The establishment of Upper Cretaceous Mamole Formation in Asuo Town of Nima County, northern Tibet, and its significance
-
摘要:
在青藏高原中部尼玛县阿索乡马莫勒地区识别出一套紫红色辫状河三角洲平原亚相地层,岩性主要为紫红色砂岩中砾岩、紫红色复成分中砾岩、紫红色砂岩细砾岩,局部夹含砾粗砂岩或岩屑杂砂岩。在剖面测制和区域对比的基础上建立了上白垩统马莫勒组。对马莫勒组岩屑杂砂岩层进行碎屑锆石采样和U-Pb定年,得到最年轻的碎屑锆石年龄为99Ma。碎屑锆石主要存在3个年龄峰值,其中主峰值在125Ma左右,代表了班公湖-怒江中特提斯洋演化的岩浆活动,其他2个弱峰值分别为550Ma和980Ma,且分别代表了泛非期和格林威尔期-晋宁期的岩浆活动热事件。研究认为,马莫勒组的沉积时代应介于99~90Ma之间,马莫勒组的出现标志着尼玛地区在晚白垩世初期完成了由洋到陆的转换,进入陆内环境。
-
关键词:
- 青藏高原 /
- 辫状河三角洲平原亚相 /
- 马莫勒组 /
- 洋陆转换 /
- 碎屑锆石
Abstract:In this study, a set of purple red braided river delta plain subfacies sediments were firstly discovered in Asuo Town of Nima County, northern Tibet. Rock association is mainly composed of medium conglomerate in sandstone, medium conglomerate in complex composition and fine conglomerate in sandstone, intercalated with gravel and lithic sandstones. We establish the Mamole Formation based on the section measurement and regional correlation. The authors collected zircon samples from lithic sandstones in Mamole Formation, and the analytical results show that the youngest detrital zircon age is 89Ma and there exist three peak ages for the samples, i.e., 125Ma, 550Ma and 980Ma. The ages 550Ma and 980Ma represent respectively the Pan-African and Green Weir-Jinning period magma thermal events. The principal peak of 125Ma represents the magmatic activity related to the evolution of Bangong Co-Nujiang Tethyan Ocean in Cretaceous. The deposition time of Mamole Formation was 99~90Ma, and the appearance of Mamole Formation indicates that in the Nima area the ocean-continent transition ended and evolved into intracontinental environment in the early Late Cretaceous.
-
黄金是人类发现的第一种贵金属,是美好和富有的象征,一直受到人类的喜爱。胶东是中国最重要的黄金基地、世界闻名的黄金产区,也是全球金矿床勘查和研究的热点区域。胶东金矿的开采历史悠久,最早可上溯至唐代。新中国成立以来,国家对胶东金矿的勘查一直非常重视,部署了大量地质工作。胶东地区也不负众望,不断涌现新的找矿突破,由建国初期的仅20余吨金资源量,到现今金资源总量超过5000 t,成为世界第三大金成矿区。目前,中国的黄金产量连续十多年居世界第一,其中胶东的三山岛、焦家、玲珑和新城4座矿山建国以来累计生产黄金均超过100 t,胶东为中国的黄金产业乃至经济社会发展做出了重要贡献。
胶东屡现金矿找矿奇迹,产生了找矿勘查的多项第一。1965年,首次在胶东三山岛断裂的破碎蚀变带中发现了金矿体;1966年,在焦家断裂带中发现破碎带蚀变岩型金矿体并肯定了其工业价值。1969年完成的三山岛金矿区勘探,提交金资源量63.56 t,是中国探明的第一个特大型蚀变岩型金矿床;其后于1972年完成了焦家金矿床勘探,提交金资源量70余吨。1977年,全国第二次金矿地质工作会议以纪要形式,将焦家式破碎带蚀变岩型金矿(简称焦家式金矿)确定为中国新发现的金矿床类型。焦家式金矿的发现,突破了当时地学界“大断裂只导矿不贮矿”的传统认识,指导地质人员将找矿方向由以往的石英脉型金矿转向破碎带蚀变岩型金矿,陆续发现和探明了新城、河西、河东、新立、仓上、大尹格庄、台上等大型金矿床,奠定了胶东作为中国第一黄金基地的地位,推动了中国黄金产业的发展。1985年,《焦家式新类型金矿的发现及其突出的找矿效果》荣获国家科技进步特等奖(图片1),焦家式金矿成矿和找矿理论为中国的金矿勘查提供了重要指导。
进入21世纪,中国的地下浅表部金矿资源严重枯竭,地质人员在胶东地区开展了深部找矿探索。于2006年首先探明了莱州寺庄深部特大型金矿床,实现了“攻深找盲”的率先突破;2008年,完成了莱州焦家深部金矿详查,提交金资源量105 t,是胶东地区第一个一次性提交详查资源量超过百吨的金矿床;其后,胶东地区陆续探明了10余个资源量超过100 t的超大型金矿床,尤其是探明了三山岛北部海域、西岭、纱岭3个资源量均超过300 t的金矿床。2014年,在莱州湾东侧的浅海海域探明的三山岛北部海域金矿床,勘探资源量470余吨,是中国和世界上最大的海域金矿。随着深部找矿的持续推进,胶东地区的勘查和钻探深度不断刷新纪录。目前,已施工1500~3000 m深度的钻孔300余个,其中,三山岛、焦家、水旺庄、大尹格庄等矿区控制矿体的深度均已超过2000 m,是国内平均勘查深度最大的金矿区;已施工超过3000 m深度的钻孔3个,在莱州三山岛金矿深部(西岭矿区)施工的4006.17 m深孔被誉为中国岩金勘查第一深钻,在焦家断裂带深部施工的3266.06 m深度的钻孔是该成矿带见矿深度最深的钻孔。2011年全国找矿突破战略行动以来,胶东作为全国重要的整装勘查区之一,深部找矿取得了新的重大突破,10年新增深部金资源量约2958 t,新增资源量约占全国同期的40%,超过了胶东历史上累计探明金资源量的总和,三山岛、焦家和招平3条成矿带的金资源量均已超过千吨。深部找矿的过程也是找矿理论认识和找矿方法不断提升的过程,胶东型金矿热隆-伸展成矿理论、阶梯成矿模式、阶梯找矿方法、先进的地球物理勘探技术、深孔和海域钻探方法等在深部找矿中发挥了重要作用。通过三维可视化分析发现,三山岛和焦家地区的多个原来认为独立的金矿床在深部合为一体,实际上是2个资源量均超过千吨的超巨型金矿床。2014年,《胶东金矿理论技术创新与深部找矿突破》成果获得国家科技进步二等奖。2017年5月3日,原国土资源部专门举行胶东地区深部金矿找矿成果新闻发布会指出:“胶东地区金矿深部勘查重大突破具有世界级影响”。
全国找矿突破战略行动的实施,为胶东深部找矿突破提供了重要机遇。本专辑撷取了找矿突破战略行动以来有关人员在胶东深部找矿中开展的部分工作和取得的部分成果予以展示,主要包括以下4方面内容:矿床三维地质建模及基于三维模型对深部矿床空间分布和成矿规律的新认识,稳定同位素、矿石微量元素和矿物微区地球化学分析测试结果及对金成矿的指示,流体包裹体测试结果及成因解释,地球物理方法及其在胶东深部找矿中的作用。期望本专辑阐述的成果能为深化胶东金成矿的认识及指导进一步找矿提供启发和帮助,也期望中国其他地区的深部找矿和相关研究能从中得到有益借鉴。
胶东地区金矿找矿不断取得新突破,得益于国家有关部门的高度重视和大力支持,得益于地勘队伍、科研院所和矿山企业的共同努力,得益于广大工程技术人员、基础理论研究人员的艰苦努力和无私奉献。山东省地质矿产勘查开发局第六地质大队无疑是胶东金矿找矿的突出贡献者,该队探获了胶东50%以上金资源量,发现并建立了焦家式金矿矿床式,创新了金矿成矿理论,提出了金矿找矿新方法,也因其突出的找矿贡献获得了崇高的荣誉:1992年10月19日国务院下达了《国务院关于表彰山东省地质矿产局第六地质队的决定》(国发〔1992〕59号),授予六队“功勋卓著无私奉献的英雄地质队”荣誉称号(图片2),于1992年12月10日在北京举行了隆重的命名大会,并授予奖旗;2009年9月19日,时任国务院总理温家宝在原国土资源部转呈的山东地矿六队胶东找矿成果汇报材料上亲笔批示“请国土资源部转告六队职工:祝贺他们在金矿勘探中取得的重大发现,向大家致以亲切的问候。”
2022年是山东地矿六队被国务院授予“功勋卓著无私奉献的英雄地质队”荣誉称号30周年,谨以此专辑纪念这一光荣的时刻,并向为胶东地区金矿勘查和找矿突破战略行动取得重大成果做出贡献的所有人致以崇高的敬意!
致谢: 野外工作时吉林大学西藏科研队的队员们和后勤师傅们给予诸多帮助,文章撰写期间吉林大学张天羽博士和王伟硕士提供了宝贵的意见,碎屑锆石测试分析由中国地质大学(北京)科学研究院实验中心苏犁老师等帮助完成,在此一并致谢。 -
图 1 藏北尼玛县阿索乡马莫勒地区地质简图
1—全新统冲洪积物;2—上白垩统马莫勒组;3—下白垩统郎山组生物碎屑灰岩;
4—晚侏罗世-早白垩世复理石岩片;5—下二叠统拉嘎组含杂砾碎屑岩;6—辉长岩墙;
7—枕状玄武岩;8—早白垩世侵入岩;9—晚白垩世侵入岩;10—花岗闪长岩;11—闪长岩;
12—石英钠长斑岩;13—玄武岩;14—辉长岩;15—花岗岩;16—逆冲断层;17—正断层;
18—走滑断层;19—性质不明断层;20—整合界线;21—不整合界线;22—产状;
23—研究区位置;24—实测剖面位置Figure 1. Geological map of the Mamole area in Asuo Town of Nima County, northern Tibet
表 1 西藏尼玛县阿索乡尼则地区上白垩统马莫勒组碎屑锆石LA-ICP-MS U-Th-Pb同位素分析数据
Table 1 LA-ICP-MS U-Th-Pb data of the detrital zircon from Mamole Formation in Asuo Town of Nima County, northern Tibet
点号 同位素含量/10-6 Th/U 同位素比值(±1σ) 同位素年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ NT2-1 19.9444 204.72 198.81 1.03 0.05858 0.00124 0.65182 0.01396 0.01379 0.00018 552 27 510 9 500 6 NT2-2 153.68239 41.1 570.92 0.07 0.09954 0.00138 3.70172 0.05357 0.01378 0.00021 1616 12 1572 12 1539 16 NT2-3 62.65256 717.46 425.31 1.69 0.06168 0.00102 0.88643 0.01507 0.01384 0.00017 663 18 644 8 639 7 NT2-4 31.36114 111.55 136.54 0.82 0.07642 0.00269 1.99229 0.06538 0.01368 0.00018 1106 72 1113 22 1116 13 NT2-5 37.62017 35.46 103.27 0.34 0.11484 0.00175 5.30512 0.08349 0.01387 0.00018 1877 13 1870 13 1862 19 NT2-6 30.90161 113.61 178.71 0.64 0.06949 0.00117 1.46332 0.02515 0.01384 0.0002 913 18 915 10 916 10 NT2-7 13.19793 132.04 118.29 1.12 0.05907 0.0015 0.72025 0.01828 0.01387 0.00023 570 34 551 11 546 6 NT2-8 11.78972 532 552.2 0.96 0.04884 0.00131 0.11766 0.00315 0.01385 0.00027 140 40 113 3 112 1 NT2-9 48.40563 71.4 272.98 0.26 0.07534 0.00118 1.78148 0.02881 0.01444 0.00027 1078 16 1039 11 1020 11 NT2-10 9.90532 25.12 21.5 1.17 0.11184 0.00249 5.05224 0.1123 0.01386 0.00017 1830 22 1828 19 1826 20 NT2-11 32.84554 65.26 98.32 0.66 0.10002 0.00163 3.9591 0.06601 0.01389 0.00017 1624 15 1626 14 1627 17 NT2-12 29.72956 397.1 207.63 1.91 0.06045 0.00112 0.79147 0.01487 0.01387 0.00017 620 21 592 8 8 585 7 NT2-13 28.851006 4.61 315.99 0.01 0.06019 0.00107 0.79796 0.01449 0.01377 0.00017 610 20 596 13 592 7 NT2-14 67.56826 31.84 387.36 0.08 0.12434 0.00255 2.72618 0.04638 0.0139 0.00017 2019 37 1336 24 951 10 NT2-15 84.30053 296.31 290.8 1.02 0.08499 0.00294 2.66137 0.08566 0.01399 0.00021 1315 69 1318 13 1319 15 NT2-16 33.28353 80.41 106.79 0.75 0.09449 0.0015 3.43517 0.05623 0.01399 0.00021 1518 15 1512 14 1508 16 NT2-17 1.477609 46.17 71.05 0.65 0.04814 0.00608 0.1226 0.0154 0.0141 0.00018 106 237 117 11 118 2 NT2-18 37.48453 123.58 181.54 0.68 0.07506 0.00122 1.85296 0.03103 0.01411 0.0002 1070 17 1064 6 1061 11 NT2-19 3.954736 97.54 197.4 0.49 0.04863 0.00269 0.12419 0.00683 0.01388 0.00019 130 98 119 13 118 2 NT2-20 94.62094 34.08 272.87 0.12 0.11429 0.00165 5.30293 0.07982 0.01413 0.00023 1869 13 1869 10 1870 19 NT2-21 7.65482 278.67 230.16 1.21 0.04695 0.00475 0.11449 0.01145 0.01399 0.00017 47 217 110 14 113 2 NT2-22 16.93679 64.53 70.65 0.91 0.07852 0.00161 2.13192 0.04404 0.19687 0.00238 1160 23 1159 11 1158 13 NT2-23 29.4258 133.4 152.4 0.88 0.07145 0.00127 1.59497 0.02894 0.16187 0.00191 970 19 968 4 967 11 NT2-24 9.132121 304.2 391.28 0.78 0.04809 0.00172 0.13177 0.00468 0.01987 0.00025 104 59 126 12 127 2 NT2-25 40.0889 111.6 191.83 0.58 0.07636 0.00127 1.96489 0.0336 0.18658 0.00218 1105 17 1104 14 1103 1 NT2-26 51.71626 35.07 114.19 0.31 0.15646 0.00241 8.78334 0.13932 0.40706 0.00477 2418 13 2316 10 2201 22 NT2-27 34.54282 98.2 233.94 0.42 0.06794 0.00122 1.28769 0.02346 0.13743 0.00162 867 19 840 17 830 9 NT2-2814.2674427.140.180.670.126920.002525.213920.10410.297870.00373205619185521168119NT2-29 3.031445 24.08 43.95 0.55 0.05668 0.00356 0.48531 0.03016 0.06208 0.00095 479 111 402 13 388 6 NT2-30 16.30039 82.04 83.08 0.99 0.07109 0.00151 1.55668 0.0333 0.15879 0.00194 960 24 953 12 950 11 NT2-31 32.80374 142.57 166.99 0.85 0.07275 0.00138 1.64059 0.03147 0.16353 0.00195 1007 21 986 6 976 11 NT2-32 3.324772 86.64 162.11 0.53 0.04788 0.00268 0.12265 0.0068 0.01857 0.00027 93 96 117 14 119 2 NT2-33 53.58571 78.41 138.02 0.57 0.11496 0.00183 5.36614 0.08786 0.33848 0.00396 1879 14 1879 13 1879 19 NT2-34 182.51026 204.41 496.56 0.41 0.11349 0.0017 5.20387 0.08099 0.33247 0.00384 1856 13 1853 23 1850 19 NT2-35 4.27234 33.79 28.43 1.19 0.06982 0.00304 1.11448 0.04794 0.11574 0.00166 923 65 760 8 706 10 NT2-36 3.306992 137.26 132.75 1.03 0.04849 0.00308 0.13303 0.00838 0.01989 0.0003 123 113 127 15 127 2 NT2-37 107.04236 29.95 166.64 0.18 0.20982 0.00316 16.51141 0.25782 0.57061 0.00662 2904 12 2907 14 2910 27 NT2-38 23.57878 66.39 99.54 0.67 0.08035 0.00152 2.28986 0.04385 0.20665 0.00247 1206 20 1209 6 1211 13 NT2-39 3.593074 103.41 171.09 0.60 0.04845 0.00277 0.12608 0.00714 0.01887 0.00027 121 100 121 14 121 2 NT2-40 50.69098 117.07 121.54 0.96 0.11585 0.0019 5.28754 0.08881 0.33095 0.00389 1893 15 1867 1843 19 NT2-41 36.72232 180.09 361.84 0.50 0.05991 0.00199 0.76036 0.0234 0.09205 0.00113 600 73 574 13 568 7 NT2-42 46.11444 234.62 165.32 1.42 0.08 0.00139 2.25289 0.03993 0.2042 0.00241 1197 18 1198 12 1198 13 NT2-43 22.1324 80.12 86.61 0.93 0.081 0.00161 2.33231 0.04691 0.20878 0.00252 1221 21 1222 14 1222 13 NT2-44 10.795 79.38 57.53 1.38 0.07487 0.00188 1.64314 0.04106 0.15915 0.00202 1065 30 987 16 952 11 NT2-45 2.295185 147.83 73.32 2.02 0.04892 0.0044 0.13815 0.01232 0.02048 0.00036 144 167 131 11 131 2 NT2-46 34.64283 126.97 189.04 0.67 0.07096 0.00136 1.56745 0.03041 0.16017 0.00192 956 21 957 12 958 11 NT2-47 5.041161 169.5 212.58 0.80 0.0484 0.00239 0.13368 0.00655 0.02003 0.00028 119 86 127 6 128 2 NT2-48 17.33057 536.97 815.43 0.66 0.04852 0.00118 0.12616 0.00307 0.01886 0.00023 125 35 121 3 120 1 NT2-49 12.69524 321.35 541.61 0.59 0.04862 0.00134 0.14135 0.00388 0.02108 0.00026 130 41 134 3 134 2 NT2-50 8.015719 437.78 298.85 1.46 0.04868 0.00193 0.13178 0.00519 0.01963 0.00026 132 67 126 5 125 2 NT2-5110.47899348.07470.20.740.056130.001720.146070.004450.018870.000244584513841212NT2-52 81.44881 250.19 540.79 0.46 0.06704 0.00129 1.27833 0.02488 0.13827 0.00165 839 22 836 11 835 9 NT2-53 14.35108 96.07 105.41 0.91 0.06281 0.00174 0.95165 0.02624 0.10986 0.00139 702 37 679 14 672 8 NT2-54 20.40128 200.52 190.79 1.05 0.05772 0.00126 0.67874 0.01495 0.08527 0.00104 519 28 526 9 528 6 NT2-55 48.2858 132.9 327.56 0.41 0.07184 0.00136 1.35827 0.02605 0.1371 0.00164 981 21 871 11 828 9 NT2-56 20.99969 114.89 86.08 1.33 0.08034 0.00175 2.253 0.0493 0.20334 0.0025 1205 24 1198 15 1193 13 NT2-57 14.0931 109.42 148.18 0.74 0.05799 0.00152 0.6573 0.01719 0.08219 0.00104 529 35 513 11 509 6 NT2-58 6.229613 235.05 332.72 0.71 0.04757 0.00199 0.1057 0.00437 0.01611 0.00022 78 67 102 4 103 1 NT2-59 5.612553 249.55 225.46 1.11 0.04959 0.00244 0.13201 0.00642 0.0193 0.00028 176 86 126 6 123 2 NT2-60 52.2633 154.16 517.53 0.30 0.06225 0.00116 0.84007 0.01595 0.09786 0.00116 683 21 619 9 602 7 NT2-61 40.03606 87.88 213.42 0.41 0.07195 0.00241 1.64481 0.05105 0.1658 0.00208 985 70 988 20 989 11 NT2-62 3.802606 127.24 158.5 0.80 0.04974 0.00301 0.14081 0.00843 0.02053 0.00031 183 109 134 8 131 2 NT2-63 15.98084 345.65 690.61 0.50 0.04875 0.00128 0.14306 0.00376 0.02128 0.00026 136 39 136 3 136 2 NT2-64 44.95945 119.72 191.66 0.62 0.08013 0.00158 2.26203 0.04513 0.2047 0.00247 1200 21 1201 14 1201 13 NT2-65 175.6498 179.56 493.89 0.36 0.11454 0.00206 5.11845 0.09392 0.32403 0.00385 1873 17 1839 16 1809 19 NT2-6644.9211626.72232.840.110.085680.002132.220390.048280.187940.00226133149118715111012NT2-67 15.96541 97.11 90.39 1.07 0.06735 0.00169 1.30292 0.03273 0.14028 0.00176 849 32 847 14 846 10 NT2-68 27.81678 41.81 58.4 0.72 0.13727 0.00272 7.68626 0.15401 0.40602 0.00501 2193 19 2195 18 2197 23 NT2-69 212.57749 483.15 311.33 1.55 0.16371 0.003 10.72943 0.20025 0.47524 0.00568 2494 16 2500 17 2506 25 NT2-70 3.39064 147.69 142.46 1.04 0.04789 0.00346 0.12679 0.00908 0.0192 0.0003 94 129 121 8 123 2 NT2-71 6.834586 172.8 228.09 0.76 0.05273 0.00192 0.19456 0.007 0.02675 0.00037 317 57 181 6 170 2 NT2-72 3.474754 8.27 15.97 0.52 0.07867 0.00382 2.14537 0.10216 0.19773 0.00332 1164 68 1164 33 1163 18 NT2-73 9.78138 31.43 42.35 0.74 0.0786 0.00217 2.14061 0.05872 0.19748 0.00259 1162 34 1162 19 1162 14 NT2-74 15.60396 54.7 162.85 0.34 0.05947 0.00156 0.75156 0.01962 0.09163 0.00116 584 35 569 11 565 7 NT2-75 13.17732 405.24 657.94 0.62 0.04836 0.00144 0.11938 0.00354 0.0179 0.00023 117 46 115 3 114 1 NT2-76 24.52773 94.11 255.29 0.37 0.0589 0.00134 0.74045 0.01686 0.09115 0.00112 563 29 563 10 562 7 NT2-77 7.312954 129.7 53.27 2.43 0.05633 0.00262 0.64831 0.02984 0.08346 0.00119 465 77 507 18 517 7 NT2-78 27.31365 275.5 257.82 1.07 0.05716 0.00137 0.64466 0.01547 0.08179 0.00102 498 31 505 10 507 6 NT2-79 6.821929 205.67 299.52 0.69 0.04807 0.00184 0.13162 0.00499 0.01986 0.00027 103 62 126 4 127 2 NT2-80 5.22741 39.46 54.16 0.73 0.05816 0.00285 0.71984 0.03495 0.08974 0.00132 536 80 551 21 554 8 NT2-81 15.53633 492.28 655.46 0.75 0.04859 0.00158 0.13196 0.00423 0.01969 0.00022 128 54 126 4 126 1 NT2-829.088853373.03395.760.940.048790.001580.126660.004030.018820.00021385512141201NT2-83 9.48028 124.69 197.87 0.63 0.06704 0.00387 0.34829 0.01962 0.03768 0.00047 839 124 303 15 238 3 NT2-84 3.059747 151.68 114.05 1.33 0.04925 0.00722 0.1364 0.01991 0.02008 0.00033 160 270 130 18 128 2 NT2-85 9.070104 376.17 423.85 0.89 0.04833 0.00214 0.12055 0.00528 0.01809 0.00021 115 78 116 5 116 1 NT2-86 7.925551 287.32 263.46 1.09 0.04945 0.00189 0.17298 0.0065 0.02537 0.00029 169 66 162 6 162 2 NT2-87 65.85235 361.61 726.61 0.50 0.06499 0.00105 0.75027 0.01172 0.08372 0.00085 774 17 568 7 518 5 NT2-88 4.609687 84.34 166.11 0.51 0.04947 0.00364 0.17253 0.01262 0.02529 0.00033 170 141 162 11 161 2 NT2-89 3.763938 118.67 172.2 0.69 0.04855 0.00402 0.13135 0.01081 0.01962 0.00026 126 159 125 10 125 2 NT2-90 7.204427 313.73 392.52 0.80 0.04804 0.00265 0.10253 0.0056 0.01548 0.00019 101 99 99 5 99 1 NT2-9116.44419133.85237.870.560.11970.003380.928620.023960.056270.00064195252667133534NT2-92 4.82122 191.25 225.6 0.85 0.04822 0.00419 0.11761 0.01016 0.01769 0.00023 110 168 113 9 113 1 NT2-93 8.091083 354.85 343.59 1.03 0.05068 0.00213 0.13657 0.00566 0.01954 0.00022 226 75 130 5 125 1 NT2-94 16.64455 96.67 230.73 0.42 0.0557 0.00129 0.52286 0.01188 0.06806 0.00072 440 32 427 8 424 4 NT2-95 6.298633 182.79 272.8 0.67 0.04864 0.00292 0.13882 0.00824 0.0207 0.00026 131 110 132 7 132 2 NT2-96 4.71812 166.71 191.54 0.87 0.04868 0.00412 0.1325 0.01114 0.01974 0.00026 132 163 126 10 126 2 NT2-97 7.184087 332.8 316.81 1.05 0.04831 0.00304 0.11968 0.00748 0.01797 0.00022 114 117 115 7 115 1 NT2-98 29.49966 147.26 220.71 0.67 0.06299 0.00129 1.00487 0.02006 0.11568 0.00122 708 25 706 10 706 7 NT2-99 4.00604 88.06 182.46 0.48 0.04863 0.00459 0.13537 0.01268 0.02019 0.00029 130 183 129 11 129 2 NT2-100 5.766955 206.31 275.54 0.75 0.04831 0.00436 0.12104 0.01086 0.01817 0.00024 114 176 116 10 116 2 注:测试单位为中国地质大学(北京)科学研究院实验中心;带删除线的数值未参与讨论 -
Allégre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307(5946):17-22. doi: 10.1038/307017a0
Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22(4):1-24. doi: 10.1029-2001TC001332/
Guynn J H, Kapp P, Pullen A, et al. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 2006, 34(6):505-508. doi: 10.1130/G22453.1
潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 张玉修.班公湖-怒江缝合带中西段构造演化[D].中国科学院广州地球化学研究所博士学位论文, 2007. http://www.irgrid.ac.cn/handle/1471x/339607?mode=full&submit_simple=Show+full+item+record Zhu D C, Zhao Z D, Niu Y, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002
Fan J J, Li C, Xie C M, et al. Petrology geochemistry and geochronology of the Zhonggang ocean island northern Tiber:implications for the evolution of the Bangongco-Nujiang oceanic arm of Neo-Tethys[J].International Geology Review, 2014, 56(12):1504-1520. doi: 10.1080/00206814.2014.947639
Fan J J, Li C, Wang M, et al. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau[J]. International Journal of Earth Sciences, 2017:1-19. doi: 10.1007/s00531-017-1487-4
文世宣.西藏北部地层新资料[J].地层学杂志, 1979, 3(2):150-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000161642 余光明, 王成善.西藏特提斯沉积地质[M].北京:地质出版社, 1990. 王建平, 刘彦明, 李秋生, 等.西藏班公湖-丁青蛇绿岩带东段侏罗纪盖层沉积的地层划分[J].地质通报, 2002, 21(7):405-410. doi: 10.3969/j.issn.1671-2552.2002.07.007 陈国荣, 刘鸿飞, 蒋光武, 等.西藏班公湖-怒江结合带中段沙木罗组的发现[J].地质通报, 2004, 23(2):193-194. doi: 10.3969/j.issn.1671-2552.2004.02.015 王忠恒, 王永胜, 谢元和, 等.西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J].沉积与特提斯地质, 2005, 25(1/2):155-162. http://d.old.wanfangdata.com.cn/Periodical/yxgdl200501029 曾庆高, 毛国政, 王保弟, 等. 1:25万改则县幅等4幅区域地质调查报告[M].北京:地质出版社, 2010. 陈玉禄, 张宽忠, 杨志民, 等.青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面[J].地质通报, 2006, 25(6):694-699. doi: 10.3969/j.issn.1671-2552.2006.06.007 吴浩, 李才, 胡培远, 等.西藏尼玛县塔色普勒地区去申拉组火山岩的发现及其地质意义[J].地质通报, 2013, 32(7):1014-1026. doi: 10.3969/j.issn.1671-2552.2013.07.007 Barberà X, Cabrera L, Marzo M, et al. A complete terrestrial Oligocene magnetobiostratigraphy from the Ebro Basin, Spain[J]. Earth & Planetary Science Letters, 2001, 187(1):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ023668864
邹妞妞, 史基安, 张大权, 等.准噶尔盆地西北缘玛北地区百口泉组扇三角洲沉积模式[J].沉积学报, 2015, 33(3):607-615. http://d.old.wanfangdata.com.cn/Periodical/cjxb201503019 张宗林, 田景春, 罗香建, 等.鄂尔多斯盆地北部二叠系下石盒子组洪水泥石流与牵引流沉积特征[J].地球科学与环境学报, 2014, 36(3):21-30. doi: 10.3969/j.issn.1672-6561.2014.03.004 彭华, 吴志才.关于红层特点及分布规律的初步探讨[J].中山大学学报(自然科学版), 2003, 42(5):109-113. doi: 10.3321/j.issn:0529-6579.2003.05.029 程强, 寇小兵, 黄绍槟, 等.中国红层的分布及地质环境特征[J].工程地质学报, 2004, 12(1):34-40. doi: 10.3969/j.issn.1004-9665.2004.01.007 房煦.非近海河流相层序地层学探讨—以济阳坳陷新近系为例[J].油气地质与采收率, 2014, 21(6):10-14. doi: 10.3969/j.issn.1009-9603.2014.06.003 Miall A D. Lithofacies types and vertical profile models in brai-ded rivers: A summary[C]//Miall A D. Fluvial Sedimentology.Calgary: Canadian Society of Petroleum Geology Memoirs5, 1978: 597-604.
Miall A D.The geology of fluvial deposits-sedimentary facies, basin analysis, and petroleum geology[M]. New York:Springer, 1996:1-565.
裘亦楠.碎屑岩储层沉积基础[M].北京:石油工业出版社, 1987:1-10. 张天文.粒度资料在沉积环境判别模式中的应用—以临夏盆地王家山剖面为例[D].西南大学硕士学位论文, 2011. 卜淘, 陆正元.湖泊辫状河三角洲特征、储集性及分类[J].沉积与特提斯地质, 2000, 20(1):78-84. doi: 10.3969/j.issn.1009-3850.2000.01.006 张希明, 刘青芳.塔北地区辫状三角洲沉积特征及油气勘探意义[J].石油勘探与开发, 1999, (1):21-24. doi: 10.3321/j.issn:1000-0747.1999.01.007 朱筱敏.层序地层学[M].山东:石油大学出版社, 2000. 于兴河.碎屑岩系油气储层沉积学[M].北京:石油工业出版社, 2002. 徐亚军, 杜远生, 杨江海.沉积物物源分析研究进展[J].地质科技情报, 2007, 26(3):26-32. doi: 10.3969/j.issn.1000-7849.2007.03.005 马收先, 孟庆任, 曲永强.华北地块北缘上石炭统-中三叠统碎屑锆石研究及其地质意义[J].地质通报, 2011, 30(10):1485-1500. doi: 10.3969/j.issn.1671-2552.2011.10.002 范建军, 李才, 王明, 等.青藏高原羌塘南部冈玛错地区展金组的沉积环境分析及碎屑锆石U-Pb定年[J].地质学报, 2014, 88(10):1820-1831. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201410004 王志龙, 胡西冲, 石晓龙, 等.西藏窝若巴勒-白龙地区阿布山组沉积岩石、地球化学特征及碎屑锆石对物源信息的指示意义[J].地质通报, 2017, 36(7):1188-1203. doi: 10.3969/j.issn.1671-2552.2017.07.009 胡培远, 李才, 苏犁, 等.青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年—泛非与印支事件的年代学记录[J].中国地质, 2010, 37(4):1050-1061. doi: 10.3969/j.issn.1000-3657.2010.04.019 陈莉, 徐军, 苏犁.场发射环境扫描电子显微镜上阴极荧光谱仪特点及其在锆石研究中的应用[J].自然科学进展, 2005, 15(11):1403-1408. doi: 10.3321/j.issn:1002-008X.2005.11.019 韩维峰.措勤盆地晚白垩世沉积特征及其构造意义[D].中国地质大学(北京)硕士学位论文, 2013. Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026563309
吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 余红霞, 陈建林, 许继峰, 等.拉萨地块中北部晚白垩世(约90Ma)拔拉扎含矿斑岩地球化学特征及其成因[J].岩石学报, 2011, 27(7):2011-2022. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107010 Wang Q, Zhu D C, Zhao Z D, et al. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet:Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone[J]. Lithos, 2014, s198/199(3):24-37. https://www.sciencedirect.com/science/article/pii/S0024493714001029#!
王保弟, 许继峰, 刘保民, 等.拉萨地块北部~90Ma斑岩型矿床年代学及成矿地质背景[J].地质学报, 2013, 87(1):71-80. doi: 10.3969/j.issn.0001-5717.2013.01.007 马国林, 岳雅慧.西藏拉萨地块北部白垩纪火山岩及其对冈底斯岛弧构造演化的制约[J].岩石矿物学杂志, 2010, 29(5):525-538. doi: 10.3969/j.issn.1000-6524.2010.05.008 高顺宝, 郑有业, 王进寿, 等.西藏班戈地区侵入岩年代学和地球化学:对班公湖-怒江洋盆演化时限的制约[J].岩石学报, 2011, 27(7):1973-1982. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107006 雷鸣, 陈建林, 许继峰, 等.拉萨地体中北部尕尔穷晚白垩世早期高镁闪长玢岩地球化学特征指示:加厚下地壳的拆沉?[J].地质通报, 2015, 34(2/3):337-346. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=2015020310&flag=1 辛洪波, 曲晓明.藏西措勤县日阿与斑(玢)岩有关的铜矿床的矿床地质特征与成矿时代[J].矿床地质, 2006, 25(4):477-482. doi: 10.3969/j.issn.0258-7106.2006.04.012 张硕, 史洪峰, 郝海健, 等.青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义[J].地球科学-中国地质大学学报, 2014, 39(5):509-524. http://d.old.wanfangdata.com.cn/Conference/8244032 井天景.西藏马乡设兴组砂岩锆石U-Pb年代学、岩石地球化学及其意义[D].中国地质大学(北京)硕士学位论文, 2014. Pullen A, Kapp P, Gehrels G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the PaleoTethys Ocean[J]. Geology, 2008, 36(5):351-354. doi: 10.1130/G24435A.1
Dong C Y, Cai L, Wan Y S, et al. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet:Constraint on tectonic affinity and source regions[J]. Science China Earth Sciences, 2011, 54(7):1034-1042. doi: 10.1007/s11430-010-4166-x
Zhu D C, Zhao Z D, Niu Y, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8):727-730. doi: 10.1130/G31895.1
朱弟成, 赵志丹, 牛耀龄, 等.西藏拉萨地块过铝质花岗岩中继承锆石的物源区示踪及其古地理意义[J].岩石学报, 2011, 27(7):1917-1930. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107001 Leier A L, Decelles P G, Kapp P, et al. The Takena Formation of the Lhasa terrane, southern Tibet:The record of a Late Cretaceous retroarc foreland basin[J]. Geological Society of America Bulletin, 2007, 119(1/2):31-48. http://gsabulletin.gsapubs.org/content/119/1-2/31.abstract
朱弟成, 赵志丹, 牛耀龄, 等.拉萨地体的起源和古生代构造演化[J].高校地质学报, 2012, 18(1):1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001 董春艳, 李才, 万渝生, 等.西藏羌塘龙木错-双湖缝合带南侧奥陶纪温泉石英岩碎屑锆石年龄分布模式:构造归属及物源区制约[J].中国科学:地球科学, 2011, (3):299-308. 朱弟成, 潘桂棠, 莫宣学, 等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报, 2006, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002 朱弟成, 莫宣学, 赵志丹, 等.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J].岩石学报, 2008, 24(3):401-412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803001 康志强, 许继峰, 王保弟, 等.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?[J].岩石学报, 2010, 26(10):3106-3116. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010022 夏邦栋, 张开均, 孔庆友.青藏高原内部三条磨拉石带的确定及其构造意义[J].地学前缘, 1999, (3):173-180. doi: 10.3321/j.issn:1005-2321.1999.03.017 范建军.班公湖-怒江洋中西段晚中生代汇聚消亡时空重建[D].吉林大学博士学位论文, 2016. 王立全, 潘桂棠, 丁俊, 等.青藏高原及邻区地质图及说明书[M].北京:地质出版社, 2013. 李华亮.班公湖-怒江缝合带西段洋陆转换的标志及时间[D].中国地质大学博士学位论文, 2014. 唐熊, 陶晓风.措勤地区竟柱山组沉积特征及构造意义[J].沉积与特提斯地质, 2009, 29(1):53-57. doi: 10.3969/j.issn.1009-3850.2009.01.009 贾共祥, 杜凤军, 刘伟.西藏尼玛一带上白垩统竟柱山组的厘定及其意义[J].地质调查与研究, 2007, 30(3):172-177. doi: 10.3969/j.issn.1672-4135.2007.03.003 李华亮, 高成, 李正汉, 等.西藏班公湖地区竟柱山组时代及其构造意义[J].大地构造与成矿学, 2016, 40(4):663-673. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201604004 江西省地质调查院.西藏1: 25万邦多区幅区域地质调查报告. 2002. 成都地质矿产研究所.青藏高原南部空白区基础地质综合研究(喜马拉雅-冈底斯造山带地层与古生物). 2006.