.西藏改则地区去申拉组火山岩地球化学特征及锆石年代学制约[D].中国地质大学(北京)硕士学位论文, 2012. http://cdmd.cnki.com.cn/Article/CDMD-11415-1012364960.htm 于枫.西藏冈底斯盐湖南部花岗岩的岩石学、地球化学与成因[D].中国地质大学(北京)硕士学位论文, 2012. http://cdmd.cnki.com.cn/article/cdmd-11415-2010085574.htm 马义明.拉萨地块早白垩世火山岩古地磁学和年代学研究对亚洲南缘的古地理限制[D].中国地质大学(北京)硕士学位论文, 2013. http://cdmd.cnki.com.cn/Article/CDMD-11415-1013272977.htm 隋清霖.西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义[D].中国地质大学(北京)硕士学位论文, 2014. http://cdmd.cnki.com.cn/Article/CDMD-11415-1014239465.htm Wilson M. Igneous Petrogenesis[M]. London:Unwin Hyman, 1989:101-149.
Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343. doi: 10.1016/0009-2541(77)90057-2
Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745
Streckeisen A, Bonin B, Le Bas M J, et al. Igneous Rocks:a classification and glossary of terms[M]. Oxford:Cambridge University Press, 2005:1-256.
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Crawford A J, Falloon T J, Eggins S. The origin of island arc high alumina basalts[J]. Contributions to Mineralogy and Petrology, 1987, 97:417-430. doi: 10.1007/BF00372004
徐夕生, 邱检生.火成岩岩石学[M].北京:科学出版社, 2010:1-346. Sajona F G, Maury R C, Bellon H, et al. Initiation of subduction and the generation of slab melt in western and eastern Mindanao Philippines[J]. Geology, 1993, 21(11):1007-1010. doi: 10.1130/0091-7613(1993)021<1007:IOSATG>2.3.CO;2
Sajona F G, Maury R C, Bellon H, et al. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamrboanga Peninsula, western Mindanao (Philippines)[J]. Journal of Petrology, 1996, 37(3):693-726. doi: 10.1093/petrology/37.3.693
Zhang H R, Yang T N, Hou Z Q, et al. Evonian Nb-enriched basalts and andesites of north-central Tibet:Evidence for the early subduction of the Paleo-Tethyan oceanic crust beneath the North Qiangtang Block[J]. Tectonophysics, 2016, 682:96-107. doi: 10.1016/j.tecto.2016.06.009
Mao Q G, Xiao W J, Fang T H, et al. Late Ordovician to early Devonian adakites and Nb-enriched basalts in the Liuyuan area, Beishan, NW China:Implications for early Paleozoic slab-melting and crustal growth in the southern Altaids[J]. Gondwana Research, 2012, 22:534-553. doi: 10.1016/j.gr.2011.06.006
Wang Q, Wyman D A, Zhao Z H, et al. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China):Implications for Phanerozoic crustal growth in the Central Asia orogenic belt[J]. Chemical Geology, 2007, 236:42-64. doi: 10.1016/j.chemgeo.2006.08.013
李永军, 沈锐, 王冉, 等.新疆西准噶尔巴尔努克早石炭世富Nb岛弧玄武岩的发现及其地质意义[J].岩石学报, 2014, 30(12):3501-3511. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201412002 Defant M J, Xu J F, Kepezhinskas P. Adakite:some variations on a theme[J]. Acta Petrologica Sinica, 2002, 18:129-142. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201002023
Kepezhinskas P K, Defant M J, Drummond M S. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths[J]. Geochimica et Cosmochimica Acta, 1996, 60:1217-1229. doi: 10.1016/0016-7037(96)00001-4
Rogers R D, Kárason H, Van der Hilst R D. Epeirogenic uplift above a detached slab in northern Central America[J]. Geology, 2002, 30(11):1031-1034. doi: 10.1130/0091-7613(2002)030<1031:EUAADS>2.0.CO;2
Lassiter J C, DePaolo D J. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts:chemical and isotopic constraints[J]. Geophysical Monograph-American Geophysical Union, 1997, 100(1):335-356. http://cn.bing.com/academic/profile?id=2c194009ec9424dd6ac8a6f8094da612&encoded=0&v=paper_preview&mkt=zh-cn
Tuner S, Arnaud N, Liu J. Post-collisional, shoshonitic volcanism on the Tibetan plateau:implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37:45-71. doi: 10.1093/petrology/37.1.45
Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis:a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 1978, 19(3):463-513. doi: 10.1093/petrology/19.3.463
Jung S, Masberg P. Major-and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg (central Germany):constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources[J]. Journal of Volcanology and Geothermal Research, 1998, 86(1):151-177. http://cn.bing.com/academic/profile?id=ad6dc3b2394d3845d0bab4a8fddb1385&encoded=0&v=paper_preview&mkt=zh-cn
Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23(1):251-285. doi: 10.1146/annurev.ea.23.050195.001343
Scaillet B, Prouteau G. Oceanic slab melting and mantle metasomatism[J]. Science Progress, 2001, 84:335-354. doi: 10.3184/003685001783238943
La Flèche M R, Camiré G, Jenner G A. Geochemistry of postAcadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada[J]. Chemical Geology, 1998, 149:115-136.
Woodhead J D, Eggins S M, Johnson R W. Magma genesis in the New Britain island arc:further insights into melting and mass transfer processes[J]. Journal of Petrology, 1998, 39(9):1641-1668. doi: 10.1093/petroj/39.9.1641
Floyd P A, Kelling G, Gökçen S L, et al. Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange, south Turkey[J]. Chemical Geology, 1991, 89(3/4):263-280.
Sandeman H A, Hanmer S, Tella S, et al. Petrogenesis of Neoarchaean volcanic rocks of the MacQuoid supracrustal belt:a backarc setting for the northwestern Hearne subdomain, western Churchill Province, Canada[J]. Precambrian Research, 2006, 144(1):140-165. https://www.researchgate.net/publication/248450744_Petrogenesis_of_Neoarchaean_volcanic_rocks_of_the_MacQuoid_supracrustal_belt_A_back-arc_setting_for_the_northwestern_Hearne_subdomain_western_Churchill_Province_Canada
Taylor B. Martinez F. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 2003, 210(3):481-497. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025576863/
Gamble J A, Wright I C, Woodhead J D, et al. Arc and backarc geochemistry in the southern Kermadec arc-Ngatoro Basin and off shore Taupo Volcanic Zone, SW Pacific[J]. Geological Society, London, Special Publications, 1994, 81:193-212. doi: 10.1144/GSL.SP.1994.081.01.11
Woodhead J D, Eggins S M, Gamble J A. High field strength and transition element systematics in island arc and back-arc basin basalts:Evidence for multi-phase melt extraction and a depleted mantle wedge[J]. Earth and Planetary Science Letters, 1993, 114:491-504. doi: 10.1016/0012-821X(93)90078-N
Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2):1-24. http://cn.bing.com/academic/profile?id=7371dfa5724c0893c0b1241c8ad6e418&encoded=0&v=paper_preview&mkt=zh-cn
Gribble R F, Stern R J, Bloomer S H, et al. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin[J]. Geochimica et Cosmochimica Acta, 1996, 60:2153-2166. doi: 10.1016/0016-7037(96)00078-6
Wang Y J, Zhao G C, Fan W M, et al. LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province:Implications for back-arc basin magmatism in the Eastern Block, North China Craton[J]. Precambrian Research, 2007, 154:107-124. doi: 10.1016/j.precamres.2006.12.010
Fan W M, Wang Y J, Zhang A M, et al. Permian arc-back-arc basin development along the Ailaoshan tectonic zone:Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China[J]. Lithos, 2010, 119(3):553-568. http://cn.bing.com/academic/profile?id=4ea77730cd2e221637452dac3e2b4003&encoded=0&v=paper_preview&mkt=zh-cn
Zhu D C, Mo X X, Niu Y, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268:298-312. doi: 10.1016/j.chemgeo.2009.09.008
Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301:241-255. doi: 10.1016/j.epsl.2010.11.005
Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 1982, 59(1):101-118. doi: 10.1016/0012-821X(82)90120-0
Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117:865-878. doi: 10.1130/B25595.1
Kapp P, De Celles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119:917-932. doi: 10.1130/B26033.1
Decelles P G, Kapp P, Ding L, et al. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau:Changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. Geological Society of American Bulletin, 2007, 119:654-680. doi: 10.1130/B26074.1
Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986, 79:281-302. doi: 10.1016/0012-821X(86)90186-X
马国林, 岳雅慧.西藏拉萨地块北部白垩纪火山岩及其对冈底斯岛弧构造演化的制约[J].岩石矿物学杂志, 2010, 29(5):525-538. doi: 10.3969/j.issn.1000-6524.2010.05.008 Gutscher M A, Maury R, Eissen J P, et al. Can slab melting be caused by flat subduction?[J]. Geology, 2000, 28(6):535-538. doi: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262:229-245. doi: 10.1016/j.chemgeo.2009.01.020
陈越, 朱弟成, 赵志丹, 等.西藏北冈底斯巴木错安山岩的年代学、地球化学及岩石成因[J].岩石学报, 2010, 26(7):2193-2206. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201007020 张亮亮, 朱弟成, 赵志丹, 等.西藏申扎早白垩世花岗岩类:板片断离的证据[J].岩石学报, 2011, 27(7):1938-1948. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003 Von Blanckenburg F, Davis J H. Slab break off:A model for syncollisional magmatism and tectonics in the Alps[J]. Tectonics, 1995, 14:120-131. doi: 10.1029/94TC02051
四川省地质调查院.革吉县幅1: 25万地质图. 2004. -
期刊类型引用(6)
1. 吴建亮,廖芝华,白云,王波,秦宇龙,刘文,徐云峰,张彤,景阳,熊昌利. 班公湖-怒江缝合带西段昂龙岗日地区中新世岩浆作用. 岩石矿物学杂志. 2024(05): 1251-1267 . 百度学术
2. Chuanyang Lei,Liqiang Wang,Juxing Tang,Wei Li,Teng Gao,Huayun Yuan. Origin of Qushenla Formation Volcanic Rocks in the Nawucuo Area, Northern Tibet, and Constraints on the Subduction Polarity of the Bangong-Nujiang Tethys Ocean. Journal of Earth Science. 2023(02): 467-486 . 必应学术
3. 刘飞,李观龙,薄容众,杨经绥. 班公湖-怒江洋的扩张脊俯冲:宗白增生杂岩中侏罗世辉长岩脉地球化学和Sr-Nd同位素特征. 地质通报. 2021(08): 1247-1264 . 本站查看
4. 曾庆高,王保弟,西洛郎杰,毛国正,刘海永,刘恭喜. 西藏的缝合带与特提斯演化. 地球科学. 2020(08): 2735-2763 . 百度学术
5. 尹滔,张伟,尹显科,裴亚伦. 西藏江玛地区闪长玢岩锆石U-Pb年龄、地球化学特征及其地质意义. 地球科学. 2020(11): 4128-4142 . 百度学术
6. 肖永春,马超,于琪,刘振宇. 西藏色哇地区中新生代构造演化史讨论. 吉林地质. 2020(04): 51-59 . 百度学术
其他类型引用(3)