The Early Cretaceous Duguer metagabbro from Qiangnan-Baoshan block, Tibet Plateau: Implications for the subduction and closure of Bangong Co-Nujiang Ocean
-
摘要:
班公湖-怒江洋的俯冲闭合过程对于青藏高原早期形成与演化研究具有重要的意义。在羌南-保山板块腹地都古尔地区识别出早白垩世变质辉长岩。对其进行了详细的岩石学、年代学和全岩地球化学研究。锆石U-Pb测年结果显示,该辉长岩形成年龄为110.4±1.4Ma。全岩地球化学特征显示,该辉长岩具有碱性玄武岩的特征,富集轻稀土元素,轻、重稀土元素分馏较强,无明显的Eu异常;富集Rb、Pb、Nd和Ti,亏损Ba、K、Sr和Y,具有洋岛型玄武岩的亲缘性。该辉长岩为尖晶石-石榴子石二辉橄榄岩经低程度部分熔融的产物,源区存在少量的石榴子石残留。岩浆在上升过程中经历了少量下地壳物质的混染和以斜方辉石为主的分离结晶作用。在综合区域最新研究成果的基础上,认为该辉长岩形成于板内环境,为班公湖-怒江洋闭合后洋脊俯冲的产物。
Abstract:The subduction and closure of the Bangong Co-Nujiang Ocean are recognized as significant events in geotectonic evolution of Tibet Plateau. This study focused on the first identified Early Cretaceous metagabbro in Duguer area from central QiangnanBaoshan block. The authors report the results of petrological, zircon U-Pb age and whole-rock geochemical analyses. Zircon U-Pb age of 110.4±1.4Ma indicates emplacement during the late Early Cretaceous. Geochemical data for Duguer metagabbro indicate that it has an alkaline basalt affinity and is characterized by enrichment of light rare earth elements with no Eu anomaly, enrichment of Rb, Pb, Nd and Ti, and depletion of Ba, K, Sr and Y, similar to features of OIB. This metagabbro was derived from low partial melting of spinel-garnet lherzolites, with minor residual garnet. The ascending magma underwent minor lower crust contamination and orthopyroxene-donimated fractional crystallization. Combining the data obtained by the authors with previous research, the authors have reached the conclusion that the Duguer metagabbro was developed in an intraplate tectonic setting and was formed by ridge subduction after the closure of Bangong Co-Nujiang Ocean.
-
Keywords:
- central Qiangtang /
- Duguer /
- gabbro /
- geochemistry /
- Bangong Co-Nujiang Ocean
-
班公湖-怒江板块缝合带位于羌南-保山板块和冈底斯板块之间,主要由侏罗纪—白垩纪蛇绿混杂岩、洋岛、复理石沉积、弧岩浆岩等组成[1-5],其对青藏高原中部构造演化具有重要的研究意义。由于该缝合带复杂的构造演化历史及高原极端的气候和交通条件,使得有关班公湖-怒江洋的构造演化过程仍然存在较多争议,如俯冲起始与极性、闭合时限、机制等。其中该大洋在侏罗纪—白垩纪的俯冲闭合过程被认为是青藏高原中部非常重要的构造事件。目前,有关该大洋的闭合时限主要存在2种观点:一是晚侏罗世—早白垩世早期[1-4, 6-8],主要依据为中侏罗统德极国组、上侏罗统—下白垩统沙木罗组角度不整合于蛇绿岩和木嘎岗日岩群之上[6-9];另一种观点为晚于早白垩世中晚期[10-17],主要依据为近年来在该缝合带中识别出的早白垩世洋岛[12-13, 18]、蛇绿岩和放射虫硅质岩[10-11, 19],海相向非海相转变的地层(125~118Ma)[4],以及区域上大面积出露的上白垩统竟柱山组和阿布山组等磨拉石建造[20-21]。
近年来,前人已在羌南-保山板块和冈底斯板块先后识别出早白垩世晚期的岩浆岩,这期岩浆作用对于研究班公湖-怒江洋的俯冲闭合过程及壳幔相互作用具有重要的意义。目前,有关冈底斯板块早白垩世岩浆作用的研究程度较高,其中,冈底斯板块中部和北部早白垩世岩浆岩被认为是班公湖-怒江洋南向俯冲和板片断离(110Ma)的产物[22-24],冈底斯南部以冈底斯岩基为代表的多期次岩浆作用(白垩纪—新近纪)被认为是新特提斯洋(印度-雅鲁藏布江缝合带)北向俯冲的产物[4-5, 24]。而羌南-保山板块的早白垩世岩浆作用分布零散,研究程度相对较低,有关该期岩浆作用的岩石成因及深部动力学机制仍然存在较多争议。有研究者认为,其是班公湖-怒江洋北向俯冲消减的产物[16, 25-27],之后一些研究者注意到羌南-保山板块上150~130Ma的岩浆间断,并认为早白垩世岩浆作用是板片回转的产物[28-30]。另外,最近有学者提出,羌南-保山板块南缘的早白垩世基性岩墙和双峰式火山岩是洋脊俯冲的产物[15, 17]。因此,为了更好地限定班公湖-怒江洋的闭合时限和动力学机制,还需对羌南-保山板块的早白垩世晚期岩浆岩,尤其是基性岩,进行深入的岩石学、年代学和岩石成因方面的研究。
因此,本文以羌南-保山板块中部都古尔地区早白垩世变质辉长岩为研究对象,对其进行锆石U-Pb年龄和全岩地球化学研究,对该变质辉长岩的岩石成因和构造背景进行制约,探讨班公湖-怒江洋的俯冲闭合过程。
1. 区域地质背景
羌南-保山板块位于青藏高原中部,北以龙木错-双湖-澜沧江板块缝合带为界,南以班公湖-怒江板块缝合带与冈底斯板块相隔,地质构造复杂,断裂构造发育(图 1-a)。中生代岩浆岩在羌南-保山板块南缘零散分布,主要集中在中西部,时代较连续(170~110Ma),代表了班公湖-怒江洋北向俯冲闭合的产物[26, 31-32]。研究区位于羌南-保山板块中部,改则县城以北200km左右(图 1-a)。区内出露的地层时代较齐全(图 1-b),主体为晚石炭世—早二叠世含冷水型沉积的展金组,岩性主要为变质石英砂岩、冰海杂砾岩、板岩、千枚岩等,夹基性火山岩,为一套遭受低绿片岩相改造的冈瓦纳型沉积;其次为少量的寒武系、奥陶系和三叠系沉积序列。寒武系和奥陶系主要由石英岩、片岩、千枚岩、片麻岩、变质砂岩等组成[33]。区内岩浆岩时代集中,岩性为晚寒武世、奥陶纪和晚侏罗世花岗岩类等,以及晚石炭世基性岩墙群(图 1-b)。其中晚侏罗世花岗岩被解释为班公湖-怒江洋北向俯冲的产物[34]。研究区内早古生代的地层和岩浆岩均经历了晚三叠世的中低级变质作用,为龙木错-双湖-澜沧江洋闭合后碰撞造山的产物[35]。另外,Pullen等[34]和Liu等[35]也在该地区识别出晚侏罗世变质变形事件,其很可能为安第斯型造山事件的产物。
图 1 羌塘中部都古尔地区地质简图(据参考文献[35]修改)①—康西瓦-玛沁-昆仑山缝合带;②—西金乌兰-金沙江缝合带;③—龙木错-双湖-澜沧江缝合带;④—班公湖-怒江缝合带;⑤—印度-雅鲁藏布江缝合带Figure 1. Geological sketch map of Duguer area in central Qiangtang2. 岩石学特征
都古尔地区变质辉长岩位于龙木错-双湖-澜沧江板块缝合带以南50km,地处羌南-保山板块的腹地。主要出露于都古尔山南5km处,岩墙出露规模较小,东西长约150m,宽仅为30m左右。辉长岩墙为变余结晶结构,块状构造,可见弱定向(图 2-a),矿物组成主要为透辉石(50%)、斜长石(20%)和钠长石(25%)(图 2-b)。辉石多呈柱状自形,粒度为0.1~0.7mm,局部可见弱的聚片双晶。斜长石多呈板柱状,自形-半自形,粒度较细,为0.05~0.1mm,局部可见聚片双晶。钠长石多呈短柱状,半自形-他形,粒度较细,为0.03~0.1mm。辉长岩经历了后期的绿片岩相变质作用,辉石边部变质为滑石、纤闪石、绿泥石等,但整体保留了辉石的形态(图 2-b)。辉长岩墙侵入围岩为奥陶系云母石英片岩和变质石英砂岩。
3. 锆石U-Pb测年
3.1 分析方法
锆石颗粒在河北省区域地质调查所实验室采用重液和磁法进行分选。样品制靶和阴极发光(CL)图像在中国地质科学院地质研究所完成。锆石透射光和反射光照相及激光等离子体质谱仪(LA-ICP-MS)微区原位U-Th-Pb同位素分析在中国地质大学(北京)地学实验中心完成。激光剥蚀系统为UP193SS型深紫外(DUV)193μm、ArF准分子激光剥蚀系统,ICP-MS为Agilent 7500a。激光剥蚀过程中载气为高纯度的氦气,束斑直径为36μm,剥蚀时间为45s。NIST612为外标,NIST610( 29Si)为内标进行标定。标准锆石91500为外标进行同位素比值校正[36],标准锆石TEM(417Ma)、NIST612和NIST614做监控盲样。采用Glitter 4.4软件对数据进行处理,采用Isoplot 4.15软件绘制U-Pb谐和图和计算年龄加权平均值[37]。
3.2 分析结果
都古尔地区变质辉长岩锆石同位素U-Pb数据见表 1。辉长岩中锆石可以分为2组,一组多为椭圆状,少数为棱角状,25~100μm,长宽比为1: 1~2: 1;另一组多为自形柱状,50~130μm,长宽比为1: 1~2.5:1,多为无色透明到黑灰色,可见弱的岩浆环带结构,为典型的岩浆锆石。对25颗锆石进行了锆石U-Pb同位素测试,第一组20个测点获得了较老的206U/238Pb年龄(959~135Ma),第二组5个测点获得的206U/238Pb年龄较一致,年龄加权平均值为110.4± 1.4Ma(图 3)。变质辉长岩中第二组锆石获得的U和Th含量分别为96.0×10-6~1280.2×10-6和63.9×10-6~1791.9×10-6,对应的Th/U值为0.67~1.60,这些特征与岩浆锆石的特征一致。因此认为,年龄加权平均值110.4±1.4Ma代表了辉长岩墙侵位的年龄,而较老的锆石年龄则代表了辉长岩捕获的围岩的锆石。
表 1 都古尔变质辉长岩LA-ICP-MS锆石U-Th-Pb同位素测定结果Table 1. U-Th-Pb isotope compositions of zircons in Duguer metagabbro as measured by LA-ICP-MS测点 Th/10-6 U/10-6 同位素比值 年龄/Ma 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ T2-01 162.85 956.73 0.0687 0.0013 1.5181 0.0285 0.1604 0.0021 888 19 938 11 959 12 T2-02 100.72 703.36 0.0665 0.0148 1.0613 0.2341 0.1158 0.0032 822 481 734 115 706 19 T2-03 586.91 699.03 0.0653 0.0013 0.8367 0.0170 0.0929 0.0012 783 22 617 9 573 7 T2-04 90.71 336.69 0.0581 0.0012 0.6570 0.0134 0.0819 0.0011 535 23 513 8 508 6 T2-05 35.1 460.17 0.0671 0.0013 1.3275 0.0262 0.1435 0.0019 841 21 858 11 864 11 T2-06 70.41 410.91 0.0736 0.0015 1.4856 0.0293 0.1463 0.0019 1031 20 925 12 880 11 T2-07 70.09 557.02 0.0587 0.0012 0.7409 0.0153 0.0916 0.0012 555 23 563 9 565 7 T2-08 258.49 163.74 0.0601 0.0020 0.1425 0.0047 0.0172 0.0003 606 45 135 4 110 2 T2-09 169.85 190.87 0.0497 0.0018 0.1957 0.0069 0.0286 0.0004 180 56 181 6 182 2 T2-10 53.84 194.34 0.0582 0.0012 0.3274 0.0063 0.0408 0.0005 538 22 288 5 258 3 T2-11 1791.9 1280.2 0.0960 0.0043 0.2324 0.0100 0.0176 0.0003 1547 87 212 8 112 2 T2-12 122.08 333.35 0.0681 0.0017 1.2711 0.0269 0.1353 0.0016 873 51 833 12 818 9 T2-13 64.3 89.92 0.0500 0.0025 0.1963 0.0096 0.0285 0.0005 193 85 182 8 181 3 T2-14 246.44 154.47 0.0482 0.0025 0.1131 0.0058 0.0170 0.0003 109 86 109 5 109 2 T2-15 288.78 615.84 0.0641 0.0009 0.8037 0.0103 0.0909 0.0011 746 12 599 6 561 6 T2-16 498.26 315.57 0.0482 0.0013 0.1153 0.0031 0.0173 0.0002 111 39 111 3 111 1 T2-17 2831.44 757.79 0.0502 0.0065 0.1987 0.0254 0.0287 0.0005 203 275 184 22 183 3 T2-18 468.76 1148.32 0.0560 0.0023 0.2364 0.0090 0.0306 0.0004 452 92 215 7 194 3 T2-19 20.84 425.07 0.0742 0.0011 1.6185 0.0221 0.1583 0.0019 1046 12 977 9 947 11 T2-20 52.16 423.82 0.0568 0.0013 0.5653 0.0106 0.0722 0.0009 484 50 455 7 449 5 T2-21 63.88 96 0.0461 0.0150 0.1049 0.0340 0.0165 0.0004 525 101 31 106 3 T2-22 2562.66 1777.12 0.0529 0.0009 0.2116 0.0033 0.0290 0.0004 323 16 195 3 184 2 T2-23 464.4 389.57 0.0562 0.0010 0.5606 0.0093 0.0724 0.0009 459 17 452 6 451 5 T2-24 180.12 457.08 0.0542 0.0011 0.2696 0.0053 0.0361 0.0005 380 22 242 4 228 3 T2-25 1058.51 627.74 0.0489 0.0017 0.1422 0.0048 0.0211 0.0003 144 54 135 4 135 2 4. 全岩地球化学特征
4.1 分析方法
全岩地球化学分析在中国地质大学(北京)地学实验中心完成。所用仪器为美国利曼公司(LEE⁃ MAN LABS.INC)Prodigy型等离子发射光谱仪(ICP-OES)和ICP-MS(Agilent 7500a)。在超净实验室中称取50mg样品粉碎至200目,在高压反应釜中采用两酸(HF+HNO3)在195℃条件下进行样品的预处理,并将碱溶溶液用纯硝酸提取定容后待测。分析过程中采用美国地质调查局标样AGV2和国家地质测试中心岩石标样GSR-1、GSR-3进行分析质量检查和监控[38]。测试分析步骤详见参考文献[39]。
4.2 分析结果
变质辉长岩的岩石地球化学测试分析数据见表 2。样品的SiO2含量较低(49.80%~51.77%),具有较高的Al2O3(13.79% ~14.30%)、TFe2O3(13.20% ~14.14%)、MgO(5.35%~5.89%)、CaO(7.46%~9.08%)和TiO2(4.49%~4.63%)含量。另外,这些样品还具有较高的Mg#值(48.2~49.3),较低的Na2O(0.56%~0.74%)和K2O(0.94% ~1.94%)含量。TiO2含量(4.49%~4.63%)具有板内火山岩的特征,且高于典型的岛弧型火山岩和洋中脊拉斑玄武岩[40-41]。在Nb/Y-Zr/TiO2图解中样品点落入碱性玄武岩的区域(图 4-a),在Co-Th图解中落入高钾钙碱性和钾玄岩系列(图 4-b)。
表 2 都古尔变质辉长岩全岩主量和微量元素测定结果Table 2. Whole-rock major and trace element compositions of Duguer metagabbro样品 T2H1 T2H2 T2H3 T2H4 T2H5 T2H6 T2H7 T2H8 SiO2 50.37 50.19 51.17 51.77 50.40 49.96 50.94 49.80 TiO2 4.51 4.54 4.49 4.49 4.50 4.56 4.56 4.63 Al2O3 14.21 13.79 14.05 13.82 14.04 13.84 14.18 14.30 TFe2O3 13.61 13.97 13.64 13.20 13.71 14.06 13.99 14.14 MnO 0.23 0.20 0.20 0.21 0.21 0.20 0.21 0.19 MgO 5.58 5.65 5.45 5.35 5.70 5.87 5.73 5.89 CaO 8.06 8.23 8.33 7.87 8.07 8.93 7.46 9.08 Na2O 0.56 0.62 0.71 0.61 0.57 0.66 0.57 0.74 K2O 1.61 1.94 1.12 1.42 1.67 1.32 1.46 0.94 P2O5 0.54 0.52 0.58 0.51 0.54 0.50 0.56 0.57 烧失量 1.33 0.99 0.82 1.25 1.20 0.77 0.93 0.41 总计 100.60 100.63 100.55 100.49 100.61 100.67 100.57 100.69 Li 57.54 36.67 36.12 48.66 51.64 36.36 43.88 25.43 P 3031.60 3025.10 3174.40 2967.90 3126.50 2810.60 3231.80 3045.90 K 15483.00 18213.00 10083.30 12911.60 16003.00 12292.80 14105.00 8427.90 Sc 29.46 28.46 27.34 28.08 29.09 28.85 30.00 27.63 V 389.74 382.46 370.96 371.93 387.40 379.08 399.62 372.84 Co 58.61 50.50 53.21 50.45 54.27 57.44 57.02 54.51 Cu 14.19 38.45 24.58 12.22 21.20 12.48 16.88 13.71 Zn 152.38 145.52 164.75 150.75 143.54 143.94 151.82 141.14 Ga 31.62 31.41 30.25 29.95 30.99 30.30 32.40 29.63 Pb 19.66 15.74 20.98 21.22 19.68 15.02 16.91 18.58 Cr 53.63 51.55 38.64 51.82 58.15 58.44 62.65 59.36 Ni 51.14 42.61 39.70 45.76 54.05 56.88 55.94 52.34 Rb 101.14 141.68 67.09 88.90 104.74 71.50 97.84 49.84 Ba 351.60 340.40 275.19 316.40 378.20 290.80 259.00 222.20 Th 5.15 4.97 5.35 4.99 4.75 4.82 4.89 4.75 U 1.15 1.06 1.12 1.10 1.03 0.95 1.03 0.99 Nb 38.32 36.58 38.63 37.53 37.82 34.76 38.18 36.47 Cs 1.22 2.20 1.92 1.23 1.79 1.48 1.87 1.20 Ta 2.67 2.22 2.78 2.59 2.22 2.11 2.26 2.20 La 45.65 43.51 45.23 43.62 43.26 39.17 43.85 42.23 Ce 96.54 92.21 95.82 93.93 92.30 85.13 92.32 90.17 Pr 13.16 12.64 13.22 12.63 12.52 11.28 12.72 12.20 Sr 389.40 346.90 430.20 422.70 416.50 397.90 403.20 466.60 Nd 54.56 52.65 55.17 52.46 52.04 47.08 52.92 50.65 Zr 347.36 344.32 350.28 340.80 341.12 302.56 343.84 330.88 Hf 8.31 8.09 8.49 8.03 8.19 7.46 8.40 8.13 Sm 12.15 11.80 12.34 11.72 11.63 10.60 11.85 11.34 Eu 3.74 3.85 3.68 3.51 3.53 3.38 3.57 3.48 Gd 12.07 11.75 12.21 11.54 11.49 10.57 11.78 11.17 Tb 1.67 1.65 1.70 1.62 1.59 1.48 1.66 1.57 Dy 9.35 9.11 9.42 8.97 8.86 8.24 9.24 8.66 Y 40.10 38.82 39.76 38.30 38.94 36.08 40.58 37.71 Ho 1.73 1.70 1.76 1.67 1.65 1.55 1.75 1.62 Er 4.39 4.29 4.46 4.19 4.18 3.92 4.39 4.09 Tm 0.55 0.54 0.56 0.53 0.52 0.49 0.56 0.51 Yb 3.39 3.29 3.43 3.24 3.18 3.00 3.34 3.17 Lu 0.45 0.43 0.45 0.43 0.42 0.40 0.44 0.42 变质辉长岩样品富集轻稀土元素(LaN/SmN = 2.37~2.43和LaN/YbN = 9.37~9.76),无明显Eu异常(Eu/Eu*= 0.92~1.00)(图 5-a)。在原始地幔标准化微量元素蛛网图(图 5-b)上,不同程度地亏损大离子亲石元素(LILE;Ba、K、Sr等)和Y,富集高场强元素(Pb、Nd、Ti等)和Rb。样品稀土元素(REE)配分曲线和微量元素蛛网图显示与OIB具有相似性(图 5)。
图 5 都古尔早白垩世晚期变质辉长岩球粒陨石标准化稀土元素配分曲线和原始地幔标准化微量元素蛛网图(标准值据参考文献[41])Figure 5. Chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns of late Early Cretaceous metagabbro from Duguer area5. 讨论
5.1 蚀变与元素迁移
在变质/蚀变作用过程中,高场强元素和稀土元素是相对不活动的,而大离子亲石元素是易活动元素[44-46]。由于都古尔变质辉长岩经历了后期的变质作用改造,因此在利用全岩地球化学数据讨论其岩石成因和构造环境之前需探讨元素的活动性。目前最简便有效的方法是利用最不活动元素Zr与其他元素之间的双变量图解的相关性判别元素的活动性[47]。
都古尔变质辉长岩的REE、MgO、Na2O、K2O、Rb、Nb、Ta、TiO2、Cr、Ni与Zr的相关图解如图 6所示。从图 6可以看出,稀土元素La、Sm、Eu、Ti与Zr具有非常好的相关性,相关系数R分别为0.960、0.963、0.720和0.746(样品T2H6除外)。高场强元素Nb、Ta、Hf、Th、U、P和Pb与Zr具有较好的相关性,相关系数分别为0.906、0.645(样品T2H6除外)、0.921、0.820(样品T2H6除外)、0.806、0.577、0.592(部分元素图略)。另外,Cr和Ni也表现出较好的相关性,相关系数分别为0.615(样品T2H6除外)和0.569;而大离子亲石元素Rb、Sr、Ba、Ca、K、Na、Mg、Al与Zr的相关性较差(部分元素图略),活动性较强的元素具有很明显的分散性,其相关系数分别为0.392、0.550(样品T2H6除外)、0.404(样品T2H6除外)、0.651、0.380(样品T2H6除外)、0.285、0.627、0.284(样品T2H6除外)。
由以上分析可知,Nb、Hf、Th、U、Ti和稀土元素在变质作用过程中稳定,基本无变化,可以代表原岩的含量和特征;Ca、Sr、P、Pb、Ta、Mg、Cr和Ni遭受了轻微的影响,元素迁移不明显,基本也保留了原岩的特征。而大离子亲石元素Rb、Ba、Na、K和Al在变质作用过程中发生了一定的迁移,虽然可以反映原岩的一些特征,但不建议用来讨论岩石成因。
5.2 岩石成因
(1)分离结晶和地壳混染
变质辉长岩的Cr(38.64×10-6~62.65×10-6)、Ni(39.70×10-6~56.88×10-6)和Mg#值(48.2~49.3)明显低于原始地幔来源的岩浆(Cr = 300×10-6~500×10-6,Ni=300×10-6~400×10-6,Mg#=68~76)[48],说明辉长岩岩浆经历了不同程度的分离结晶作用(如橄榄石、铬铁矿等)。在Harker图解中,TiO2(图 7-c)与Mg#呈正相关,显示含Ti矿物相的分离结晶(例如金红石、钛铁矿、榍石等);TFe2O3(图 7-b),Cr(图 7-e)和Ni(图 7-f)与Mg#呈正相关,表明辉长岩岩浆可能经历了橄榄石和辉石的分离结晶作用。从Ni-Cr图解可以看出,变质辉长岩经历了以斜方辉石为主的分离结晶作用(图 8-a)。
图 8 都古尔早白垩世晚期变质辉长岩Cr-Ni[45](a), (Th/Ta)PM-(La/Nb)PM[12, 52](b), Nb/Yb-Th/Yb[56](c), Sm-Sm/Yb[57](d), (La/Sm)PM-(Er/Yb)PM[58](e)和Zr-Zr/Y图解[59](f)OIB—洋岛型玄武岩;MORB—洋中脊型玄武岩;N-MORB—亏损洋中脊型玄武岩;E-MORB—富集洋中脊型玄武岩;Gt—石榴子石;1000*F%—部分熔融程度Figure 8. Cr-Ni (a), (Th/Ta)PM-(La/Nb)PM (b), Nb/Yb-Th/Yb (c), Sm-Sm/Yb(d), (La/Sm)PM-(Er/Yb)PM(e) and Zr-Zr/Y(f) diagrams of late Early Cretaceous metagabbro from Duguer area锆石U-Pb年代学研究在辉长岩中识别出了较老的捕获锆石,这表明原始岩浆在上升过程中应该受到了地壳物质的混染。一般情况下,陆壳物质富集LILE,Zr和Hf,但亏损Nb、Ta和Ti。然而,都古尔辉长岩的微量元素蛛网图显示,大离子亲石元素Sr的亏损,Zr和Hf无富集,Nb和Ta无亏损,同时Ti显示轻微富集,明显区别于大陆地壳[49],表明在原始岩浆上升过程中所经历的地壳物质的混染非常有限。另外,较低的Lu/Yb(0.13), La/Sm(3.67~3.76)和La/Ta值(16.30~19.58)也证实了这一点[41, 50-51]。同时,在(Th/Ta)PM-(La/Nb)PM图解(图 8-b)上,辉长岩落在少量下地壳混染的区域[12, 52]。上地壳一般富集La和Th,下地壳一般亏损Th[53]。在微量元素蛛网图上,La和Th未表现出异常(图 5-b),显示辉长岩基本代表了原始岩浆的组成,并未受到强烈的地壳混染。
(2)富集地幔源区
都古尔变质辉长岩具有较高的TiO2(4.49%~4.63%)和TFe2O3(13.20%~14.14%)含量。在球粒陨石标准化稀土元素配分曲线和原始地幔标准化微量元素蛛网图上,辉长岩样品显示出一致和近于平行的曲线模式,且与OIB(洋岛型玄武岩)的稀土元素配分曲线和微量元素蛛网图相似(图 5)。Th和Nb在大洋玄武岩分类和俯冲带物质的识别上具有非常重要的作用。在Nb/Yb-Th/Yb图解上,所有样品点均落入邻近地幔演化区域(OIB,图 8-c),表明都古尔变质辉长岩来源于富集的地幔源区。另外,变质辉长岩中的TiO2和Zr(302.56 × 10-6~350.28×10-6)含量明显高于正常交代地幔楔部分熔融形成的弧玄武岩(TiO2 < 1%)[54],表明变质辉长岩的原始岩浆很可能来源于软流圈地幔物质。变质辉长岩较高的Sm/Yb值和Sm含量显示,岩浆来源于尖晶石-石榴子石二辉橄榄岩的低程度部分熔融(图 8-d)。同时(Sm/Yb)PM值(3.92~4.06)显示岩浆源区可能存在少量的石榴子石残留[55]。另外,Lu/Hf-La/Sm图解也显示,变质辉长岩原始岩浆来源于中-低等程度的部分熔融(约20%),且源区存在约2%的石榴子石残留(图 8-e)。
5.3 构造背景
都古尔变质辉长岩因其较高的轻稀土元素(LREE)、Zr含量和Zr/Y值明显区别于岛弧玄武岩和MORB(洋中脊型玄武岩),而具有板内玄武岩的特征(图 8-f)。同时较高的(Nb/La)PM值(0.81~0.86)明显区别于安第斯型弧玄武岩(0.17~0.35)[60]。然而,由于岩浆岩可以产出于多种环境,因此单纯的地球化学图解并不能很好地明确其产出的构造背景。为了更好地限定其构造背景,需要将区域地质研究成果与地球化学特征有机结合起来。
晚侏罗世—早白垩世,由于班公湖-怒江洋的俯冲消减,在羌南-保山板块南缘和冈底斯板块北缘产生了大量的弧岩浆作用。另外,近年来越来越多的学者注意到羌南-保山板块南缘晚侏罗世—早白垩世(150~130Ma)存在明显的岩浆间断,相似的间断也在安第斯型俯冲带中识别出来[26, 32, 35]。Liu等[35]通过对都古尔地区变质变形事件的研究,结合岩浆活动的间断及沉积序列的缺失认为,在晚侏罗世羌南-保山板块可能存在安第斯型造山作用,并且这一构造抬升事件可以一直持续到早白垩世早期。早白垩世晚期的岩浆作用主要分布在羌南-保山板块的南缘,在该板块腹地分布较少,被认为是低角度俯冲而后板片回转的结果[28-30, 35]。
另外,前人在多玛地区的构造填图和碎屑锆石研究显示,羌南-保山板块在晚侏罗世—早白垩世经历了明显的地壳缩短[61]。在措勤地区,Murphy等[62]认为白垩纪的地壳缩短为187km。在改则县以北,白垩纪中期盆地形成过程中同样经历了明显的地壳缩短[3]。尼玛地区沉积学与地层学研究显示,尼玛盆地在125~118Ma经历了缩短变形和剥蚀事件,并导致了其由海相向非海相环境的转变[4]。
因此,早白垩世晚期在班公湖-怒江洋演化过程中具有非常重要的地位。在该时期,班公湖-怒江洋的演化进入消亡期,因此准确限定该大洋的闭合时限对于确定都古尔变质辉长岩的构造背景和岩石成因机制至关重要。如前所述,近年来,越来越多的学者在班公湖-怒江缝合带的中西部识别出了早白垩世洋岛型岩石组合、蛇绿岩、放射虫硅质岩等洋壳存在的证据(120~108Ma)[12, 18, 63],说明班公湖-怒江洋在早白垩世仍未关闭,可能处于残留海阶段。
对于恢复古大洋的消亡史,确定其闭合时限是关键。目前最有效的方法是大洋闭合后陆陆碰撞过程中在洋壳物质上形成的不整合和磨拉石建造的识别[9, 63-66]。下白垩统去申拉组为一套陆相河湖相沉积,其主要发育在冈底斯板块北部[12, 67-68],另外最新的地质调查工作在羌南-保山板块南缘的多不扎地区亦识别出该套沉积,其安山岩夹层获得的锆石U-Pb年龄为105Ma[65]。目前在班公湖-怒江洋盆中未识别出比去申拉组更年轻的洋壳物质记录。因此,下白垩统去申拉组的沉积特征表明,班公湖-怒江洋在早白垩世晚期已经闭合。Chen等[69]对改则地区去申拉组火山岩和红层的古地磁学研究结果显示,在早白垩世晚期(去申拉组沉积之后),羌南-保山板块与冈底斯板块之间的碰撞作用造成了明显的地壳缩短。另外,在兹格塘错地区,蛇绿岩被下白垩统东巧组不整合覆盖,在东巧组下部可见蛇绿岩成分的砾岩和砂岩(125~100Ma)[70-71]。同时,上白垩统竟柱山组和阿布山组在班公湖-怒江板块缝合带中广泛分布,也表明班公湖–怒江洋在晚白垩世已经闭合,且经历了强烈的构造抬升[9, 21, 66, 72]。Liu等[65]通过对多不扎地区逆冲推覆构造的研究认为,这一碰撞造山过程可以一直持续到晚白垩世末期。同时,由于与强烈的陆陆碰撞相关的高级变质岩和厚皮构造[65]的缺失,Zhu等[30]提出,羌南-保山板块与冈底斯板块之间很可能为软碰撞。另外,前人还在冈底斯板块北部和班公湖-怒江缝合带中识别出早白垩世晚期(116~110Ma)非造山环境的酸性岩(A2型),指示后碰撞构造背景[22, 73]。
综上所述,地壳缩短、非海相沉积和不整合及A2型花岗岩类的出现均指示后碰撞构造背景。说明在早白垩世晚期冈底斯板块与羌南-保山板块已经发生碰撞,而本文的都古尔变质辉长岩很可能是班公湖-怒江洋闭合之后局部伸展的产物。
5.4 地球动力学机制
由以上讨论可知,都古尔早白垩世晚期变质辉长岩起源于富集型地幔,形成于班公湖-怒江洋闭合之后的伸展背景。那么其形成的深部动力学机制是怎样的呢?由前人研究可知,羌南-保山板块南缘早白垩世的岩浆作用可用板块回转解释[28-30, 35],但是板块回转所引起的岩浆活动多集中在板块的边缘(俯冲带)而不是板块内部,因此都古尔变质辉长岩应该不是板块回转的产物。由上一节讨论可知,冈底斯板块和羌南-保山板块在早白垩世均经受了显著的地壳缩短,那么都古尔变质辉长岩是否是岩石圈拆沉的产物呢?拆沉作用将最终使大陆地壳向长英质的方向演化发展[74],其一般会伴随有大量酸性岩浆的产生,但是在都古尔地区及邻区并未见大量早白垩世晚期岩浆岩的报道。因此,都古尔变质辉长岩应该也不是拆沉作用的产物。
另外,前人在冈底斯板块北部先后识别出早白垩世晚期(约110Ma)伸展背景下的板内玄武岩、A型花岗岩、双峰式火山岩等,通过对其详细的岩石学和地球化学研究认为,其是班公湖-怒江洋南向俯冲过程中板片断离的产物[12, 22-24, 67-68, 73]。那么,在早白垩世晚期,羌南-保山板块南缘是否也发生了板片断离事件呢?俯冲板片断离大多发生于陆壳抵达海沟后的10~15Ma[75]。由前文讨论可知,至少在中西段,班公湖-怒江洋在约120Ma还没有闭合,仍具有一定规模的洋盆。另外,最新的研究结果显示,班公湖-怒江洋具有双向俯冲的特点[5, 30],在这样的俯冲体制下,羌南-保山板块南缘很难再形成板片断离。
近年来,大量的早白垩世岩浆岩在羌南-保山板块南缘被识别出来,其中以多不扎地区早白垩世花岗岩类和火山岩类最发育(125~105Ma)。另外,双峰式火山岩组合也在多不扎地区(约120Ma)[14]、扎嘎地区(约118Ma)[15]和热那错地区(约110Ma)[76]被先后识别出来。Xu等[17]通过对多不扎地区早白垩世基性岩墙的研究,提出其为班公湖-怒江洋洋脊俯冲的产物。该观点很好地解释了超大型多龙矿集区的成因机制。另外,范建军等[63, 77]通过对双峰式火山岩的研究,同样认为其是洋脊俯冲的产物。而本文中的都古尔变质辉长岩与多不扎地区的基性岩墙可对比,其很可能是俯冲下去的洋中脊在深部形成板片窗,上涌的软流圈物质交代地幔楔形成富集型基性岩浆,该基性岩浆上升侵位形成都古尔早白垩世辉长岩(图 9)。
6. 结论
(1)锆石U-Pb测年结果显示,都古尔变质辉长岩形成年龄为110.4±1.4Ma。
(2)全岩地球化学特征显示,该辉长岩为高钾钙碱性和钾玄岩系列,起源于富集型地幔,为尖晶石-石榴子石二辉橄榄岩经中-低程度部分熔融的产物,源区存在少量的石榴子石残留。岩浆在上升过程中经历了以斜方辉石为主的分离结晶作用。
(3)都古尔变质辉长岩形成于板内环境,为班公湖-怒江洋闭合后洋脊俯冲的产物。
致谢: 样品采集过程中得到吉林大学地球科学学院青藏高原地学研究中心陈爱民、王国徽、谢兴望等师傅的协助,审稿专家提出宝贵修改意见,分析测试得到了中国地质大学(北京)地学实验中心苏犁和张红雨老师的指导,在此一并致以衷心的感谢。 -
图 1 羌塘中部都古尔地区地质简图(据参考文献[35]修改)
①—康西瓦-玛沁-昆仑山缝合带;②—西金乌兰-金沙江缝合带;③—龙木错-双湖-澜沧江缝合带;④—班公湖-怒江缝合带;⑤—印度-雅鲁藏布江缝合带
Figure 1. Geological sketch map of Duguer area in central Qiangtang
图 5 都古尔早白垩世晚期变质辉长岩球粒陨石标准化稀土元素配分曲线和原始地幔标准化微量元素蛛网图(标准值据参考文献[41])
Figure 5. Chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns of late Early Cretaceous metagabbro from Duguer area
图 8 都古尔早白垩世晚期变质辉长岩Cr-Ni[45](a), (Th/Ta)PM-(La/Nb)PM[12, 52](b), Nb/Yb-Th/Yb[56](c), Sm-Sm/Yb[57](d), (La/Sm)PM-(Er/Yb)PM[58](e)和Zr-Zr/Y图解[59](f)
OIB—洋岛型玄武岩;MORB—洋中脊型玄武岩;N-MORB—亏损洋中脊型玄武岩;E-MORB—富集洋中脊型玄武岩;Gt—石榴子石;1000*F%—部分熔融程度
Figure 8. Cr-Ni (a), (Th/Ta)PM-(La/Nb)PM (b), Nb/Yb-Th/Yb (c), Sm-Sm/Yb(d), (La/Sm)PM-(Er/Yb)PM(e) and Zr-Zr/Y(f) diagrams of late Early Cretaceous metagabbro from Duguer area
表 1 都古尔变质辉长岩LA-ICP-MS锆石U-Th-Pb同位素测定结果
Table 1 U-Th-Pb isotope compositions of zircons in Duguer metagabbro as measured by LA-ICP-MS
测点 Th/10-6 U/10-6 同位素比值 年龄/Ma 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ T2-01 162.85 956.73 0.0687 0.0013 1.5181 0.0285 0.1604 0.0021 888 19 938 11 959 12 T2-02 100.72 703.36 0.0665 0.0148 1.0613 0.2341 0.1158 0.0032 822 481 734 115 706 19 T2-03 586.91 699.03 0.0653 0.0013 0.8367 0.0170 0.0929 0.0012 783 22 617 9 573 7 T2-04 90.71 336.69 0.0581 0.0012 0.6570 0.0134 0.0819 0.0011 535 23 513 8 508 6 T2-05 35.1 460.17 0.0671 0.0013 1.3275 0.0262 0.1435 0.0019 841 21 858 11 864 11 T2-06 70.41 410.91 0.0736 0.0015 1.4856 0.0293 0.1463 0.0019 1031 20 925 12 880 11 T2-07 70.09 557.02 0.0587 0.0012 0.7409 0.0153 0.0916 0.0012 555 23 563 9 565 7 T2-08 258.49 163.74 0.0601 0.0020 0.1425 0.0047 0.0172 0.0003 606 45 135 4 110 2 T2-09 169.85 190.87 0.0497 0.0018 0.1957 0.0069 0.0286 0.0004 180 56 181 6 182 2 T2-10 53.84 194.34 0.0582 0.0012 0.3274 0.0063 0.0408 0.0005 538 22 288 5 258 3 T2-11 1791.9 1280.2 0.0960 0.0043 0.2324 0.0100 0.0176 0.0003 1547 87 212 8 112 2 T2-12 122.08 333.35 0.0681 0.0017 1.2711 0.0269 0.1353 0.0016 873 51 833 12 818 9 T2-13 64.3 89.92 0.0500 0.0025 0.1963 0.0096 0.0285 0.0005 193 85 182 8 181 3 T2-14 246.44 154.47 0.0482 0.0025 0.1131 0.0058 0.0170 0.0003 109 86 109 5 109 2 T2-15 288.78 615.84 0.0641 0.0009 0.8037 0.0103 0.0909 0.0011 746 12 599 6 561 6 T2-16 498.26 315.57 0.0482 0.0013 0.1153 0.0031 0.0173 0.0002 111 39 111 3 111 1 T2-17 2831.44 757.79 0.0502 0.0065 0.1987 0.0254 0.0287 0.0005 203 275 184 22 183 3 T2-18 468.76 1148.32 0.0560 0.0023 0.2364 0.0090 0.0306 0.0004 452 92 215 7 194 3 T2-19 20.84 425.07 0.0742 0.0011 1.6185 0.0221 0.1583 0.0019 1046 12 977 9 947 11 T2-20 52.16 423.82 0.0568 0.0013 0.5653 0.0106 0.0722 0.0009 484 50 455 7 449 5 T2-21 63.88 96 0.0461 0.0150 0.1049 0.0340 0.0165 0.0004 525 101 31 106 3 T2-22 2562.66 1777.12 0.0529 0.0009 0.2116 0.0033 0.0290 0.0004 323 16 195 3 184 2 T2-23 464.4 389.57 0.0562 0.0010 0.5606 0.0093 0.0724 0.0009 459 17 452 6 451 5 T2-24 180.12 457.08 0.0542 0.0011 0.2696 0.0053 0.0361 0.0005 380 22 242 4 228 3 T2-25 1058.51 627.74 0.0489 0.0017 0.1422 0.0048 0.0211 0.0003 144 54 135 4 135 2 表 2 都古尔变质辉长岩全岩主量和微量元素测定结果
Table 2 Whole-rock major and trace element compositions of Duguer metagabbro
样品 T2H1 T2H2 T2H3 T2H4 T2H5 T2H6 T2H7 T2H8 SiO2 50.37 50.19 51.17 51.77 50.40 49.96 50.94 49.80 TiO2 4.51 4.54 4.49 4.49 4.50 4.56 4.56 4.63 Al2O3 14.21 13.79 14.05 13.82 14.04 13.84 14.18 14.30 TFe2O3 13.61 13.97 13.64 13.20 13.71 14.06 13.99 14.14 MnO 0.23 0.20 0.20 0.21 0.21 0.20 0.21 0.19 MgO 5.58 5.65 5.45 5.35 5.70 5.87 5.73 5.89 CaO 8.06 8.23 8.33 7.87 8.07 8.93 7.46 9.08 Na2O 0.56 0.62 0.71 0.61 0.57 0.66 0.57 0.74 K2O 1.61 1.94 1.12 1.42 1.67 1.32 1.46 0.94 P2O5 0.54 0.52 0.58 0.51 0.54 0.50 0.56 0.57 烧失量 1.33 0.99 0.82 1.25 1.20 0.77 0.93 0.41 总计 100.60 100.63 100.55 100.49 100.61 100.67 100.57 100.69 Li 57.54 36.67 36.12 48.66 51.64 36.36 43.88 25.43 P 3031.60 3025.10 3174.40 2967.90 3126.50 2810.60 3231.80 3045.90 K 15483.00 18213.00 10083.30 12911.60 16003.00 12292.80 14105.00 8427.90 Sc 29.46 28.46 27.34 28.08 29.09 28.85 30.00 27.63 V 389.74 382.46 370.96 371.93 387.40 379.08 399.62 372.84 Co 58.61 50.50 53.21 50.45 54.27 57.44 57.02 54.51 Cu 14.19 38.45 24.58 12.22 21.20 12.48 16.88 13.71 Zn 152.38 145.52 164.75 150.75 143.54 143.94 151.82 141.14 Ga 31.62 31.41 30.25 29.95 30.99 30.30 32.40 29.63 Pb 19.66 15.74 20.98 21.22 19.68 15.02 16.91 18.58 Cr 53.63 51.55 38.64 51.82 58.15 58.44 62.65 59.36 Ni 51.14 42.61 39.70 45.76 54.05 56.88 55.94 52.34 Rb 101.14 141.68 67.09 88.90 104.74 71.50 97.84 49.84 Ba 351.60 340.40 275.19 316.40 378.20 290.80 259.00 222.20 Th 5.15 4.97 5.35 4.99 4.75 4.82 4.89 4.75 U 1.15 1.06 1.12 1.10 1.03 0.95 1.03 0.99 Nb 38.32 36.58 38.63 37.53 37.82 34.76 38.18 36.47 Cs 1.22 2.20 1.92 1.23 1.79 1.48 1.87 1.20 Ta 2.67 2.22 2.78 2.59 2.22 2.11 2.26 2.20 La 45.65 43.51 45.23 43.62 43.26 39.17 43.85 42.23 Ce 96.54 92.21 95.82 93.93 92.30 85.13 92.32 90.17 Pr 13.16 12.64 13.22 12.63 12.52 11.28 12.72 12.20 Sr 389.40 346.90 430.20 422.70 416.50 397.90 403.20 466.60 Nd 54.56 52.65 55.17 52.46 52.04 47.08 52.92 50.65 Zr 347.36 344.32 350.28 340.80 341.12 302.56 343.84 330.88 Hf 8.31 8.09 8.49 8.03 8.19 7.46 8.40 8.13 Sm 12.15 11.80 12.34 11.72 11.63 10.60 11.85 11.34 Eu 3.74 3.85 3.68 3.51 3.53 3.38 3.57 3.48 Gd 12.07 11.75 12.21 11.54 11.49 10.57 11.78 11.17 Tb 1.67 1.65 1.70 1.62 1.59 1.48 1.66 1.57 Dy 9.35 9.11 9.42 8.97 8.86 8.24 9.24 8.66 Y 40.10 38.82 39.76 38.30 38.94 36.08 40.58 37.71 Ho 1.73 1.70 1.76 1.67 1.65 1.55 1.75 1.62 Er 4.39 4.29 4.46 4.19 4.18 3.92 4.39 4.09 Tm 0.55 0.54 0.56 0.53 0.52 0.49 0.56 0.51 Yb 3.39 3.29 3.43 3.24 3.18 3.00 3.34 3.17 Lu 0.45 0.43 0.45 0.43 0.42 0.40 0.44 0.42 -
Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211
Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22(4):1029. doi: 10.1029-2001TC001332/
Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7/8):865-878. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026958478
Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8):917-933. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ025104850
Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14. doi: 10.1016/j.jseaes.2011.12.018
余光明, 王成善.西藏特提斯沉积地质[M].北京:地质出版社, 1990. 王建平, 刘彦明, 李秋生, 等.西藏班公湖-丁青蛇绿岩带东段侏罗纪盖层沉积的地层划分[J].地质通报, 2002, 21(7):405-410. doi: 10.3969/j.issn.1671-2552.2002.07.007 陈国荣, 刘鸿飞, 蒋光武, 等.西藏班公湖-怒江结合带中段沙木罗组的发现[J].地质通报, 2004, 23(2):193-194. doi: 10.3969/j.issn.1671-2552.2004.02.015 潘桂棠, 丁俊, 姚冬生, 等.青藏高原及邻区地质图(1:1500000)说明书[M].成都:成都地图出版社, 2004:1-148. Baxter A T, Aitchison J C, Zyabrev S V. Radiolarian age constraints on Mesotethyan ocean evolution, and their implications for development of the Bangong-Nujiang suture, Tibet[J]. Journal of the Geological Society, 2009, 166(4):689-694. doi: 10.1144/0016-76492008-128
Liu W L, Xia B, Zhong Y, et al. Age and composition of the Rebang Co and Julu ophiolites, central Tibet:implications for the evolution of the Bangong Meso-Tethys[J]. International Geology Review, 2014, 56(4):430-447. doi: 10.1080/00206814.2013.873356
朱弟成, 潘桂棠, 莫宣学, 等.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J].地质学报, 2006, 80(9):1312-1328. doi: 10.3321/j.issn:0001-5717.2006.09.008 Fan J J, Li C, Xie C M, et al. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet:implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys[J]. International Geology Review, 2014, 56(12):1504-1520. doi: 10.1080/00206814.2014.947639
Fan J J, Li C, Xie C M, et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet:Constraints on the timing of closure of the BanggongNujiang Ocean[J]. Lithos, 2015, 227:148-160. doi: 10.1016/j.lithos.2015.03.021
Fan J J, Li C, Liu Y M, et al. Age and nature of the late Early Cretaceous Zhaga Formation, northern Tibet:constraints on when the Bangong-Nujiang Neo-Tethys Ocean closed[J]. International Geology Review, 2015, 57(3):342-353. doi: 10.1080/00206814.2015.1006695
Li G M, Qin K Z, Li J X, et al. Cretaceous magmatism and metallogeny in the Bangong-Nujiang metallogenic belt, central Tibet:Evidence from petrogeochemistry, zircon U-Pb ages, and Hf-O isotopic compositions[J]. Gondwana Research, 2017, 41:110-127. doi: 10.1016/j.gr.2015.09.006
Xu W, Li C, Wang M, et al. Subduction of a spreading ridge within the Bangong Co-Nujiang Tethys Ocean:evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu-Au deposit, western Tibet[J]. Gondwana Research, 2017, 41:128-141. doi: 10.1016/j.gr.2015.09.010
王忠恒, 王永胜, 谢元和, 等.西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J].沉积与特提斯地质, 2005, 25(1/2):155-162. http://d.old.wanfangdata.com.cn/Periodical/yxgdl200501029 鲍佩声, 肖序常, 苏犁, 等.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约[J].中国科学(D辑), 2007, 37(3):298-307. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200703002 Leier A L, Kapp P, Gehrels G E, et al. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet[J]. Basin Research, 2007, 19(3):361-378. doi: 10.1111/bre.2007.19.issue-3
Li Y L, He J, Wang C S, et al. Late Cretaceous K-rich magmatism in central Tibet:Evidence for early elevation of the Tibetan plateau?[J]. Lithos, 2013, 160:1-13. http://cn.bing.com/academic/profile?id=8b06401cca2d207b902721cfae846215&encoded=0&v=paper_preview&mkt=zh-cn
Chen Y, Zhu D C, Zhao Z D, et al. Slab breakoff triggered ca. 113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research, 2014, 26(2):449-463. doi: 10.1016/j.gr.2013.06.005
Zhu D C, Mo X X, Niu Y, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268(3):298-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0211291457
Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1):241-255. doi: 10.1016-j.epsl.2010.11.005/
Li J X, Qin K Z, Li G M, et al. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet:Evidence from U-Pb geochronology, petrochemistry and Sr-NdHf-O isotope characteristics[J]. Lithos, 2013, 160:216-227. http://www.sciencedirect.com/science/article/pii/S0024493712005063
Li J X, Qin K Z, Li G M, et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet:petrogenetic and tectonic implications[J]. Lithos, 2014, 198:77-91. http://cn.bing.com/academic/profile?id=3ad38b6ee148241d58e0fdd98aabbef3&encoded=0&v=paper_preview&mkt=zh-cn
Wang B D, Wang L Q, Chung S L, et al. Evolution of the Bangong-Nujiang Tethyan ocean:insights from the geochronology and geochemistry of mafic rocks within ophiolites[J]. Lithos, 2016, 245:18-33. doi: 10.1016/j.lithos.2015.07.016
Hao L L, Wang Q, Wyman D A, et al. Underplating of basaltic magmas and crustal growth in a continental arc:Evidence from Late Mesozoic intermediate-felsic intrusive rocks in southern Qiangtang, central Tibet[J]. Lithos, 2016, 245:223-242. doi: 10.1016/j.lithos.2015.09.015
Hao L L, Wang Q, Wyman D A, et al. Andesitic crustal growth via mélange partial melting:Evidence from Early Cretaceous arc dioritic/andesitic rocks in southern Qiangtang, central Tibet[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(5):1641-1659. doi: 10.1002/2016GC006248
Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245:7-17. doi: 10.1016/j.lithos.2015.06.023
Li S M, Zhu D C, Wang Q, et al. Northward subduction of Bangong-Nujiang Tethys:insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet[J]. Lithos, 2014, 205:284-297. doi: 10.1016/j.lithos.2014.07.010
Liu D L, Shi R D, Ding L, et al. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet:Implications for the subduction of the Bangong-Nujiang Tethyan Ocean[J]. Gondwana Research, 2017, 41:157-172. doi: 10.1016/j.gr.2015.04.007
Liu Y M, Li C, Xie C M, et al. Detrital zircon U-Pb ages and Hf isotopic composition of the Ordovician Duguer quartz schist, central Tibetan Plateau:constraints on tectonic affinity and sedimentary source regions[J]. Geological Magazine, 2017, 154(3):558-570. doi: 10.1017/S0016756816000212
Pullen A, Kapp P, Gehrels G E, et al. Metamorphic rocks in central Tibet:Lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123(3/4):585-600. http://cn.bing.com/academic/profile?id=0740c5429d462d9c8fbddc39f9aa9eb5&encoded=0&v=paper_preview&mkt=zh-cn
Liu Y M, Li C, Xie C M, et al. Geochronology of the Duguer range metamorphic rocks, Central Tibet:implications for the changing tectonic setting of the South Qiangtang subterrane[J]. International Geology Review, 2017, 59(1):29-44. doi: 10.1080/00206814.2016.1199977
Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 1995, 19(1):1-23. doi: 10.1111/ggr.1995.19.issue-1
Ludwig K J. User's manual for Isoplot 3. 00:A geochronological toolkit for Microsoft Excel[J]. Berkeley, CA, Berkeley Geochronology Center Special Publication, 2003, 4:1-70. doi: 10.1016-j.immuni.2011.10.010/
Govindaraju K. Compilation of working values and sample description for 383 geostandards[J]. Geostandards and Geoanalytical Research, 1994, 18:1-158. doi: 10.1046/j.1365-2494.1998.53202081.x-i1
于红.陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D].中国地质大学(北京)硕士学位论文, 2011. http://cdmd.cnki.com.cn/Article/CDMD-11415-1011078082.htm Weaver B L. The origin of ocean island basalt end-member compositions:trace element and isotopic constraints[J]. Earth and Planetary Science Letters, 1991, 104(2/4):381-397. http://cn.bing.com/academic/profile?id=08d07793c21f2cde10f3e0ff0aa49b1b&encoded=0&v=paper_preview&mkt=zh-cn
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343. doi: 10.1016/0009-2541(77)90057-2
Hastie A R, Kerr A C, Pearce J A, et al. Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co discrimination diagram[J]. Journal of Petrology, 2007, 48:2341-2357. doi: 10.1093/petrology/egm062
Rudnick R L, McLennan S M, Taylor S R. Large ion lithophile elements in rocks from high-pressure granulite facies terrains[J]. Geochimica et Cosmochimica Acta, 1985, 49(7):1645-1655. doi: 10.1016/0016-7037(85)90268-6
Rollinson H R. Using Geochemical Data:Evaluation, Presentation, Interpretation[M]. Longman Scientific & Technical, London, 1993:1-352.
Kerrich R, Polat A, Wyman D, et al. Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province:implications for Archean mantle reservoirs and greenstone belt genesis[J]. Lithos, 1999, 46(1):163-187. doi: 10.1016/S0024-4937(98)00059-0
Polat A, Hofmann A W. Alteration and geochemical patterns in the 3.7-3.8 Ga Isua greenstone belt, West Greenland[J]. Precambrian Research, 2003, 126(3):197-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ028302088
Hess P C. Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan J P, Blackman D K, Sinton J M. Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophysical Monograph Series, 1992, 71: 67-102. doi: 10.1029/GM071p0067/summary
Rudnick R L, Fountain D M. Nature and composition of the continental crust:a lower crustal perspective[J]. Reviews of geophysics, 1995, 33(3):267-309. doi: 10.1029/95RG01302
Rudnick R L, Gao S. The composition of the continental crust[C]//Rudnick R L, Holland H D, Turekian K K. The Crust Treatise on Geochemistry. Elsevier, Oxford, 2003, 3: 1-64. http://www.sciencedirect.com/science/article/pii/0016703795000382
Lassiter J C, DePaolo D J. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotopic constraints[C]//Large igneous provinces: Continental, oceanic, and planetary flood volcanism, 1997: 335-355.
Neal C R, Mahoney J J, Chazey W J. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP:results from ODP Leg 183[J]. Journal of Petrology, 2002, 43(7):1177-1205. doi: 10.1093/petrology/43.7.1177
Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165(3):197-213. doi: 10.1016-S0009-2541(99)00173-4/
Perfit M R, Gust D A, Bence A E, et al. Chemical characteristics of island-arc basalts:implications for mantle sources[J]. Chemical Geology, 1980, 30(3):227-256. doi: 10.1016/0009-2541(80)90107-2
Humphreys E R, Niu Y. On the composition of ocean island basalts (OIB):The effects of lithospheric thickness variation and mantle metasomatism[J]. Lithos, 2009, 112(1):118-136. doi: 10.1016-j.lithos.2009.04.038/
Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23:251-285. doi: 10.1146/annurev.ea.23.050195.001343
Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China):Implications for subduction related metasomatism in the upper mantle[J]. Precambrian Research, 2007, 152:27-47. doi: 10.1016/j.precamres.2006.09.002
Fram M S, Lesher C E. Geochemical constraints on mantle melting during creation of the North Atlantic basin[J]. Nature, 1993, 363:712-715. doi: 10.1038/363712a0
Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic-rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69:33-47. doi: 10.1007/BF00375192
Hickey R L, Frey F A, Gerlach D C, et al. Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34-41S):trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B6):5963-5983. doi: 10.1029/JB091iB06p05963
Raterman N S, Robinson A C, Cowgill E S. Structure and detrital zircon geochronology of the Domar fold-thrust belt:Evidence of pre-Cenozoic crustal thickening of the western Tibetan Plateau[J]. Geological Society of America Special Papers, 2014, 507:89-104. doi: 10.1130/2014.2507(05)
Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology, 1997, 25(8):719-722. doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
范建军.班公湖-怒江洋中西段晚中生代汇聚消亡时空重建[D].吉林大学博士学位论文, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016084526.htm 李才, 翟庆国, 陈文.青藏高原龙木错-双湖板块缝合带闭合的沉积学证据-来自果干加年山蛇绿岩与流纹岩Ar-Ar和SHRIMP年龄制约[J].岩石学报, 2007, 23(5):911-918. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB200705006&dbname=CJFD&dbcode=CJFQ Liu Y M, Wang M, Li C, et al. Cretaceous structures in the Duolong region of central Tibet:Evidence for an accretionary wedge and closure of the Bangong-Nujiang Neo-Tethys Ocean[J]. Gondwana Research, 2017, 48:110-123. doi: 10.1016/j.gr.2017.04.026
Liu Y M, Wang M, Li C, et al. Late Cretaceous tectono-magmatic activity in the Nize region, central Tibet:evidence for lithospheric delamination beneath the Qiangtang-Lhasa collision zone[J]. International Geology Review, 2018, DOI:10.1080/00206814.2018. 1437789.
Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110Ma magmatism in the northern Lhasa Terrane, Tibet:Implications for the magmatic origin and crustal growth in a continentcontinent collision zone[J]. Lithos, 2013, 168:144-159. http://www.sciencedirect.com/science/article/pii/S0024493713000273
吴浩, 李才, 胡培远, 等.藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义[J].地质通报, 2014, 33(11):1804-1814. doi: 10.3969/j.issn.1671-2552.2014.11.016 Chen W W, Zhang S H, Ding J K, et al. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane, central Tibet[J]. Gondwana Research, 2017, 41:373-389. doi: 10.1016/j.gr.2015.07.004
汪明洲, 董得源.藏东东巧组层孔虫[J].古生物学报, 1984, 23(3):343-352. Yin J, Xu J, Liu C, et al. The Tibetan Plateau:regional stratigraphic context and previous work[J]. Royal Society of London Philosophical Transactions, 1988, 327(1594):5-52. doi: 10.1098/rsta.1988.0121
王立全, 潘桂棠, 丁俊, 等.青藏高原及邻区地质图及说明书(1:1500000)[M].北京:地质出版社, 2013. Qu X M, Wang R J, Xin H B, et al. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau[J]. Lithos, 2012, 146:264-275. http://cn.bing.com/academic/profile?id=33daeff3dc985f83678e17871eb253ea&encoded=0&v=paper_preview&mkt=zh-cn
高山, 金振民.拆沉作用及其壳-幔演化动力学意义[J].地质科技情报, 1997, 16(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700065616 Von Blanckenburg F, Davies J H. Slab breakoff:a model for syncollisional magmatism and tectonics in the Alps[J]. Tectonics, 1995, 14(1):120-131. doi: 10.1029/94TC02051
Liu S, Hu R, Gao S, et al. U-Pb zircon age, geochemical and SrNd isotopic data as constraints on the petrogenesis and emplacement time of andesites from Gerze, southern Qiangtang Block, northern Tibet[J]. Journal of Asian Earth Sciences, 2012, 45:150-161. doi: 10.1016/j.jseaes.2011.09.025
Fan J J, Li C, Sun Z M, et al. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet:Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean[J]. Journal of Asian Earth Sciences, 2018, 154:187-201. doi: 10.1016/j.jseaes.2017.12.020