Geochronology and isotopic geochemistry characteristics of the Maoling large gold deposit, Liaoning Province, China
-
摘要:
猫岭矿床是华北克拉通北缘重要的含砷浸染型金矿之一,赋存于元古代辽河群变质岩中。矿体以脉状、似层状、透镜状等产出,受NE向和NW向韧性剪切带及次级断裂控制。选取猫岭矿床10件硫化物样品开展了Rb-Sr定年,获得Rb-Sr等时线年龄为2287±95Ma(MSWD=1.9),初始Sr同位素比值ISr=0.7117,显示成矿作用发生于古元古代早期。矿区内卧龙泉和猫岭岩体的LA-ICP-MS锆石U-Pb年龄分别为183.0±1.8Ma、128.8±1.6Ma,表明晚中生代岩浆活动与猫岭金矿化无成因联系。成矿流体的δ18OW值为6.3‰~9.7‰,δDW值为-97.2‰~-82.6‰,表明成矿流体主要来源于岩浆热液,混合部分大气降水。金属硫化物的δ34S值为+4.3‰~+10.5‰,平均值为+7.9‰,与辽河群盖县组的硫同位素组成相似,表明硫源区为古元古代盖县组。猫岭矿床形成于古元古代伸展构造背景,与辽河群早期的同构造岩浆-热液活动有关,同期形成的强硅化圈保护金矿体免受后期地质作用的破坏。
-
关键词:
- 锆石U-Pb定年 /
- 硫化物Rb-Sr定年 /
- 同位素地球化学 /
- 猫岭金矿 /
- 辽东半岛
Abstract:The Maoling large gold deposit, located in northern North China Craton, is an As-bearing disseminated gold deposit. The ore bodies are hosted in the metamorphic rocks of the Proterozoic Liaohe Group. The gold orebodies appear as veins, bedded, and lenticular, and controlled by NE-and NW-striking ductile shear belts and secondary faults. We present Rb-Sr ages from ten metallic sulfide samples which reveal the mineralization timing of the Maoling gold deposit as 2287±95Ma (MSWD=1.9), initial Sr isotopic value ISr=0.7117. The high precision LA-ICP-MS zircon U-Pb dating method has been applied to measure the ages of the Wolongquan and Maoling granitic intrusions in the Maoling deposit, corresponding the dated ages of 183.0±1.8Ma, 128.8±1.6Ma, respectively. The Late Mesozoic magmatic activities were not related to the formation of the Maoling deposit. The calculated δ18O water values of ore-forming fluids show a range of 6.3‰ to 9.7‰. The δD values range of -97.2‰ to -82.6‰. H-O isotopic data indicate the ore-forming fluids were mainly derived from magmatic fluid with minor metoric water. The δ34S values recorded in the sulfide minerals from the Maoling deposit show a range of +4.3‰ to +10.5‰, averaging +7.9‰, similar to sulfur isotopic composition of the Gaixian Formaiton of the Liaohe Group. This evidence shows sulfur derived from strata of the Gaixian Formation. The Maoling gold deposit was formed in Paleoproterozoic extensional setting. The gold mineralization could be related to syntectonic magmatic hydrothermal activities in the early formation process of the Liaohe Group, and was not destroyed by later geological activitions as protection of contemporaneous strong silicfication belt.
-
致谢: 野外工作期间得到辽宁省有色地质局一〇三队刘福兴教授级高级工程师、李生辉高级工程师的热情帮助,室内测试过程中得到中国地质科学院矿产资源研究所侯可军副研究员、王倩助理研究员的热情帮助,感谢评审专家对文章的审阅,在此一并致以诚挚的感谢。
-
图 1 辽东半岛区域地质和主要金矿床分布简图(据参考文献[15]修改)
1—中生代花岗岩;2—面理化的侏罗纪花岗岩;3—元古宙花岗岩;4—镁铁质-超镁铁质岩石;5—白垩纪陆相沉积岩;6—侏罗纪火山岩;7—石炭系-二叠系;8—寒武系-奥陶系;9—新元古代碳酸盐岩、砂岩、石英岩和板岩;10—古元古代板岩、大理岩和变泥质岩(辽河群);11—古元古代镁铁质岩浆弧带:超镁铁质岩、镁铁质岩、片麻岩、硅质岩和变泥质岩;12—片麻状混合岩和基底片麻岩;13—断裂;14—地质界线;15—金矿床:①—分水金矿;②—白云金矿;③—小佟家堡子金矿;④—石庙子金矿;⑤—王家崴子金矿;⑥—猫岭金矿;⑦—塔岭金矿;⑧—五龙金矿;⑨—四道沟金矿
Figure 1. Sketch geological map of the Liaodong peninsula, showing distribution of major gold deposits in the Liaodong peninsula
图 2 猫岭矿床地质简图(据参考文献[12]修改)
Figure 2. Geological map of the Maoling deposit
图 6 猫岭矿床δ18OW-δD体系图(据参考文献[31]修改)
Figure 6. δD versus δ18OW diagram of the Maoling deposit
图 7 猫岭矿床及相关地质体硫同位素组成(硫同位素数据据本文和参考文献[11])
Figure 7. Sulfur isotopic composition histograms of sulfide minerals from the Maoling deposit and regional rocks
表 1 猫岭矿床卧龙泉岩体和猫岭岩体LA-ICP-MS锆石U-Th-Pb分析结果
Table 1 LA-ICP-MS zircon U-Th-Pb data of the Wolongquan and Maoling intrusions from the Maoling deposit
样品号 含量/10–6 同位素比值 Th/U 年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 卧龙泉岩体 LM-122.01 168 713 5090 0.0504 0.00103 0.1983 0.0038 0.02851 0.0003 0.1 181.2 1.9 LM-122.02 143 709 4462 0.05112 0.00064 0.202 0.0027 0.0286 0.00031 0.2 181.8 1.9 LM-122.03 70 488 2205 0.04992 0.00079 0.197 0.0029 0.02864 0.0003 0.2 182 1.9 LM-122.04 51 231 1609 0.05283 0.00096 0.2091 0.0039 0.02864 0.00026 0.1 182 1.6 LM-122.05 116 776 3585 0.05073 0.0008 0.2002 0.004 0.02864 0.0005 0.2 182.1 3.1 LM-122.06 119 1077 3483 0.05096 0.00115 0.2015 0.0048 0.02865 0.00032 0.3 182.1 2.0 LM-122.07 65 373 2072 0.04976 0.0007 0.1971 0.0027 0.02871 0.00026 0.2 182.4 1.6 LM-122.08 40 158 1121 0.05488 0.00177 0.2192 0.0073 0.02878 0.00036 0.1 182.9 2.3 LM-122.09 119 557 3478 0.0565 0.00128 0.2241 0.0051 0.02883 0.0003 0.2 183.2 1.9 LM-122.10 48 955 1218 0.05624 0.0018 0.2251 0.0072 0.02887 0.00033 0.8 183.5 2.1 LM-122.11 160 1271 4533 0.0533 0.00112 0.2125 0.0037 0.02888 0.00029 0.3 183.5 1.8 LM-122.12 85 460 2843 0.05639 0.00148 0.2236 0.0075 0.02891 0.00096 0.2 183.7 6.0 LM-122.13 109 373 3168 0.05823 0.0014 0.2325 0.0046 0.02893 0.00035 0.1 183.8 2.2 LM-122.14 43 182 1378 0.05502 0.00127 0.2193 0.0048 0.02899 0.00041 0.1 184.2 2.6 LM-122.15 212 733 6450 0.05835 0.00087 0.2346 0.0042 0.02906 0.00029 0.1 184.6 1.8 LM-122.16 65 236 1972 0.05665 0.00122 0.2282 0.0051 0.02915 0.00028 0.1 185.2 1.7 猫岭岩体 LM-119.01 10 377 382 0.05065 0.00261 0.1383 0.0069 0.0199 0.00044 1.0 127.0 2.8 LM-119.02 5 153 199 0.04875 0.004 0.1337 0.0099 0.01993 0.00082 0.8 127.2 5.2 LM-119.03 7 181 255 0.04903 0.00199 0.1346 0.0055 0.01993 0.00032 0.7 127.2 2.0 LM-119.04 6 185 223 0.05034 0.003 0.1388 0.0086 0.02 0.0005 0.8 127.7 3.2 LM-119.05 11 342 444 0.0482 0.0019 0.1326 0.0048 0.02013 0.0004 0.8 128.5 2.5 LM-119.06 8 270 301 0.04901 0.00165 0.1357 0.0047 0.02023 0.00029 0.9 129.1 1.8 LM-119.07 9 242 291 0.04939 0.00353 0.1383 0.0096 0.0204 0.00054 0.8 130.2 3.4 LM-119.08 7 185 235 0.04931 0.00183 0.1378 0.0051 0.02046 0.00034 0.8 130.6 2.2 LM-119.09 9 279 331 0.04962 0.00186 0.1385 0.005 0.02047 0.00041 0.8 130.7 2.6 LM-119.10 27 420 546 0.05216 0.00234 0.2732 0.011 0.03824 0.00143 0.8 241.9 8.9 LM-119.11 8 117 141 0.04956 0.00364 0.2689 0.0213 0.03941 0.00134 0.8 249.2 8.3 LM-119.12 689 1069 1678 0.1205 0.0012 5.0004 0.0898 0.30131 0.0053 0.6 1697.8 26.2 LM-119.13 571 744 1434 0.1173 0.0018 4.9207 0.0989 0.30301 0.00477 0.5 1706.2 23.6 表 2 猫岭矿床金属硫化物Rb-Sr同位素分析结果
Table 2 Rb-Sr isotopic analyses of metallic sulfides from the Maoling deposit
序号 样号 样品描述 分析矿物 Rb/10–6 Sr/10–6 87Rb/86Sr 87Sr/86Sr(2σ) 1 LM-11 石英-毒砂±磁黄铁矿脉 毒砂 0.3243 2.117 0.4508 0.725791±0.000009 2 LM-12 石英-毒砂±磁黄铁矿脉 毒砂 0.2506 1.439 0.5136 0.734573±0.000012 3 LM-12 石英-毒砂±磁黄铁矿脉 磁黄铁矿 0.6938 0.3416 5.981 0.909864±0.000010 4 LM-13 石英-毒砂±磁黄铁矿脉 毒砂 0.1235 7.408 0.0492 0.711808±0.000008 5 LM-14 石英-毒砂±磁黄铁矿脉 毒砂 0.0839 1.973 0.1247 0.714946±0.000009 6 LM-18 石英-毒砂±磁黄铁矿脉 毒砂 0.1407 0.4209 0.9834 0.742992±0.000007 7 LM-19 石英-毒砂±磁黄铁矿脉 毒砂 0.1531 0.4108 1.105 0.752298±0.000013 8 LM-20 石英-毒砂±磁黄铁矿脉 磁黄铁矿 0.7345 0.5931 3.654 0.832743±0.000009 9 LM-21 石英-毒砂±磁黄铁矿脉 毒砂 0.3821 0.5696 1.982 0.775928±0.000008 10 LM-22 石英-毒砂±磁黄铁矿脉 毒砂 0.3509 0.6188 1.675 0.761271±0.000016 表 3 猫岭矿床氢、氧同位素分析结果
Table 3 Hydrogen and oxygen isotope compositions of the Maoling deposit
样号 成矿阶段 样品描述 测试矿物 δD/‰ δ18Oquartz/‰ δ18Owater/‰ T/℃ LM-2 Ⅰ 石英-毒砂±磁黄铁矿脉 石英 -87.7 15.2 8.6 308 LM-3 Ⅰ 石英-毒砂±磁黄铁矿脉 石英 -89.2 16.1 9.5 308 LM-4 Ⅰ 石英-毒砂±磁黄铁矿脉 石英 -82.6 16.3 9.7 308 LM-1 Ⅱ 石英-磁黄铁矿±毒砂脉 石英 -86.0 14.9 7.2 279 LM-5 Ⅱ 石英-磁黄铁矿±毒砂脉 石英 -89.5 14.7 7.0 279 LM-6 Ⅱ 石英-磁黄铁矿±毒砂脉 石英 -83.6 15.2 7.5 279 LM-7 Ⅱ 石英-磁黄铁矿±毒砂脉 石英 -97.2 14.0 6.3 279 LM-10 Ⅱ 石英-磁黄铁矿±毒砂脉 石英 -82.7 15.0 7.3 279 注:流体包裹体完全均一温度(T)数据据参考文献[11] 表 4 猫岭矿床金属硫化物硫同位素分析结果
Table 4 Sulfur isotopic compositions of metallic sulfides from the Maoling deposit
序号 样号 成矿阶段 测试矿物 δ34S/‰ 数据来源 序号 样号 成矿阶段 测试矿物 δ34S/‰ 数据来源 1 LM-11 Ⅱ 磁黄铁矿 5.5 本文 22 L9* Ⅰ 毒砂 4.3 [11] 2 LM-13 Ⅱ 磁黄铁矿 5.0 本文 23 L8-1* Ⅰ 毒砂 6.8 [11] 3 LM-18 Ⅱ 磁黄铁矿 6.5 本文 24 L8* Ⅰ 毒砂 8.1 [11] 4 LM-20 Ⅰ 毒砂 8.5 本文 25 L8-2* Ⅰ 毒砂 9.1 [11] 5 LM-21 Ⅱ 磁黄铁矿 6.1 本文 26 L9-1* Ⅱ 毒砂 9.2 [11] 6 LM-22 Ⅱ 磁黄铁矿 6.1 本文 27 L14-2* Ⅰ 毒砂 9.0 [11] 7 LM-101 Ⅰ 毒砂 9.7 本文 28 L5* Ⅱ 方铅矿 6.4 [11] 8 LM-103 Ⅰ 毒砂 9.3 本文 29 L5-1* Ⅱ 黄铁矿 10.0 [11] 9 LM-104 Ⅰ 磁黄铁矿 6.8 本文 30 3LH3208* Ⅰ 毒砂 8.9 [11] 10 LM-107 Ⅰ 毒砂 9.2 本文 31 MSP94* Ⅰ 毒砂 9.9 [11] 11 LM-110 Ⅰ 毒砂 10.1 本文 32 3LH3216* Ⅰ 毒砂 9.1 [11] 12 LM-112 Ⅰ 磁黄铁矿 7.6 本文 33 3LH3227* Ⅰ 毒砂 9.7 [11] 13 LM-113 Ⅰ 磁黄铁矿 7.5 本文 34 MSP48* Ⅰ 磁黄铁矿 7.4 [11] 14 LM-114 Ⅱ 磁黄铁矿 7.3 本文 35 MSP68* Ⅰ 磁黄铁矿 7.2 [11] 15 LM-115 Ⅱ 磁黄铁矿 7.2 本文 36 MSZHC* Ⅱ 毒砂 7.4 [11] 16 LM-116 Ⅱ 磁黄铁矿 6.8 本文 37 MSZHD* Ⅱ 毒砂 9.0 [11] 17 L30 Ⅰ 毒砂 5.2 [11] 38 MND* Ⅰ 毒砂 10.2 [11] 18 L31 Ⅰ 毒砂 7.4 [11] 39 MNQD* Ⅰ 毒砂 9.8 [11] 19 L32* Ⅱ 毒砂 4.6 [11] 40 MNZHC* Ⅰ 磁黄铁矿 7.3 [11] 20 L33* Ⅰ 毒砂 10.5 [11] 41 MSCH* Ⅱ 磁黄铁矿 7.5 [11] 21 L14-1* Ⅰ 毒砂 8.7 [11] 42 MNZHD* Ⅱ 磁黄铁矿 8.3 [11] -
涂光炽.中国层控矿床地球化学[M].北京:科学出版社, 1984:137-138. 方如恒.中朝古元古代层控铅锌矿床类型及其比较[J].辽宁地质, 1999, 16(1):43-56. http://www.cqvip.com/qk/97227X/199901/3485707.html 倪培, 徐克勤.辽东半岛地质演化及金矿床的成因[J].矿床地质, 1993, 12(3):231-244. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kcdz199303005&dbname=CJFD&dbcode=CJFQ 刘先利, 姜瑛, 刘志远.青城子矿田高家堡子大型金银矿床地质特征及成矿机制[J].辽宁地质, 2000, 17(2):121-127. http://www.cqvip.com/Main/Detail.aspx?id=4527485 刘如琦, 戴立军, 商木元, 等.辽东的主要剪切带及其金矿化特征[J].地质科学, 2006, 41(2):181-194. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkx200602000&dbname=CJFD&dbcode=CJFQ Yu G, Chen J F, Xue C J, et al. Geochronological framework and Pb, Sr isotope geochemistry of the Qingchengzi Pb-Zn-Ag-Au orefield, Northeastern China[J]. Ore Geology Reviews, 2009, 35:367-382. doi: 10.1016/j.oregeorev.2008.11.009
邱小平.猫岭金矿床成矿构造演化特征[J].矿床地质, 2004, 23(2):198-205. http://www.cqvip.com/Main/Detail.aspx?id=9901167 刘斌, 余昌涛.辽南猫岭细脉浸染型金矿床的成矿模式[J].贵金属地质, 1994, 3(2):103-106. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gjsd199402003&dbname=CJFD&dbcode=CJFQ 魏俊浩, 李江风, 刘铁侠, 等.辽南地区金矿床流体包裹体特征及找矿意义[J].地质找矿论丛, 1998, 13(1):33-39. http://www.cqvip.com/Main/Detail.aspx?id=3040109 孙宝亮, 金成洙, 崔卫利.猫岭-王家崴子金成矿带成矿模式研究[J].黄金学报, 2001, 3(1):19-23. http://www.cqvip.com/Main/Detail.aspx?id=5169134 刘辉, 金成洙, 关广岳.辽南猫岭金矿床的成矿物质来源及金的活化、迁移及富集机理[J].地质找矿论丛, 1990, 5(4):57-68. http://www.cqvip.com/Main/Detail.aspx?id=229962 喻钢, 杨刚, 陈江峰, 等.辽东猫岭金矿中含金毒砂的Re-Os年龄及地质意义[J].科学通报, 2005, 50(12):1248-1252. doi: 10.3321/j.issn:0023-074X.2005.12.016 陈昌勇.华北地块北缘金矿床类型及成矿系列[J].辽宁地质, 1998, 3:214-221. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=load803.006&dbname=CJFD&dbcode=CJFQ 王文清, 曲亚军.辽东古元古宙金矿地质特征及成矿模式[J].辽宁地质, 2000, 17(3):161-172. http://www.cqvip.com/Main/Detail.aspx?id=4715559 林伟, 王清晨, 王军, 等.辽东半岛晚中生代伸展构造-华北克拉通破坏的地壳响应[J].中国科学:地球科学, 2011, 41(5):638-653. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201105004&dbname=CJFD&dbcode=CJFQ 辽宁省地质矿产局.辽宁省区域地质志[M].北京:地质出版社, 1989:1-856. 路孝平, 吴福元, 林景仟, 等.辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架[J].地质科学, 2004, 39(1):123-138. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkx200401013&dbname=CJFD&dbcode=CJFQ 杨进辉, 吴福元, 罗清华, 等.辽宁丹东地区侏罗纪花岗岩的变形时代:40Ar/39Ar年代学制约[J].岩石学报, 2004, 20(5):1205-1214. Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of the Jurassic granites in the Liaodong Peninsula, NE China[J]. Chemical Geology, 2005, 221:127-156. doi: 10.1016/j.chemgeo.2005.04.010
Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the early cretaceous giant igneous event in Eastern China[J]. Earth and Planetary Science Letters, 2005b, 233:103-119. doi: 10.1016/j.epsl.2005.02.019
吴福元, 杨进辉, 柳小明.辽东半岛中生代花岗质岩浆作用的年代学格架[J].高校地质学报, 2005, 11(3):305-317. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxdx200503003&dbname=CJFD&dbcode=CJFQ Liu J L, Davis G A, Lin Z Y, et al. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China:A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas[J]. Tectonophysics, 2005, 407:65-80. doi: 10.1016/j.tecto.2005.07.001
Lin W, Faure M, Monie P, et al. Polyphase Mesozoic tectonics in the eastern part of North China Block:Insights from the Eastern Liaoning Peninsula massif (NE China)[J]. Geological Society London Special Publications, 2007, 280:153-169. doi: 10.1144/SP280.7
Lin W, Faure M, Patrick M, et al. Mesozoic extensional tectonics in Eastern margin of Eurasia Continent, the Case study of SouthLiaodong peninsula dome, NE China[J]. Journal of Geology, 2008, 116:134-154. doi: 10.1086/527456
侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位UPb定年技术[J].矿床地质, 2009, 28(4):481-492. http://d.wanfangdata.com.cn/Periodical/kcdz200904010 Wang Y X, Yang J D, Chen J, et al. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7Ma:Implications for the East Asian winter monsoon and source areas of loess[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 249(3/4):351-361. https://www.researchgate.net/publication/223435952_The_Sr_and_Nd_isotopic_variations_of_the_Chinese_Loess_Plateau_during_the_past_7_Ma_Implications_for_the_East_Asian_winter_monsoon_and_source_areas_of_loess
王银喜, 顾连兴, 张遵忠, 等.东天山晚石炭世大石头群流纹岩Sr-Nd-Pb同位素地球化学研究[J].岩石学报, 2007, 23(7):1749-1755. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200707019&dbname=CJFD&dbcode=CJFQ Ludwig K R. Using Isoplot/Ex:Age of chronological toolkit for Microsoft Excel, version 1.00. Berkeley Geochronology Center Special Publication, 1998, 1:1-4. https://www.researchgate.net/publication/281475265_Isoplot_rev_375_A_geochronological_toolkit_for_microsoft_excel
Clayton R N, Mayeda T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochimica et Cosmochimica Acta, 1963, 27:43-52. doi: 10.1016/0016-7037(63)90071-1
Clayton R N, O'Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 1972, 77:3057-3067. doi: 10.1029/JB077i017p03057
Sheppard S M F. Identification of the origin of ore-forming solutions by the use of stable isotopes[J]. Inst. Mining and Metallurgy, 1977, 25-41. http://ci.nii.ac.jp/naid/10006461450
Ohmoto H. Systematics of sulfide and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67:551-578. doi: 10.2113/gsecongeo.67.5.551
Chaussidon M, Lorand J P. Sulphur isotope composition of orogenic spinel iherzolite massifs from Ariege:an ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1990, 54:2835-2846. doi: 10.1016/0016-7037(90)90018-G
Rollinson H R. Using geochemical data:evalution, presentation, interpretation[M]. Longman Scientific and Technical Press, 1993, 306-308.
Tretbar D R, Arehart G B, Christensen J N. Dating gold deposition in a Carlin-type gold deposit using Rb/Sr methods on the mineral galkhaite[J]. Geology, 2000, 28(10):947-950. doi: 10.1130/0091-7613(2000)28<947:DGDIAC>2.0.CO;2
Yang J H, Zhou X H. Rb-Sr, Sm-Nd, Pb isotope system of pyrite implications for the age and genesis of lode gold deposits[J]. Geology, 2001, 29:711-714. doi: 10.1130/0091-7613(2001)029<0711:RSSNAP>2.0.CO;2
石文杰, 魏俊浩, 谭俊, 等.郯庐断裂带晚白垩世金成矿作用:来自龙泉站金矿床黄铁矿Rb-Sr年代学证据[J].地球科学-中国地质大学学报, 2014, 39(3):325-340. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqkx201403009&dbname=CJFD&dbcode=CJFQ 赵晓燕, 杨竹森, 刘英超, 等.西藏邦铺斑岩矽卡岩矿床二长花岗斑岩Sr-Nd-Pb-Hf同位素及闪锌矿黄铁矿Rb-Sr等时线年龄研究[J].地质学报, 2015, 89(3):522-533. http://d.wanfangdata.com.cn/Periodical_dizhixb201503006.aspx 杨晨英, 叶会寿, 向君峰, 等.豫西骆驼山多金属硫铁矿床硫化物Rb-Sr等时线年龄及其地质意义[J].矿床地质, 2016, 35(3):573-590. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506003070.htm 刘建明, 赵善仁, 沈洁, 等.成矿流体活动的同位素定年方法评述[J].地球物理学进展, 1998, 13(3):46-55. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqwj803.004&dbname=CJFD&dbcode=CJFQ 刘建明, 沈洁, 赵善仁, 等.金属矿床同位素精确定年的方法和意义[J].有色金属矿床与勘查, 1998, 7(2):107-113. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysjs802.007&dbname=CJFD&dbcode=CJFQ 李文博, 黄智龙, 许德如, 等.铅锌矿床Rb-Sr定年研究综述[J].大地构造与成矿学, 2002, 26(4):436-441. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dgyk200204014&dbname=CJFD&dbcode=CJFQ 陈井胜, 邢德和, 刘淼, 等.辽宁辽阳地区辽河群酸性火山岩锆石U-Pb年代学及其地质意义[J].岩石学报, 2017, 33(9):2792-2810. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201709010&dbname=CJFD&dbcode=CJFQ 刘福来, 刘平华, 王舫, 等.胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展[J].岩石学报, 2015, 31(10):2816-2846. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200404006.htm 胡古月, 范昌福, 李延河, 等.辽东明安硼镁矿床混合花岗岩的锆石U-Pb年龄及对成矿时代的制约[J].矿床地质, 2014, 33(2):397-405. http://d.wanfangdata.com.cn/Periodical_kcdz201402012.aspx 汤好书, 陈衍景, 武广, 等.辽北辽河群碳酸盐岩碳-氧同位素特征及其地质意义[J].岩石学报, 2008, 24(1):129-138. http://d.wanfangdata.com.cn/Periodical/ysxb98200801010 孟恩, 刘福来, 刘平华, 等.辽东半岛东北部宽甸地区南辽河群沉积时限的确定及其构造意义[J].岩石学报, 2013, 29(7):2465-2480. http://d.wanfangdata.com.cn/Periodical/ysxb98201307015 李三忠, 郝德峰, 韩宗珠, 等.胶辽地块古元古代构造-热演化与深部过程[J].地质学报, 2003, 77(3):328-340. http://d.wanfangdata.com.cn/Periodical/dizhixb200303005 李三忠, 杨振升, 刘永江, 等.胶辽吉地区古元古代早期花岗岩的侵位模式及其与隆滑构造的关系[J].岩石学报, 1997, 13(2):189-202. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb702.007&dbname=CJFD&dbcode=CJFQ 陈树良, 郇彦清, 邴志波.辽东地区古元古代侵入岩特征及构造岩浆大陆动力学演化[J].辽宁地质, 2001, 18(1):43-51. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=load200101014&dbname=CJFD&dbcode=CJFQ 李壮, 陈斌, 刘经纬, 等.辽东半岛南辽河群锆石U-Pb年代学及其地质意义[J].岩石学报, 2015, 31(6):1589-1605. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201410057003.htm 王祥俭, 刘建辉, 冀磊.胶-辽-吉带辽东宽甸地区古元古代二长(正长)花岗质片麻岩的锆石U-Pb年代学、地球化学及成因[J].岩石学报, 2017, 33(9):2689-2707. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201709003&dbname=CJFD&dbcode=CJFQ 张秋生, 杨振升.辽东半岛早期地壳与矿床[M].北京:地质出版社, 1988:218-450. 李三忠, 郝德峰, 赵国春, 等.丹东花岗岩的地球化学特征及其成因[J].岩石学报, 2004, 20(6):1417-1423. http://d.wanfangdata.com.cn/Periodical/ysxb98200406011 Li S Z, Zhao G C, Sun M, et al. Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern block of the North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24(5):659-674. doi: 10.1016/j.jseaes.2003.11.008
Li S Z, Zhao G C, Sun M, et al. Are the South and North Liaohe Groups of North China Craton different exotic terranes? Nd isotope constraints[J]. Gondwana Research, 2006, 9(1/2):198-208.
Luo Y, Sun M, Zhao G C, et al. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton:Constraints on the evolution of the Jiao-Liao-Ji Belt[J]. Precambrian Research, 2004, 134(3/4):349-371.
Luo Y, Sun M, Zhao G C, et al. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups:Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research, 2008, 163(3/4):279-306.
Li S Z, Zhao G C. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids:Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton Are the South and North Liaohe Groups of North China Craton different exotic terranes[J]. Precambrian Research, 2007, 158(1/6):1-16.
白瑾.华北陆台北缘前寒武纪地质及铅锌成矿作用[M].北京:地质出版社, 1993:1-132. Faure M, Lin W, Monie P, et al. Paleoproterozoic arc magmatism and collision in Liaodong Peninsula (north-east China)[J]. Tera Nova, 2004, 16:75-80. doi: 10.1111/ter.2004.16.issue-2
Lu X P, Wu F Y, Guo J H, et al. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton[J]. Precambrian Research, 2006, 146(3/4):138-164.
贺高品, 叶惠文.辽东-吉南地区早元古代两种类型变质作用及其构造意义[J].岩石学报, 1998, 14(2):152-162. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb802.002&dbname=CJFD&dbcode=CJFQ Zhao G C, Cawood P A, Li S Z, et al. Amalgamation of the North China Craton:Key issues and discussion[J]. Precambrian Research, 2012, 222/223:55-76. doi: 10.1016/j.precamres.2012.09.016