High pressure metamorphic belt in central Qiangtang, Tibetan Plateau: Progress and unsolved problems
-
摘要:
羌塘中部高压变质带是目前青藏高原内部延伸规模最大的高压变质带,是理解特提斯演化的关键地质记录。高压变质带主要沿龙木措-双湖-澜沧江缝合带一线出露,主要由榴辉岩、蓝片岩、石榴子石多硅白云母片岩及少量高压麻粒岩组成。其中,榴辉岩主要出露于戈木、果干加年山、冈玛错、巴青及滇西的勐库地区,主要呈透镜状产于石榴子石多硅白云母片岩中。除巴青地区的榴辉岩外,其余地区榴辉岩的峰期变质温度较低且含有硬柱石及其假象,峰期变质条件位于硬柱石榴辉岩相稳定区域,是洋壳冷俯冲的产物。虽然对于戈木地区榴辉岩锆石成因仍有争议,但已有资料显示,羌塘中部高压变质带主体变质时代集中在晚三叠世,其相关高压变质岩石的折返可能与洋盆的闭合及随后的陆-陆碰撞相关。近期研究表明,羌塘中部可能存在二叠纪低温高压变质岩,折返于大洋俯冲阶段,可能与洋岛或海山的俯冲及引发的俯冲侵蚀作用相关。此外,羌塘香桃湖地区出露早古生代的基性高压麻粒岩,是冈瓦纳大陆北缘陆块拼贴的记录。因此,对羌塘中部高压变质带进行进一步系统的研究工作,对于深入理解冈瓦纳北缘构造演化及古特提斯的俯冲与闭合过程具有重要的意义。
Abstract:A 500km-long high-pressure metamorphic belt has been documented in the central Qiangtang Block of northern Tibet, which is thought to have constituted the crucial geological archives of subduction and exhumation of Paleo-Tethys oceanic lithosphere. The high-pressure metamorphic rocks are mostly exposed along the Longmu Co-Shuanghu suture zone, and are composed of eclogites, blueschists, garnet-phengite-schists (Grt-Phn schists), and minor high-pressure mafic granulites. The eclogites in central Qiangtang are reported from Gemu, Guoganjianian Mt., Gangma Co, Baqing, and Mengku area, and occur mainly as blocks or small lenses in Grt-Phn schists. Apart from newly discovered Baqing eclogites, most eclogites from central Qiangtang Block are characterized by low peak temperatures and presence of lawsonite or pseudomorphs of epidote + paragonite, and their peak P-T results lie mainly in the lawsonite-eclogite field. The ages of most eclogites and blueschists from central Qiangtang block have been constrained as Late Triassic which are regarded as the results of closure of the Paleo-Tethys Ocean and following continental collision. Furthermore, the Permian high-pressure metamorphic rocks were also identified and their P-T-t paths revealed a complete evolutional history for the subduction erosion in response to the subduction of seamounts (or oceanic islands). Moreover, the discovery of Silurian high-pressure granulites in the central Qiangtang block indicates the existence of a previous collisional event on the northern margin of the Indo-Australian Gondwana. Hence, further comprehensive studies of the high-pressure metamorphic belt in central Qiangtang will provide valuable insights into the tectonic evolution of the north margin of Gondwana during the early Paleozoic and the opening and closure of the Paleo-Tethys Ocean.
-
Keywords:
- Tibetan Platean /
- Qiangtang block /
- eclogite /
- blueschist /
- Paleo-Tethys Ocean
-
班公湖-怒江结合带(BNS)位于青藏高原北部, 西起班公湖, 向东经改则、东巧、丁青与昌宁-孟连带相连, 向西延伸向克什米尔, 与东地中海特提斯蛇绿岩相连, 在中国境内长达2000km, 是青藏高原一条重要的结合带[1]。班公湖-怒江结合带中存在规模巨大的蛇绿岩、增生杂岩, 以及夹持其中的残余弧或岛弧变质地块, 发育韧性剪切带、逆冲断层、构造混杂岩、复杂褶皱等多种构造行迹, 沿断裂还发育晚白垩世-新近纪陆相火山岩、新生代陆相走滑拉分盆地和第四纪谷地[2]。为更好地认识班公湖-怒江结合带内物质的形成机制及相关的构造背景, 需要对其开展深入的研究。
通过对沉积岩中的碎屑锆石进行U-Pb定年分析, 可有效地探讨其源区并开展历史时期的古大陆重建。本文对该地区早白垩统多尼组(原1:25万区调划为上三叠统巫嘎组)砂岩的碎屑锆石开展了形态学及U-Pb年代学研究, 为揭示班公湖-怒江缝合带内该地层单元的物源区提供新的证据, 同时为探讨班公湖-怒江结合带的构造演化史提供一定的依据。
1. 地质特征
多尼组出露于改则县南西的洞错一带(图 1), 呈近东西向带状分布, 区域上为一套灰色-深灰色含煤碎屑岩地层。岩性主要为泥岩、砂岩、板岩、页岩、粉砂岩、石英砂岩、长石石英砂岩, 局部含火山岩, 产植物、菊石、双壳类、腹足类、珊瑚、层孔虫、海胆、腕足类、介形类等化石。根据野外实测剖面特征, 研究区多尼组主要岩性为深灰色、灰色泥质粉砂岩、粉砂岩, 局部夹灰色钙质岩屑石英砂岩、长石石英砂岩及少量灰岩等, 在灰岩中局部可见生物碎屑, 未见完整化石。
2. 样品采集与分析方法
样品采集于西藏改则县洞错乡南约15km处欧仁一带的PM009地层剖面上。样品岩性主要为灰色中细粒长石石英砂岩, 主要由石英(84%)、长石(13%)、岩屑(2%)、胶结物等组成, 颗粒大小以0.15~ 0.60mm为主, 分选性好, 磨圆度一般, 呈次棱角状, 次圆状。石英主要为单晶石英, 长石类以斜长石为主, 岩屑成分主要为灰岩、泥岩、粉砂岩等, 孔隙式胶结(图 2)。
样品锆石的分离和挑选由廊坊市地岩矿物分选有限公司完成, 在双目镜下挑选出晶形和透明度好的锆石颗粒, 粘贴在环氧树脂表面, 抛光后将锆石进行透射光、放射光和阴极发光显微照相。锆石制靶及阴极发光图像制备由北京中美美科科技有限公司完成, LA-ICP-MS锆石U-Pb定年测试分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。其中LA-ICP-MS锆石U-Pb同位素年龄分析仪器为Elan6100DRC型激光剥蚀系统, 激光器为193nmArF准分子激光器。激光剥蚀斑束直径为32μm, 激光剥蚀深度为20~40μm。实验中采用氦气为剥蚀物质的载气, 采用标准锆石91500为外标, 采用美国国家标准物质局人工合成硅酸盐玻璃NIST SRM610为内标。详细的实验原理、流程和仪器参数见Yuan等[3]的文献。
3. 分析结果
多尼组砂岩碎屑锆石U-Pb年龄数据见表 1。在多尼组砂岩样品中, 随机挑选71粒锆石进行分析。从阴极发光(CL)图像(图 3)看出, 锆石颗粒大小在50~180μm之间。研究表明, 不同成因的锆石具有不同的Th/U值, 岩浆锆石的Th/U值较大(一般大于0.4);而变质锆石的Th/U值较小(一般小于0.1)[4]。多尼组砂岩碎屑锆石的Th/U值较大, 51颗锆石的Th/U值大于0.4, 平均值约为0.64, 说明锆石大部分为岩浆成因, 部分可能为变质成因。
表 1 洞错地区多尼组砂岩碎屑锆石U-Th-Pb同位素年龄数据Table 1. Detrital zircons U-Th-Pb data of sandstones in the Duoni Formation from Dongcuo area4. 分析与讨论
4.1 测年结果
对于年轻锆石而言, 207Pb/206Pb年龄误差较大, 而对于古老锆石而言, 206Pb/238U年龄的误差较大。本文在年龄选取时, 对小于1000Ma的锆石, 选取206Pb/238U计算年龄值; 年龄大于1000Ma的锆石, 选取207Pb/206Pb计算年龄值[5]。从碎屑锆石年龄分布频率直方图(图 4)可以看出, 多尼组砂岩碎屑锆石年龄值分布在125~3261Ma之间。其中125~1000Ma的锆石有37粒, 最年轻年龄值为125Ma(测点号为PM009/26-17, 和谐度为97%); 大于1000Ma的年龄值为34个, 最老年龄值为3261Ma(测点号为PM009/26-35, 和谐度为96%)。碎屑锆石主要年龄区间(或峰值)为3261Ma、2739~2335Ma、1880~ 1750Ma、1006~657Ma、577~510Ma、456~409Ma和252~202Ma(表 1)。
图 4 青藏高原碎屑锆石U-Pb年龄频率图(据参考文献[15]修改)Figure 4. Age distributions of detrital zircons from the Tibetan Plateau4.2 讨论
多尼组的碎屑锆石年龄数据跨度较大, 不同的年龄峰值代表不同的地质意义。
(1) 3261Ma, 大于3000Ma的碎屑锆石在样品中仅出现1粒, 表明物源区存在古老地壳的残留[6], 为研究班怒带物源区的形成和演化奠定了物质基础。
(2) 2739~2335Ma年龄组包含10颗碎屑锆石, 代表物源区可能存在构造-岩浆事件。从全球地质背景看, 华北、北美、瑞芬及其他克拉通在2.5Ga左右发生了大规模的拼合事件(如Grenville事件、Pan-Afriean事件等), 形成有记载的最古老的超级大陆[7]。近年来, 众多学者在羌塘盆地发现1.8~ 2.7Ga的锆石, 如盆地中央隆起带差桑-茶布一带的戈木日群[8], 盆地西南部龙木错-双湖缝合带南侧荣玛温泉地区石英岩[9], 以及羌塘盆地北部唐古拉山温泉地区雁石坪群[10]。暗示羌塘盆地有太古宙的地壳物质, 支持羌塘盆地存在前寒武纪结晶基底的可能性。这也说明, 研究区多尼组的物源很可能为北部的南羌塘地块。
(3) 1880~1750Ma年龄组包含16颗碎屑锆石, 指示源区存在古元古代早期的构造热事件。研究表明[11-12], Columbia超级大陆各个组成陆块是在2.1~ 1.8Ga碰撞事件中拼合在一起的, 并在中元古代早-中期Columbia超级大陆边缘向外增生, 随后开始裂解, 1880~1750Ma可能也是羌塘结晶基底的主期变质年龄。
(4) 1006~657Ma年龄组包含13颗碎屑锆石, 该期是全球构造运动演化的一系列重大热事件时期, Grenvillian碰撞造山期(1000~900Ma)形成了罗迪尼亚超大陆, 在850~750Ma开始隆升、裂解[13]。在700Ma发生分解, 反映了早期的泛非碰撞, 中国大陆主要的构造表现为普遍存在张裂, 在羌塘结晶基底的戈木日群中发现1016~929Ma的热事件, 说明此时羌塘地块存在构造热事件[1]。
(5) 577~510Ma年龄组包含5颗碎屑锆石, 指示了新元古代晚期的一次构造热事件, 该组年龄值可能是泛非造山运动(550±100Ma)在物源区的记录。
(6) 456~409Ma年龄组包含8颗碎屑锆石, 可能指示了冈瓦纳大陆北缘在早泥盆世-奥陶纪的增生过程[14]。
(7) 252~202Ma年龄组包含5颗碎屑锆石, 指示拉萨地块与羌塘地块之间发生了俯冲消减及碰撞与缝合作用。
(8) 最小年龄125Ma和126Ma, 可能代表该套地层的沉积时代, 说明该套地层于早白垩世沉积形成。
班公湖地区中生代沙木罗组和日松组碎屑锆石显示, 其沉积物的物源区可能为北部的羌塘地块[1]。商旭地区中生代沉积物中含有部分来自其北部南羌塘地块中的物质, 暗示班公湖-怒江洋壳在中生代向北俯冲[15]。南羌塘与特提斯喜马拉雅沉积变质岩的碎屑锆石年龄具有相似的频率分布特征, 且二者的主要年龄峰值为530Ma、950Ma, 其与高喜马拉雅新元古代沉积变质岩碎屑锆石的年龄主峰一致, 表明其在古生代与高喜马拉雅相邻; 同时, 拉萨地块与澳大利亚西部的碎屑锆石具有一致的年龄峰值1170Ma, 表明拉萨地块可能在石炭纪-二叠纪与澳大利亚西北部毗邻[16]。从锆石年龄分布频率图可见, 研究区碎屑锆石年龄分布直方图与南羌塘更具相似性, 西藏洞错地区班公湖-怒江结合带早白垩世沉积物的物源可能来自北部的南羌塘地块。
5. 结论
(1) 班公湖地区早白垩世多尼组砂岩碎屑锆石LA-ICP-MS U-Pb测年结果显示, 碎屑锆石最年轻颗粒的年龄值为125Ma, 说明其形成时代晚于早白垩世; 最老碎屑锆石年龄值为3261Ma, 表明物源区存在古老地壳的残留。
(2) 将研究区早白垩世碎屑锆石的年龄分布频率图与南部的拉萨地块及北部的南羌塘地块对比, 其与南羌塘地块更具相似性, 说明研究区的早白垩世沉积物的物源可能来自北部的南羌塘地块。
致谢: 谨以此文祝贺尊敬的导师李才教授光荣退休及从事青藏高原研究工作三十余年,祝先生健康长寿! -
图 1 羌塘地区地质简图(据参考文献[6]修改)
JSSZ—金沙江缝合带;LSSZ—龙木错-双湖-澜沧江缝合带;BNSZ—班公湖-怒江缝合带;IYZSZ—印度-雅鲁藏布江缝合带
Figure 1. Simplified fied geological map of Qiangtang area
图 2 羌塘地区石炭纪—二叠纪地层碎屑锆石年龄分布及构造环境判别图解(据参考文献[50-51]修改)
a、b—南羌塘地块石炭纪-二叠纪代表性地层碎屑锆石年龄分布图;c、d—北羌塘地块石炭纪-二叠纪代表性地层碎屑锆石年龄分布;e—与俯冲侵蚀作用相关的变质沉积岩碎屑石年龄分布图;f—羌塘地区碎屑锆石构造环境判别图解;Grt—石榴子石;St—十字石;Ms—白云母;A—活动大陆边缘;B—碰撞造山带;C—被动大陆边缘
Figure 2. Summary of detrital zircon age distribution from standard strata of southern and northern Qiangtang Blocks (a~e) and discrimination diagram of detrital zircon age patterns for determining their tectonic settings(f)
表 1 羌塘中部榴辉岩中金红石微量元素含量及金红石锆温度计计算结果
Table 1 LA-ICP-MS analyses of trace elements in rutile grains and peak temperature estimated by zircon-in-rutile thermometer of eclogites from central Qiangtang
元素 GZ85-1 GZ85-14 CM14073-1 CM1407-2 CM1407-3 CM1407-4 CM1407-5 片石山 片石山 果干加年山 果干加年山 果干加年山 果干加年山 果干加年山 Sc 1.63 0.80 1.78 1.15 0.98 1.09 1.24 V 1478 1594 914 893 906 933 908 Cr 40.8 30.6 282 817 464 340 383 Ni 0.00 0.34 0.06 0.34 0.60 0.09 0.36 Y 0.04 0.04 0.06 0.04 0.04 0.03 0.04 Zr 58.4 39.7 41.0 45.8 37.1 37.1 41.5 Nb 421 468 116 189 106 121 127 Hf 2.41 1.72 2.36 3.04 2.32 2.24 2.29 Ta 23.0 29.4 10.3 20.6 8.11 9.17 10.2 Pb 0.05 0.00 0.10 0.06 0.05 0.05 0.08 T[70] 523 471 475 490 462 462 477 T[71] 526 503 505 511 499 499 506 T[72] 581 557 550 565 553 553 559 -
Carswell D A. Eclogite Facies Rocks[M]. New York:Blackie, 1990.
Carswell D A, O'brien P J. Thermobarometry and geotectonic significance of high-pressure granulites:examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria[J]. Journal of Petrology, 1993, 34(3):427-459. doi: 10.1093/petrology/34.3.427
Ernst W G, Liou J G. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts[J]. Geology, 1995, 23:353-356. doi: 10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2
Zhao G C, Cawood P A, Wilde S A, et al. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton:petrology and tectonic implications[J]. Journal of Petrology, 2001, 42(6):1141-1170. doi: 10.1093/petrology/42.6.1141
Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 2005, 136:177-202. doi: 10.1016/j.precamres.2004.10.002
Zhai Q G, Zhang R Y, Jahn B M, et al. Triassic eclogites from central Qiangtang, northern Tibet, China:petrology, geochronology and metamorphic P-T path[J]. Lithos, 2011, 125:173-189. doi: 10.1016/j.lithos.2011.02.004
陆济璞, 张能, 黄位鸿, 等.藏北羌塘中北部红脊山地区蓝闪石+硬柱石变质矿物组合的特征及其意义[J].地质通报, 2006, 25(1):70-75. doi: 10.3969/j.issn.1671-2552.2006.01.012 邓希光, 丁林, 刘小汉, 等.藏北羌塘中部冈玛日-桃形错蓝片岩的发现[J].地质科学, 2000, 35(2):227-232. doi: 10.3321/j.issn:0563-5020.2000.02.012 邓希光, 丁林, 刘小汉, 等.青藏高原羌塘中部蓝片岩的地球化学特征及其构造意义[J].岩石学报, 2002, 18(4):517-525. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200204010 翟庆国, 王军, 王永.西藏改则县冈玛错地区发现榴辉岩[J].地质通报, 2009, 28(12):1720-1724. doi: 10.3969/j.issn.1671-2552.2009.12.005 翟庆国, 李才, 董永胜, 等.西藏羌塘中部荣玛地区蓝片岩岩石学、矿物学和Ar-Ar年代学[J].岩石学报, 2009, 25(9):2281-2288. 董永胜, 李才.藏北羌塘中部果干加年山地区发现榴辉岩[J].地质通报, 2009, 28(9):1197-1200. doi: 10.3969/j.issn.1671-2552.2009.09.006 李才, 翟庆国, 董永胜, 等.青藏高原羌塘中部发现榴辉岩及其意义[J].科学通报, 2006, 25(1/2):70-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200601014 Zhai Q G, Jahn B M, Zhang R Y, et al. Triassic subduction of thePaleo-Tethys in northern Tibet, China:evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block[J]. Journal of Asian Earth Sciences, 2011, 42:1356-1370. doi: 10.1016/j.jseaes.2011.07.023
张修政, 董永胜, 施建荣, 等.羌塘中部龙木错-双湖缝合带中硬玉石榴石二云母片岩的成因及意义[J].地学前缘, 2010, 17(1):93-103. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001008 Kapp P, An Y, Manning C E, et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metermorphic belt, central Tibet[J]. Tectonics, 2003, 22(4). DOI: 10.1029/2001TC001332.
鲍佩声, 肖序常, 王军, 等.西藏中北部双湖地区蓝片岩带及其构造涵义[J].地质学报, 1999, 73(4):302-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900084713 Zhang Y X, Jin X, Zhang K J, et al. Newly discovered late triassic baqing eclogite in central tibet indicates an anticlockwise west-east qiangtang collision[J]. Scientific Reports, 2018, 8(1). DOI: 10.1038/s41598-018-19342-w.
徐桂香, 曾文涛, 孙载波, 等.滇西双江县勐库地区(退变)榴辉岩的岩石学、矿物学特征[J].地质通报, 2016, 35(7):1035-1045. doi: 10.3969/j.issn.1671-2552.2016.07.001 陈光艳, 徐桂香, 孙载波, 等.滇西双江县勐库地区退变质榴辉岩中闪石类矿物的成因研究[J].岩石矿物学杂志, 2017, 36(1):36-47. doi: 10.3969/j.issn.1000-6524.2017.01.003 孙载波, 李静, 周坤, 等.滇西双江县勐库地区退变质榴辉岩的岩石地球化学特征及其地质意义[J].现代地质, 2017, 31(4):746-756. doi: 10.3969/j.issn.1000-8527.2017.04.009 李静, 孙载波, 黄亮, 等.滇西勐库退变质榴辉岩的P-T-t轨迹及地质意义[J].岩石学报, 2017, 33(7):2285-2301. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201707022 张修政, 董永胜, 李才, 等.从洋壳俯冲到陆壳俯冲和碰撞:来自羌塘中西部地区榴辉岩和蓝片岩地球化学的证据[J].岩石学报, 2014, 30(10):2821-2834. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410003 李才.龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J].长春地质学院学报, 1987, 17(2):155-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001164867 李才.青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J].地质论评, 2008, 54(1):104-119. http://d.old.wanfangdata.com.cn/Periodical/dzlp200801012 Metcalfe I. Origin and assembly of Southeast Asian continental terranes[C]//Audley-Charles M G, Hallam A. Gondwana and Tethys. Geological Society of London Special Publication, 1988, 37: 101-118. http: //adsabs.harvard.edu/abs/1988GSLSP..37..101M
Metcalfe I. Gondwanaland origin, dispersion, and accretion of East and Southeast Asian continental terranes[J]. Journal of South American Earth Sciences, 1994, 7:333-347. doi: 10.1016/0895-9811(94)90019-1
Metcalfe I. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:1-33. doi: 10.1016/j.jseaes.2012.12.020
Zhang X Z, Dong Y S, Wang Q, et al. Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet[J]. Tectonics, 2016, 35:1670-1686. doi: 10.1002/tect.v35.7
Zhai Q G, Jahn B M, Wang J, et al. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet:SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics[J]. Lithos, 2013, 168/169:186-199. doi: 10.1016/j.lithos.2013.02.005
李才, 翟庆国, 董永胜, 等.冈瓦纳大陆北缘早期洋壳信息——来自青藏高原羌塘中部早古生代蛇绿岩依据[J].地质通报, 2008, 27(10):1602-1612. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20081003&flag=1 Zhai Q G, Jahn B M, Wang J, et al. Oldest paleo-tethyan ophiolitic mélange in the Tibetan plateau[J]. Geological Society of America Bulletin, 2016, 128(3/4):355-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162017030900015934
Hu P Y, Li C, Wu Y W, et al. Opening of the Longmu Co-Shuanghu-Lancangjiang ocean:constraints from plagiogranites[J]. Chinese Science Bulletin, 2014, 59(25):3188-3199. doi: 10.1007/s11434-014-0434-z
Zhang X Z, Dong Y S, Li C, et al. Silurian high-pressure granulites from Central Qiangtang, Tibet:Constraints on early Paleozoic collision along the northeastern margin of Gondwana[J]. Earth and Planetary Science Letters, 2014, 405:39-51. doi: 10.1016/j.epsl.2014.08.013
Zhai Q G, Jahn B M, Su L, et al. Triassic arc magmatism in the qiangtang area, northern tibet:zircon u-pb ages, geochemical and Sr-Nd-Hf isotopic characteristics, and tectonic implications[J]. Journal of Asian Earth Sciences, 2013, 63:162-178. doi: 10.1016/j.jseaes.2012.08.025
Jiang Q Y, Li C, Su L, et al. Carboniferous arc magmatism in the Qiangtang area, Northern Tibet:Zircon U-Pb ages, geochemical and Lu-Hf isotopic characteristics, and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 100:132-144. doi: 10.1016/j.jseaes.2015.01.012
Dan W, Wang Q, Zhang X Z, et al. Magmatic record of late devonian arc-continent collision in the northern qiangtang, Tibet:implications for the early evolution of east paleo-tethys ocean[J]. Lithos, 2018, 308/309:104-117. doi: 10.1016/j.lithos.2018.03.002
Liu J H, Xie C M, Li C, et al. Early Carboniferous adakite-like and Ⅰ-type granites in central Qiangtang, northern Tibet:Implications for intra-oceanic subduction and back-arc basin formation within the Paleo-Tethys Ocean[J]. Lithos, 2018, 296/299:265-280. doi: 10.1016/j.lithos.2017.11.005
董永胜, 李才, 施建荣, 等.羌塘中部高压变质带的退变质作用及其构造侵位[J].岩石学报, 2009, 25(9), 2303-2309. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909022 张修政, 董永胜, 李才, 等.青藏高原羌塘中部不同时代榴辉岩的识别及其意义——来自榴辉岩及其围岩40Ar-39Ar年代学的证据[J].地质通报, 2010, 29(12):1815-1824. doi: 10.3969/j.issn.1671-2552.2010.12.009 张修政, 董永胜, 李才, 等.青藏高原羌塘中部榴辉岩地球化学特征及其大地构造意义[J].地质通报, 2010, 29(12):1804-1814. doi: 10.3969/j.issn.1671-2552.2010.12.008 翟庆国, 李才, 黄小鹏.西藏羌塘中部角木日地区二叠纪玄武岩的地球化学特征及其构造意义[J].地质通报, 2006, 25(12):1419-1427. doi: 10.3969/j.issn.1671-2552.2006.12.010 Fan J J, Li C, Xie C. et al. Remnants of Late Permian-Middle Triassic ocean islands in northern Tibet:implications for the late-stage evolution of the Paleo-Tethys ocean[J]. Gondwana Research, 2017, 44:7-21. doi: 10.1016/j.gr.2016.10.020
朱同兴, 张启跃, 董瀚, 等.藏北双湖才多茶卡一带构造混杂岩中新发现晚泥盆世和晚二叠世放射虫硅质岩[J].地质通报, 2006, 25(12):1413-1418. doi: 10.3969/j.issn.1671-2552.2006.12.009 张修政, 董永胜, 李才, 等.羌塘中部晚三叠世岩浆活动的构造背景及成因机制——以红脊山地区香桃湖花岗岩为例[J].岩石学报, 2014, 30(2):547-564. http://d.old.wanfangdata.com.cn/Conference/8248049 Zhu D C, Zhao Z D, Niu Y, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002
李才, 黄小鹏, 翟庆国, 等.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界[J].地学前缘, 2006, 13(4):136-147. doi: 10.3321/j.issn:1005-2321.2006.04.011 Li C, Zheng A. Paleozoic stratigraphy in the Qiangtang region of Tibet:relations of the Gondwana and Yangtze continents and ocean closure near the end of the Carboniferous[J]. International Geology Review, 1993, 35(9):797-804. doi: 10.1080/00206819309465558
李才, 翟刚毅, 王立全, 等.认识青藏高原的重要窗口——羌塘地区近年来研究进展评述(代序)[J].地质通报, 2009, 28(9):1169-1177. doi: 10.3969/j.issn.1671-2552.2009.09.001 彭虎, 李才, 解超明, 等.藏北羌塘中部日湾茶卡组物源——LAICP-MS锆石U-Pb年龄及稀土元素特征[J].地质通报, 2014, 23(11):1715-1727. doi: 10.3969/j.issn.1671-2552.2014.11.008 Zhang X Z, Dong Y S, Wang Q, et al. Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet-staurolite-muscovite schists in central qiangtang, Tibet[J]. Geochemistry Geophysics Geosystems, 2017, 18:266-279. doi: 10.1002/2016GC006576
Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10):875-878. doi: 10.1130/G32945.1
Xu W, Dong Y, Zhang X, et al. Petrogenesis of high-timafic dykes from southern qiangtang, tibet:implications for a ca. 290Ma large igneous province related to the early permian rifting of gondwana[J]. Gondwana Research, 2016, 36:410-422. doi: 10.1016/j.gr.2015.07.016
Zhai Q G, Jahn B M, Su L, et al. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications[J]. Lithos, 2013, 174:28-43. doi: 10.1016/j.lithos.2012.10.018
Hening A. Eur Petrographic and Geologie Von Sudwest Tibet[C]//Hedin S. Southern Tibet. Stockholm: Noratet, 1915, 5: 220. http: //www.mendeley.com/research/zur-petrographie-und-geologie-von-sudwest-tibet/
李才.西藏羌塘中部蓝片岩青铝闪石40Ar/39Ar定年及其地质意义[J].科学通报, 1997, 42:448. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700343420 Tang X C, Zhang K J. Lawsonite-and glaucophane-bearing blueschists from NW Qiangtang, northern Tibet, China:mineralogy, geochemistry, geochronology, and tectonic implications[J]. International Geology Review, 2014, 56(2):150-166. doi: 10.1080/00206814.2013.820866
Zhai Q G, Jahn B M, Li X H, et al. Zircon U-Pb dating of eclogite from the Qiangtang terrane, north-central Tibet:a case of metamorphic zircon with magmatic geochemical features[J]. International Journal of Earth Sciences, 2016, 106:1-17. http://cn.bing.com/academic/profile?id=e93d47cc9a2e69380780ef55bbd60bb7&encoded=0&v=paper_preview&mkt=zh-cn
Pullen A, Kapp P, Cehrels G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the PaleoTethys Ocean[J]. Geology, 2008, 36:351-354. doi: 10.1130/G24435A.1
Hermann J, Rubatto D, Korsakov A, et al. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav massif, Kazakhstan)[J]. Contributions to Mineralogy & Petrology, 2001, 141(1):66-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ023549516
Liu F L, Xu Z Q, Xue H M. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China):SHRIMP U-Pb dating of mineral inclusionbearing zircons[J]. Lithos, 2004, 78(4):411-429. doi: 10.1016/j.lithos.2004.08.001
Dan W, Wang Q, White W M, et al. Rapid formation of eclogites during a nearly closed ocean:revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau[J]. Chemical Geology, 2018, 477:112-122. doi: 10.1016/j.chemgeo.2017.12.012
Valley J W, Kinny P D, Schulze D J, et al. Zircon megacrysts from kimberlite:oxygen isotope variability among mantle melts[J]. Contrib. Mineral. Petrol., 1998, 133:1-11. doi: 10.1007/s004100050432
Schmidt M W, Poli S. Devolatilization during subduction[C]//Treatise on geochemistry (Second Edition), 2013: 669-701.
苑婷媛, 赵中宝, 曾庆高, 等.藏西北戈木日榴辉岩岩石学特征及其构造意义[J].岩石学报, 2016, 32(12):3729-3742. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162017042100243938 Cherniak D J. Pb diffusion in rutile[J]. Contributions to Mineralogy and Petrology, 2000, 139:198-207. doi: 10.1007/PL00007671
Kooijman E, Mezger K, Berndt J. Constraints on the U-Pb systematics of metamorphic rutile from in situ LA-ICPMS analysis[J]. Earth and Planet Science Letters, 2010, 293:321-330. doi: 10.1016/j.epsl.2010.02.047
程昊, 曹达迪.石榴石Lu-Hf年代学及其在大别造山带研究中的进展[J].科学通报, 2013, 58(23):2271-2278. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201323006.htm 翟庆国.藏北羌塘中部榴辉岩岩石学、地球化学特征及构造演化过程[D].中国地质科学院博士学位论文, 2018. http: //cdmd.cnki.com.cn/Article/CDMD-82501-2008177391.htm Zack T, Moraes R, Kronz A. Temperature dependence of Zr in rutile:empirical calibration of a rutile thermometer[J]. Contributions to Mineralogy and Petrology, 2004, 148:471-488. doi: 10.1007/s00410-004-0617-8
Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151:413-433. doi: 10.1007/s00410-006-0068-5
Tomkins H S, Powell R, Ellis D J. The pressure dependence of the zirconium-in-rutile thermometer[J]. Journal of Metamorphic Geology, 2007, 25:703-713. doi: 10.1111/jmg.2007.25.issue-6
Fialin M, Remy H, Richard C, et al. Trace element analysis with the electron microprobe:new data and perspectives[J]. American Mineralogist, 1999, 84:70-77. doi: 10.2138/am-1999-1-207
王汝成, 王硕, 邱检生, 等. CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义[J].岩石学报, 2005, 21(2):465-474. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200502020 Gao X Y, Zheng Y F, Xia X P, et al. U-Pb ages and trace elements of metamorphic rutile from ultrahigh-pressure quartzite in the Sulu orogeny[J]. Geochimica et Cosmochimica Acta, 2014, 143:87-114. doi: 10.1016/j.gca.2014.04.032
Zheng Y F, Gao X Y, Chen R X, et al. Zr-in-rutile thermometry of eclogite in the Dabie orogen:Constraints on rutile growth during continental subduction-zone metamorphism[J]. Journal of Asian Earth Sciences, 2011, 40:427-451. doi: 10.1016/j.jseaes.2010.09.008
Cawood P A, Buchan C. Linking accretionary orogenesis with supercontinent assembly[J]. Earth-Science Reviews, 2007, 82:217-256. doi: 10.1016/j.earscirev.2007.03.003
Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana:tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255:70-84. doi: 10.1016/j.epsl.2006.12.006
Herwartz D, Nagel T J, Münker C, et al. Tracing two orogenic cycles in one eclogite sample by Lu-Hf garnet chronometry[J]. Nature Geoscience, 2011, 4:178-183. doi: 10.1038/ngeo1060
Root D, Corfu F. U-Pb geochronology of two discrete Ordovician high-pressure metamorphic events in the Seve Nappe Complex, Scandinavian Caledonides[J]. Contrib. Mineral Petrol., 2012, 163:769-788. doi: 10.1007/s00410-011-0698-0
Kirchenbaur M, Pleuger J, Jahn-Awe S, et al. Timing of highpressure metamorphic events in the Bulgarian Rhodopes from LuHf garnet geochronology[J]. Contrib. Mineral Petrol., 2012, 163:897-921. doi: 10.1007/s00410-011-0705-5
Agard P, Yamato P, Jolivet L, et al. Exhumation of oceanic blueschists and eclogites in subduction zones:timing and mechanisms[J]. Earth-Science Reviews, 2009, 92(1):53-79. http://cn.bing.com/academic/profile?id=33d0061b4ba5d96c69153786f7014be9&encoded=0&v=paper_preview&mkt=zh-cn
Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22:3-23. doi: 10.1029-2001TC001332/
Fan J J, Li C, Xie C M, et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet:Constraints on the timing of closure of the BanggongNujiang Ocean[J]. Lithos, 2015, 227:148-160. doi: 10.1016/j.lithos.2015.03.021
Zhang X Z, Wang Q, Dong Y S, et al. High-pressure granulite facies overprinting during the exhumation of eclogites in the Bangong-Nujiang suture zone, central Tibet:Link to flat-slab subduction[J]. Tectonics, 2017, 36:2918-2935. doi: 10.1002/2017TC004774
赵靖, 钟大赉, 王毅.滇西澜沧变质带的变质作用和变形的关系[J].岩石学报, 1994, 10(1):27-40. doi: 10.3321/j.issn:1000-0569.1994.01.003 -
期刊类型引用(0)
其他类型引用(4)