• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

青藏高原中部阿索蛇绿岩岩石学与同位素年龄

曾孝文, 王明, 范建军, 解超明, 罗安波, 高忠维

曾孝文, 王明, 范建军, 解超明, 罗安波, 高忠维. 2018: 青藏高原中部阿索蛇绿岩岩石学与同位素年龄. 地质通报, 37(8): 1492-1502.
引用本文: 曾孝文, 王明, 范建军, 解超明, 罗安波, 高忠维. 2018: 青藏高原中部阿索蛇绿岩岩石学与同位素年龄. 地质通报, 37(8): 1492-1502.
ZENG Xiaowen, WANG Ming, FAN Jianjun, XIE Chaoming, LUO Anbo, GAO Zhongwei. 2018: Petrology and geochronology of Asuo ophiolite in central Tibetan Plateau. Geological Bulletin of China, 37(8): 1492-1502.
Citation: ZENG Xiaowen, WANG Ming, FAN Jianjun, XIE Chaoming, LUO Anbo, GAO Zhongwei. 2018: Petrology and geochronology of Asuo ophiolite in central Tibetan Plateau. Geological Bulletin of China, 37(8): 1492-1502.

青藏高原中部阿索蛇绿岩岩石学与同位素年龄

基金项目: 

中国地质调查局项目《班公湖-怒江成矿带铜多金属矿资源基地调查》 DD20160026

《冈底斯-喜马拉雅铜矿资源基地调查》 DD20160015

国家自然科学基金项目《青藏高原羌唐南部埃迪卡拉纪地层研究》 41602230

《班公湖-怒江洋早白垩世构造演化:来自复理石沉积的制约》 41702227

详细信息
    作者简介:

    曾孝文(1995-), 男, 在读硕士生, 构造地质学专业。E-mail:zengxwjlu@126.com

    通讯作者:

    王明(1984-), 男, 博士, 副教授, 从事青藏高原大地构造与区域地质研究。E-mail:wm609@163.com

  • 中图分类号: P588.12;P597+.3

Petrology and geochronology of Asuo ophiolite in central Tibetan Plateau

  • 摘要:

    阿索蛇绿岩位于尼玛县阿索乡西南,大地构造上归属于狮泉河-永珠-嘉黎蛇绿岩带中段。蛇绿岩以岩片形式混杂在晚侏罗世-早白垩世复理石中,岩石组合较齐全,由下至上为蛇纹岩、辉石岩、堆晶辉长岩、席状岩墙及火山熔岩,同时存在蛇绿岩上覆沉积岩系。辉长岩获得LA-ICP-MS锆石U-Pb谐和年龄为117.5±0.5Ma,时代为早白垩世。狮泉河-永珠-嘉黎蛇绿岩带中的蛇绿岩形成于晚三叠世-早白垩世,主要分布在219~178Ma、165~149Ma和117~114Ma三个年龄段,代表了大洋演化的扩张、俯冲、弧后拉张3个阶段。

    Abstract:

    Asuo ophiolite belongs to Shiquanhe-Yongzhu-Jiali ophiolite zone, located in southwestern Asuo County. The rock combination is complete, and consists from the bottom to the top of serentine, pyroxenite, cumulate gabbro, mafic dyke swarms and volcanic lava, with the existence of sedimentary rocks overlying ophiolite. In this paper, LA-ICP-MS U-Pb dating was carried out for the zircons of the gabbro dyke of Asuo ophiolite. LA-ICP-MS zircon U-Pb dating of gabbro dyke yielded a concordant age of 117.54±0.58Ma, indicating that it was formed in the Early Cretaceous.The ophiolite of Shiquanhe-Yongzhu-Jiali ophiolite zone was formed in Late Triassic to Early Cretaceous and mainly distributed in three age groups of 219~178Ma, 165~149Ma and 117~114Ma, representing the ocean expansion, subduction and back-arc extension respectively.

  • 致谢: 野外工作得到吉林大学西藏科研队的队员们和后勤工作人员的帮助,锆石同位素测试分析由中国地质大学(北京)科学研究院老师帮助完成,在此一并致以真挚的谢意。
  • 图  1   藏北尼玛县阿索乡阿索蛇绿岩地质简图

    1—第四系冲洪积物;2—下白垩统郎山组;3—晚侏罗世-早白垩世复理石岩片;4—中下侏罗统接奴组;
    5—上二叠统昂杰组;6—下二叠统拉嘎组;7—闪长岩;8—石英钠长斑岩;9—花岗岩;10—玄武岩岩片;
    11—辉绿岩岩片;12—辉长岩岩片;13—堆晶岩岩片;14—超基性岩岩片;15—变质岩岩片;
    ①—龙木错-双湖-澜沧江板块缝合带;②—班公湖-怒江板块缝合带;③—狮泉河-永珠-嘉黎蛇绿岩带;
    ④—沙莫勒-米拉山断裂带;⑤—印度-雅鲁藏布江板块缝合带

    Figure  1.   Geological map of the Asuo ophiolite in Asuo Town of Nima County, northern Tibet

    图  2   尼玛县阿索乡加布内热蛇绿岩剖面

    Figure  2.   Profile of Jiabuneire ophiolite in Asuo Town, Nima County

    图版Ⅰ  

    a.辉石岩野外露头;b.粗粒堆晶辉长岩野外露头;c.侵入堆晶岩中的辉长岩;d.斜长花岗岩野外照片;
    e.辉长质岩墙;f.辉绿玢岩岩墙;g.玄武岩枕状构造;h.放射虫硅质岩

    图版Ⅰ.  

    图版Ⅱ  

    a.辉石岩镜下照片;b.细粒堆晶辉长岩镜下照片;c.斜长花岗岩镜下照片;d.辉长岩辉长辉绿结构;
    e.辉长质岩墙;f.辉绿玢岩岩墙;g.细碧岩中空骸晶结构;h.放射虫硅质岩镜下照片。Chl—绿泥石;
    Cpx—单斜辉石;Pl—斜长石;Am—角闪石;Qtz—石英;Ep—绿帘石;Ura—纤闪石

    图版Ⅱ.  

    图  3   阿索蛇绿岩中辉长岩中典型锆石阴极发光(CL)图像及其206Pb/238U年龄

    Figure  3.   Zircon CL images and 206Pb/238U ages of typical zircons of gabbro from Asuo ophiolite

    图  4   阿索蛇绿岩中辉长岩锆石稀土元素蛛网图(a)及Y-U/Yb成因判别图解(b)(标准化数据据参考文献[23])

    Figure  4.   Chondrite-normalized REE patterns(a)and Y-U/Yb plot (b)for zircons in the gabbro of Asuo ophiolite

    图  5   阿索蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb年龄谐和图

    Figure  5.   LA-ICP-MS zircon U-Pb concordia diagrams of gabbro from the Asuo ophiolite

    图  6   狮泉河-永珠-嘉黎蛇绿岩带地质简图(蛇绿岩年龄据参考文献[9-10, 25-28])

    LSLSZ—龙木错-双湖-澜沧江板块缝合带;BNSZ—班公湖-怒江板块缝合带;
    SYJSZ—狮泉河-永珠-嘉黎蛇绿岩带;IYZSZ—印度-雅鲁藏布江板块缝合带

    Figure  6.   Sample geological map of Shiquanhe-Yunzhug-Jiali ophiolite zone

    表  1   阿索蛇绿岩中辉长岩(N17T49)LA-ICP-MS锆石U-Th-Pb同位素测定结果

    Table  1   LA-ICP-MS U-Th-Pb analyses of zircons from samples of the gabbro (N17T49)

    测点 Th U Th/U 同位素比值 年龄/Ma
    /10-6 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    01 539 418 1.29 0.0484 0.0019 0.1225 0.0049 0.0184 0.0002 116 69 117 4 117 1
    02 853 480 1.78 0.0489 0.0020 0.1239 0.0051 0.0184 0.0002 141 74 119 5 118 1
    03 1198 501 2.39 0.0485 0.0020 0.1236 0.0051 0.0185 0.0002 126 75 118 5 118 1
    04 2338 1030 2.27 0.0484 0.0011 0.1238 0.0029 0.0186 0.0002 117 34 119 3 119 1
    05 1059 566 1.87 0.0483 0.0018 0.1222 0.0044 0.0184 0.0002 113 63 117 4 117 1
    06 1094 610 1.79 0.0483 0.0017 0.1226 0.0044 0.0184 0.0002 115 62 117 4 117 1
    07 694 476 1.46 0.0486 0.0020 0.1229 0.0049 0.0184 0.0002 127 71 118 4 117 1
    08 1254 663 1.89 0.0484 0.0015 0.1223 0.0039 0.0183 0.0002 118 54 117 3 117 1
    09 1833 1012 1.81 0.0519 0.0014 0.1314 0.0034 0.0184 0.0002 280 39 125 3 117 1
    10 459 339 1.36 0.0484 0.0028 0.1227 0.0071 0.0184 0.0002 120 105 118 6 117 2
    11 193 175 1.11 0.0484 0.0053 0.1222 0.0134 0.0183 0.0003 116 216 117 12 117 2
    12 2688 1338 2.01 0.0493 0.0012 0.1251 0.0029 0.0184 0.0002 163 34 120 3 118 1
    13 587 369 1.59 0.0484 0.0028 0.1229 0.0070 0.0184 0.0002 117 105 118 6 118 1
    14 909 660 1.38 0.0481 0.0018 0.1218 0.0044 0.0184 0.0002 105 63 117 4 117 1
    15 1580 898 1.76 0.0481 0.0015 0.1223 0.0037 0.0185 0.0002 103 50 117 3 118 1
    16 5112 2216 2.31 0.0485 0.0010 0.1231 0.0025 0.0184 0.0002 124 28 118 2 117 1
    17 547 425 1.29 0.0481 0.0021 0.1220 0.0052 0.0184 0.0002 106 74 117 5 117 1
    18 725 505 1.43 0.0480 0.0019 0.1219 0.0046 0.0184 0.0002 101 65 117 4 118 1
    19 268 215 1.25 0.0484 0.0039 0.1223 0.0099 0.0183 0.0003 118 155 117 9 117 2
    20 554 350 1.59 0.0484 0.0028 0.1234 0.0072 0.0185 0.0002 120 109 118 6 118 1
    下载: 导出CSV

    表  2   阿索蛇绿岩中辉长岩锆石LA-ICP-MS原位微量、稀土元素分析结果

    Table  2   Trace element and REE compositions of zircons in gabbro of Asuo ophiolite as measured by LA-ICP-MS

    10-6
    测点 1 2 3 4 5 6 7 8 9 10
    Y 9824.58 15398.54 9284.82 13990.57 2505.87 4887.58 10160.05 2489.12 11917.05 10087.65
    Nb 11.93 9.84 16.44 22.98 2.18 3.48 25.66 3.03 5.51 4.55
    La 0.07 0.22 0.19 0.22 0.08 0.09 0.08 0.09 0.14 0.11
    Ce 102.37 89.69 188.13 217.35 13.49 31.39 157.27 24.85 52.64 65.38
    Pr 1.15 1.57 2.29 2.86 0.1 0.47 0.86 1.2 1.06 0.95
    Nd 23.62 27.26 43.59 54.08 2.13 7.99 17.99 21.48 20.26 14.92
    Sm 52.98 62.87 89.86 105.72 7.57 18.48 42.88 42.01 46.96 31.86
    Eu 7.82 8.53 4.1 9.05 1.93 3.37 3.24 5.78 7.28 2.44
    Gd 244.9 319.24 349.58 455.08 44.08 92.62 216.77 141.55 252.4 165.98
    Tb 91.16 126.21 117.68 155.89 18 36.38 82.77 41.4 97.74 69.5
    Dy 1061.86 1552.21 1155.24 1653.81 231.12 436.56 969.5 359.45 1193.66 893.98
    Ho 371.91 553.57 330.66 508.31 88.24 162.35 333.05 91.17 428 338.55
    Er 1514.42 2346.45 1127.33 1942.02 380.98 701.92 1342.41 290.28 1761.05 1499.71
    Tm 342.79 544.65 222.75 383.68 94.57 174.76 297.02 55.27 408.11 361.82
    Yb 3622.39 5721.35 2042.4 3565.22 1072.46 1966.76 2936.81 539.69 4350.33 3865.13
    δEu 0.06 0.12 0.1 0.1 0.1 0.1 0.1 0.12 0.06 0.11
    δCe 56.64 25.29 16.94 40.12 43.22 26.39 29.79 28.67 73.89 23.76
    ΣREE 4285.5 7383.11 9952.55 5299.71 4586.49 7703.84 4571.58 8155.72 7815.5 3906.64
    测点 11 12 13 14 15 16 17 18 19 20
    Y 4789.46 3430.63 8233.49 2376.99 6835.81 6508.85 7409.12 16039.71 4906.82 6664.45
    Nb 4.9 3.57 4.26 1.06 2.41 9.1 2.22 38.5 3.46 5
    La 0.07 0.05 0.08 0.13 0.11 0.08 0.07 0.07 0.06 0.08
    Ce 40.07 17.11 30.68 17.38 20.43 36.02 20.88 198.47 23.85 16.81
    Pr 0.22 0.13 0.61 0.19 0.55 0.21 0.29 1.12 0.2 0.27
    Nd 4.91 2.63 10 2.64 10.53 5.13 6 24.05 4.38 6.28
    Sm 14.29 7.9 23.7 6.44 26.45 18.01 18.05 69.65 13.71 19.7
    Eu 2.52 1.48 3.68 2.02 6.59 3.1 4.97 8.57 3.38 4.72
    Gd 88.92 49.8 132.45 34.24 135.1 99.67 120.52 372.88 83.45 122.18
    Tb 35.07 21.38 56.45 14.9 51.89 44.08 49.37 151.28 34.96 48.79
    Dy 431.21 291.45 726.01 193.87 654.44 580.47 668.43 1774.79 439.24 633.91
    Ho 159.24 114.13 274.97 78.27 244.29 224.5 261.27 588.24 162.89 229.03
    Er 711.7 518.44 1223.12 376.76 1064.44 980.44 1131.95 2081.1 683.41 910.85
    Tm 171.53 131.61 303.98 99.19 265.48 237.61 264.44 410.32 155.33 205.34
    Yb 1849.8 1514.91 3381.98 1202.84 2953.94 2537.51 2662.4 3740.38 1591.12 2041.04
    ΔEu 0.11 0.1 0.12 0.07 0.08 0.06 0.06 0.07 0.1 0.14
    ΔCe 25.99 119.94 19.44 70.28 95.39 230.11 56.84 39.58 26.32 18.37
    ΕREE 2547.44 6461.63 6408.46 3093.19 6894.38 11864.59 4553.28 4967.05 2846.32 5474.27
    下载: 导出CSV
  • Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth & Planetary Science Letters, 2011, 301(1/2):241-255. doi: 10.1016-j.epsl.2010.11.005/

    Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245:7-17. doi: 10.1016/j.lithos.2015.06.023

    Zhu D C, Zhao Z D, Niu Y, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002

    徐梦婧.青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化[D].吉林大学博士学位论文, 2014.

    Xu M, Li C, Zhang X, et al. Nature and evolution of the Neo-Tethys in central Tibet:synthesis of ophiolitic petrology, geochemistry, and geochronology[J]. International Geology Review, 2014, 56(9):1072-1096. doi: 10.1080/00206814.2014.919616

    曹圣华, 罗小川, 唐峰林, 等.班公湖-怒江结合带南侧弧-盆系时空结构与演化特征[J].中国地质, 2004, 31(1):51-56. doi: 10.3969/j.issn.1000-3657.2004.01.007
    王永胜, 曲永贵, 吕鹏, 等.西藏永珠蛇绿岩带地质特征[J].吉林地质, 2003, 22(2):1-14. doi: 10.3969/j.issn.1001-2427.2003.02.001
    杨日红, 李才, 迟效国, 等.西藏永珠-纳木湖蛇绿岩地球化学特征及其构造环境初探[J].现代地质, 2003, 17(1):14-19. doi: 10.3969/j.issn.1000-8527.2003.01.003
    和钟铧, 杨德明, 王天武.西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义[J].岩石学报, 2006, 22(3):653-660. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603014
    徐建鑫.西藏改则县拉果错蛇绿岩的构造属性[D].吉林大学硕士学位论文, 2015.
    简平, 刘敦一, 张旗, 等.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年[J].地学前缘, 2003, 10(4):439-456. doi: 10.3321/j.issn:1005-2321.2003.04.012
    潘桂棠, 陈智樑, 李兴振, 等.东特提斯多弧-盆系统演化模式[J].岩相古地理, 1996(2):52-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600624367
    李才, 黄小鹏, 翟庆国, 等.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界[J].地学前缘, 2006, 13(4):136-147. doi: 10.3321/j.issn:1005-2321.2006.04.011
    潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
    谢国刚.西藏冈底斯-拉萨陆块中部构造格局及地质演化[D].中国地质大学(武汉)硕士学位论文, 2004.
    唐峰林, 黄建村, 罗小川, 等.藏北阿索构造混杂岩的发现及其地质意义[J].东华理工大学学报(自然科学版), 2004, 27(3):245-250. doi: 10.3969/j.issn.1674-3504.2004.03.009
    袁洪林, 吴福元, 高山, 等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报, 2003, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
    吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon:trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy & Petrology, 2002, 143(5):602-622. doi: 10.1007/s00410-002-0364-7

    Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026563309

    Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7):643-646. doi: 10.1130/G23603A.1

    Ludwig K R.User's manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronogical Center Spec.Pub., 2003, 4:1-70.

    Sun S S, Mc Donoungh W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Noryy M J. Magmatism in the Ocean Basins. Geological Society London Special Publications, 1989, 42: 313-345.

    Zhang K J, Xia B, Zhang Y X, et al. Central Tibetan Meso-Tethyan oceanic plateau[J]. Lithos, 2014, s210/211:278-288. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234761567/

    Yuan Y J, Yin Z X, Weiliang L, et al. Tectonic Evolution of the Meso-Tethys in the Western Segment of Bangonghu-Nujiang Suture Zone:Insights from Geochemistry and Geochronology of the Lagkor Tso Ophiolite[J]. Acta Geologica Sinica, 2015, 89(2):369-388. doi: 10.1111/1755-6724.12436

    Zhong Y, Xia B, Liu W L, et al. Geochronology, petrogenesis and tectonic implications of the Jurassic Namco-Renco ophiolites, Tibet[J]. International Geology Review, 2015, 57(4):508-528. doi: 10.1080/00206814.2015.1017776

    Zeng Y C, Xu J F, Chen J L, et al. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau[J]. Lithos, 2018, s300/301:250-260. https://www.sciencedirect.com/science/article/pii/S0024493717304103

    郑有业, 许荣科, 马国桃, 等.锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲的时间约束[J].岩石学报, 2006, 22(4):895-904. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604013

    Xu M J, Li C, Xu W, et al. Petrology, Geochemistry and Geochronology of Gabbros from the Zhongcang Ophiolitic Mélange, Central Tibet:Implications for an Intra-Oceanic Subduction Zone within the Neo-Tethys Ocean[J]. Journal of Earth Science, 2014, 25(2):224-240. doi: 10.1007/s12583-014-0419-5

    肖庆辉, 李廷栋, 潘桂棠, 等.识别洋陆转换的岩石学思路—洋内弧与初始俯冲的识别[J].中国地质, 2016, 43(3):721-737. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201603003
图(8)  /  表(2)
计量
  • 文章访问数:  3520
  • HTML全文浏览量:  294
  • PDF下载量:  2454
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-04
  • 修回日期:  2018-03-13
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2018-08-14

目录

    /

    返回文章
    返回