• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

大兴安岭北段伊勒呼里山晚侏罗世二长花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义

尹志刚, 宫兆民, 张跃龙, 曹忠强, 李敏, 李海娜, 王阳, 韩宇, 张圣听

尹志刚, 宫兆民, 张跃龙, 曹忠强, 李敏, 李海娜, 王阳, 韩宇, 张圣听. 2018: 大兴安岭北段伊勒呼里山晚侏罗世二长花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义. 地质通报, 37(7): 1291-1301.
引用本文: 尹志刚, 宫兆民, 张跃龙, 曹忠强, 李敏, 李海娜, 王阳, 韩宇, 张圣听. 2018: 大兴安岭北段伊勒呼里山晚侏罗世二长花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义. 地质通报, 37(7): 1291-1301.
YIN Zhigang, GONG Zhaomin, ZHANG Yuelong, CAO Zhongqiang, LI Min, LI Haina, WANG Yang, HAN YU, ZHANG Shengting. 2018: LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Late Jurassic monzonitic granite from Yilehuli Mountain in northern Da Hinggan Mountains and their geological implications. Geological Bulletin of China, 37(7): 1291-1301.
Citation: YIN Zhigang, GONG Zhaomin, ZHANG Yuelong, CAO Zhongqiang, LI Min, LI Haina, WANG Yang, HAN YU, ZHANG Shengting. 2018: LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Late Jurassic monzonitic granite from Yilehuli Mountain in northern Da Hinggan Mountains and their geological implications. Geological Bulletin of China, 37(7): 1291-1301.

大兴安岭北段伊勒呼里山晚侏罗世二长花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义

基金项目: 

中国地质调查局项目《黑龙江省1:5万1147高地(M51E004015)、工队(M51E004016)、1302高地(M51E005015)、1070高地(M51E005016)幅区调》 1212011120659

详细信息
    作者简介:

    尹志刚(1962-), 教授, 博士生导师, 从事区域地质矿产调查研究。E-mail:yzg63@163.com

  • 中图分类号: P534.52;P597+.3

LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Late Jurassic monzonitic granite from Yilehuli Mountain in northern Da Hinggan Mountains and their geological implications

  • 摘要:

    对大兴安岭北段伊勒呼里山地区二长花岗岩进行了LA-ICP-MS锆石U-Pb年龄和岩石地球化学研究,确定其形成时代、岩石成因,揭露区域大地构造环境。测年数据显示,二长花岗岩于158.1±0.7Ma前形成,为晚侏罗世早期岩浆演化事件的产物。地球化学结果显示,二长花岗岩具有高Si、富Na、K、Al,低Fe、Mg的特点,A/CNK值为0.83~1.09,属高钾钙碱性花岗岩;富集大离子亲石元素K、Rb,贫高场强元素Hf、Th;稀土元素总量较高,稀土元素配分曲线右倾,具弱的负Eu异常,为I型花岗岩。岩浆起源于下地壳玄武质成分的岩石部分熔融,为同碰撞期陆壳加厚过程的产物。研究区晚侏罗世早期二长花岗岩的形成与蒙古-鄂霍茨克缝合带闭合过程中的陆-陆碰撞环境有关,其形成时代限定了大兴安岭北段伊勒呼里山地区蒙古-鄂霍茨克洋的闭合时间应为晚侏罗世早期。

    Abstract:

    LA-ICP-MS zircon U-Pb geochronologic study and whole-rock geochemical analysis were undertaken for the monzonitic granite in Yilehuli Mountain area in northern Da Hinggan Mountains, with the aim of constraining its formation time, petrogenesis and the regional tectonic setting. Dating data show that monzonitic granite formed at 158.1 ±0.7 Ma before the Late Jurassicearly magmatic evolution event. The geochemical studies show that the granite in the area has the characteristics of high Si, Na, K and Al and low Fe and Mg, with A/CNK being 0.83~1.09, thus belonging to high potassium calc alkaline granite; it is enriched in the large ion lithophile elements K, Rb, and depleted in high field strength elements Hf, Th; the total REE is higher, and the rare earth distribution curve is right-inclined, with weak negative Eu anomalies. According to these characteristics, the monzonitic granite should belong to type I granite. The magma originated from the rock melting of the of the basaltic components of the lower crust, being the product of the thickening process with the crust during the collision. The formation of the early Late Jurassic monzonitic granites in the study area were related to the continental-continental collision environment in the closure process of the Mongolian-Okhotsk suture zone, and the closing time of the Mongolia Okhotsk Ocean in North Da Hinggan Mountain-Yilehuli mountain area is also confined to early Late Jurassic.

  • 致谢: 感谢项目组全体成员的辛勤付出,感谢审稿专家对本文提出的宝贵意见。
  • 图  1   研究区地质简图

    Figure  1.   Geological sketch map of the studied area

    图  2   晚侏罗世粗二长花岗岩宏观(a)和显微(b)照片

    Q—石英;Pl—斜长石;Qr—正长石;Bi—黑云母

    Figure  2.   Macrograph(a) and micrograph(b) of Late Jurassic coarse monzonitic granites

    图  3   二长花岗岩锆石阴极发光图像(PM008TC136)

    Figure  3.   Zircon cathodoluminescence images of monzonitic granite

    图  4   二长花岗岩锆石U-Pb年龄谐和图

    Figure  4.   Zircon U-Pb concordia diagrams for the monzonitic granite in the study area

    图  5   晚侏罗世二长花岗岩岩石类型及系列图解[26-28]

    Figure  5.   Rock types and series diagrams of the Late Jurrasic monzonitic granites

    图  6   晚侏罗世二长花岗岩球粒陨石标准化稀土元素配分图解(a)[29]和原始地幔标准化微量元素蛛网图(b)[30]

    Figure  6.   Chondrites-normalized REE patterns (a) and trace elements primitive mantle-normalized spider diagrams (b) of the Late Jurassic monzonitic granite

    图  7   二长花岗岩Y-Sr/Y图解[36]

    Figure  7.   The Y-Sr/Y diagrams of monzonitic granite

    图  8   二长花岗岩SiO2-lgCaO/(K2O+Na2O)图解

    Figure  8.   The SiO2-lgCaO/(K2O+Na2O) diagrams of monzonitic granite

    图  9   二长花岗岩R1-R2图解[46]

    Figure  9.   The R1-R2 diagrams of monzonitic granite

    表  1   晚侏罗世粗中粒二长花岗岩LA-ICP-MS锆石U-Th-Pb同位素测试结果(PM008TC136)

    Table  1   LA-ICP-MS zircon U-Th-Pb isotope test results for the Late Jurassic coarse-grained monzonitic granite (PM008TC136)

    分析序号 含量/10-6 同位素比值 年龄/Ma
    Pb U 206Pb/238U 误差/% 207Pb/235U 误差/% 207Pb/206Pb 误差/% 208Pb/232Th 误差/% 232Th/238U 误差/% 206Pb/238U 207Pb/235U 207Pb/206Pb
    1 9 305 0.0250 0.0002 0.60 0.1802 0.0052 2.86 0.0523 0.0015 2.86 0.0107 0.0003 3.87 0.6025 0.0082 1.36 159 1 168 5 299 9
    2 6 231 0.0247 0.0002 0.64 0.1722 0.0055 3.17 0.0506 0.0016 3.15 0.0101 0.0001 3.90 0.4525 0.0027 0.59 157 1 161 5 221 7
    3 5 197 0.0247 0.0002 0.64 0.1734 0.0071 4.08 0.0509 0.0021 4.05 0.0100 0.0001 3.89 0.5423 0.0047 0.87 157 1 162 7 237 10
    4 5 174 0.0249 0.0002 0.70 0.1807 0.0082 4.54 0.0526 0.0024 4.64 0.0108 0.0001 3.95 0.4835 0.0024 0.49 159 1 169 8 311 14
    5 5 183 0.0253 0.0002 0.69 0.1789 0.0080 4.49 0.0512 0.0024 4.62 0.0104 0.0002 3.91 0.5120 0.0030 0.58 161 1 167 7 250 12
    6 11 398 0.0248 0.0002 0.64 0.1813 0.0031 1.73 0.0531 0.0010 1.79 0.0109 0.0001 3.79 0.4836 0.0024 0.50 158 1 169 3 332 6
    7 8 268 0.0246 0.0002 0.62 0.1959 0.0045 2.27 0.0577 0.0013 2.29 0.0114 0.0003 3.79 0.6412 0.0054 0.84 157 1 182 4 520 12
    8 7 244 0.0248 0.0001 0.60 0.1818 0.0062 3.43 0.0531 0.0018 3.48 0.0121 0.0002 3.89 0.5067 0.0045 0.88 158 1 170 6 334 12
    9 5 182 0.0246 0.0002 0.64 0.1676 0.0064 3.84 0.0493 0.0019 3.89 0.0120 0.0002 3.97 0.4130 0.0037 0.91 157 1 157 6 164 6
    10 4 143 0.0248 0.0002 0.66 0.1680 0.0070 4.16 0.0492 0.0020 4.14 0.0125 0.0003 4.13 0.3555 0.0029 0.81 158 1 158 7 159 7
    11 4 173 0.0248 0.0002 0.64 0.1698 0.0064 3.74 0.0496 0.0019 3.76 0.0125 0.0003 4.15 0.3130 0.0030 0.96 158 1 159 6 176 7
    12 6 217 0.0245 0.0002 0.63 0.1738 0.0061 3.50 0.0514 0.0018 3.46 0.0117 0.0001 3.89 0.5304 0.0036 0.69 156 1 163 6 259 9
    13 9 316 0.0246 0.0002 0.62 0.1674 0.0037 2.22 0.0494 0.0011 2.26 0.0105 0.0002 3.80 0.5200 0.0026 0.51 157 1 157 3 166 4
    14 5 188 0.0252 0.0002 0.64 0.1721 0.0055 3.20 0.0496 0.0016 3.24 0.0111 0.0001 3.86 0.5063 0.0027 0.54 160 1 161 5 175 6
    15 5 195 0.0247 0.0002 0.64 0.1731 0.0058 3.34 0.0509 0.0017 3.36 0.0104 0.0004 3.85 0.4986 0.0039 0.78 157 1 162 5 236 8
    16 8 281 0.0248 0.0001 0.60 0.1735 0.0041 2.39 0.0508 0.0012 2.41 0.0106 0.0001 3.80 0.5892 0.0057 0.98 158 1 162 4 231 6
    17 6 192 0.0249 0.0002 0.61 0.1727 0.0052 3.02 0.0502 0.0015 3.02 0.0104 0.0003 3.84 0.6996 0.0042 0.61 159 1 162 5 206 6
    18 5 195 0.0247 0.0002 0.62 0.1849 0.0053 2.85 0.0543 0.0015 2.84 0.0102 0.0003 3.86 0.5170 0.0029 0.56 157 1 172 5 385 11
    19 24 705 0.0246 0.0002 0.61 0.1678 0.0016 0.97 0.0495 0.0005 1.04 0.0099 0.0003 3.76 1.3388 0.0111 0.83 157 1 158 2 170 2
    20 11 395 0.0249 0.0002 0.61 0.1797 0.0036 2.00 0.0524 0.0010 2.00 0.0098 0.0004 3.78 0.7296 0.0036 0.50 158 1 168 3 302 6
    21 6 242 0.0247 0.0001 0.61 0.1858 0.0042 2.26 0.0545 0.0012 2.26 0.0104 0.0004 3.86 0.4001 0.0030 0.74 158 1 173 4 391 9
    22 10 368 0.0255 0.0002 0.60 0.1735 0.0058 3.34 0.0493 0.0016 3.32 0.0108 0.0004 3.89 0.5218 0.0029 0.55 162 1 162 5 163 5
    23 7 250 0.0249 0.0002 0.62 0.1721 0.0043 2.50 0.0502 0.0012 2.44 0.0107 0.0003 3.83 0.4810 0.0025 0.52 158 1 161 4 202 5
    24 12 492 0.0254 0.0002 0.69 0.1727 0.0035 2.03 0.0493 0.0010 2.01 0.0133 0.0004 4.16 0.1184 0.0012 1.02 162 1 162 3 162 3
    25 8 316 0.0245 0.0001 0.61 0.1773 0.0035 1.97 0.0524 0.0010 1.97 0.0123 0.0004 3.80 0.4234 0.0026 0.62 156 1 166 3 305 6
    注:测试单位为天津地质矿产研究所测试中心
    下载: 导出CSV

    表  2   晚侏罗世二长花岗岩主量、微量和稀土元素组成及特征参数

    Table  2   Analytical data and parameters of major, trace and rare earth elements for the Late Jurassic monzonitic granite

    样品号 D0011a D0490 P11TC204 P20TC127 P20TC13 P20TC134 P20TC147 P20TC51 P20TC7 P22TC100 P8TC122 P8TC136 P8TC250
    SiO2 74.02 70.42 74.38 68.98 74.14 69.34 69.28 66.04 74.70 69.22 66.96 67.92 72.78
    TiO2 0.19 0.36 0.34 0.46 0.25 0.49 0.47 0.52 0.20 0.45 0.53 0.52 0.22
    Al2O3 12.43 14.96 12.14 15.06 12.79 14.81 14.78 16.50 12.50 14.87 14.96 15.01 13.04
    Fe2O3 1.60 1.00 1.55 1.76 1.04 1.91 1.85 2.34 1.31 2.17 1.92 2.31 0.61
    FeO 0.60 2.41 1.70 1.65 1.44 1.88 1.54 1.63 1.34 1.86 1.78 1.64 2.26
    MnO 0.03 0.04 0.03 0.04 0.02 0.04 0.04 0.04 0.04 0.08 0.05 0.04 0.15
    MgO 0.43 0.97 0.20 0.90 0.41 0.88 0.84 0.91 0.49 0.64 1.24 1.07 0.40
    CaO 0.51 1.76 0.66 1.49 0.54 1.68 1.61 1.62 0.63 1.35 2.83 2.62 1.17
    Na2O 4.68 4.88 3.37 4.73 4.07 4.84 4.69 5.56 4.14 4.98 4.5 4.68 4.77
    K2O 5.19 2.83 5.05 3.75 4.04 3.62 3.67 3.08 4.16 4.02 3.38 3.29 2.75
    P2O5 0.02 0.13 0.08 0.21 0.10 0.21 0.19 0.24 0.10 0.12 0.24 0.17 0.06
    烧失量 0.56 0.36 0.18 0.58 0.50 0.24 0.44 0.97 0.26 0.26 1.18 0.44 1.20
    总计 100.26 100.12 99.68 99.61 99.34 99.94 99.40 99.45 99.87 100.02 99.57 99.71 99.41
    σ 3.14 2.17 2.26 2.77 2.11 2.72 2.66 3.24 2.17 3.09 2.59 2.55 1.9
    SI 3.44 8.02 1.68 7.04 3.73 6.70 6.67 6.73 4.28 4.68 9.67 8.24 3.71
    Alk 9.87 7.71 8.42 8.48 8.11 8.46 8.36 8.64 8.30 9.00 7.88 7.97 7.52
    A/CNK 0.87 1.05 0.94 0.92 1.01 0.99 1.00 1.06 1.07 1.04 0.99 1.01 0.99
    K/Na 1.11 0.58 0.70 0.75 0.58 1.50 1.00 0.99 0.55 0.79 0.75 0.78 0.81
    A/MF 3.13 2.09 1.88 1.84 2.61 2.48 2.60 2.90 2.17 2.19 2.02 2.21 2.12
    AR 7.43 2.71 4.84 3.10 4.11 3.11 3.08 2.82 4.44 3.49 2.59 2.65 3.25
    La 70.8 27.2 37.2 32.3 19.1 34.1 33.5 60.3 32.2 41.3 28.2 25.7 40.0
    Ce 138 49.2 99.0 69.6 65.2 75.0 65.5 96.2 58.1 83.2 53.2 46.8 70.3
    Pr 13.9 5.46 13.3 7.87 3.14 7.96 7.72 9.91 5.87 8.38 5.88 5.15 8.52
    Nd 45.4 17.1 46.4 24.9 8.25 25.0 24.2 31.0 15.8 25.4 21.1 18.6 27.0
    Sm 6.99 2.68 10.50 4.17 1.14 4.06 3.96 4.66 2.27 3.83 3.54 3.16 4.34
    Eu 0.60 0.82 1.30 1.23 0.55 1.18 1.19 1.51 0.70 1.25 0.87 0.80 1.00
    Gd 5.55 2.33 9.89 3.89 1.53 3.84 3.66 5.05 2.45 3.59 2.54 2.19 4.04
    Tb 0.77 0.28 1.80 0.51 0.17 0.50 0.48 0.49 0.31 0.44 0.32 0.29 0.51
    Dy 4.14 1.39 10.79 2.46 1.01 2.45 2.27 1.99 1.55 2.05 1.46 1.31 2.33
    Ho 0.81 0.26 2.15 0.46 0.22 0.46 0.43 0.35 0.31 0.37 0.26 0.23 0.43
    Er 2.26 0.87 6.44 1.44 0.85 1.45 1.33 1.13 1.11 1.18 0.70 0.61 1.32
    Tm 0.37 0.13 0.97 0.22 0.15 0.21 0.20 0.16 0.19 0.18 0.10 0.09 0.19
    Yb 2.38 0.81 5.66 1.36 1.09 1.40 1.29 0.96 1.33 1.19 0.65 0.59 1.20
    Lu 0.36 0.14 0.98 0.24 0.21 0.26 0.23 0.17 0.26 0.23 0.10 0.09 0.21
    Y 20.4 7.18 59.3 13.4 6.93 13.3 12.4 10.0 10.4 12.6 6.70 6.02 12.1
    ∑REE 312.73 115.85 305.68 164.05 109.54 171.17 158.36 223.88 132.85 185.19 125.62 111.63 173.49
    LREE/HREE 16.57 16.50 5.37 13.24 18.62 13.94 13.76 19.77 15.30 17.70 18.40 18.55 14.78
    (La/Yb)N 29.75 33.58 6.57 23.75 17.52 24.36 25.97 62.81 24.21 34.71 43.38 43.56 33.33
    (La/Sm)N 10.13 10.15 3.54 7.75 16.75 8.40 8.46 12.94 14.19 10.78 7.97 8.13 9.22
    δCe 1.00 0.92 1.07 1.02 1.85 1.06 0.95 0.86 0.95 1.02 0.95 0.93 0.88
    δEu 0.29 0.98 0.38 0.92 1.27 0.90 0.94 0.95 0.90 1.02 0.85 0.88 0.72
    Sr 92.4 684 36.7 342 113 322 315 869 125 295 272 695 165
    Rb 124 77.5 116 79.1 107 82.3 85.5 67.9 116 106 132 65.8 72.5
    Ba 330 546 122 844 599 758 812 850 590 922 824 625 637
    Th 9.13 10.3 12.7 6.92 13.3 9.02 7.88 9.62 13.7 14.0 10.3 6.86 10.9
    Nb 15.1 8.25 22.9 8.73 10.5 10.0 8.64 9.33 10.9 10.1 11.8 6.96 9.95
    Zr 193 125 354 189 117 201 176 172 127 216 247 142 123
    Cr 44.8 11.4 6.09 7.61 4.07 6.71 5.23 7.31 5.83 4.30 52.6 25.1 6.94
    Ni 5.27 8.46 7.04 6.41 3.30 5.35 4.86 4.68 4.73 3.96 7.49 5.71 5.31
    Ta 0.98 0.74 1.61 1.12 0.82 1.07 0.86 1.03 0.86 1.07 0.70 0.58 0.82
    Cs 1.98 4.21 3.41 2.04 2.52 3.57 4.03 2.92 2.04 4.71 1.33 0.94 3.15
    Hf 3.46 3.99 9.34 5.83 3.89 6.92 6.05 5.37 4.27 6.72 3.86 3.21 4.69
    Zr/Hf 55.78 31.33 37.90 32.42 30.08 29.05 29.09 32.03 29.74 32.14 63.99 44.24 26.23
    Rb/Sr 1.34 0.11 3.16 0.23 0.95 0.26 0.27 0.08 0.93 0.36 0.49 0.09 0.44
    注:主量元素含量单位为%,微量和稀土元素为10-6;主量元素测定由黑龙江省地质调查研究总院实验室完成;微量和稀土元素测定由沈阳地调中心实验测试中心完成
    下载: 导出CSV
  • 李锦轶, 牛宝贵, 宋彪, 等.长白山北段地壳的形成与演化[M].北京:地质出版社, 1999:1-137.

    Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis[J].Chemical Geology, 2002, 87(1/2):143-173.

    Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group:Its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3/4):542-556. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200801002024.htm

    葛文春, 吴福元, 周长勇.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报, 2005, 50(12):1239-1247. doi: 10.3321/j.issn:0023-074X.2005.12.015

    Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30. doi: 10.1016/j.jseaes.2010.11.014

    赵英利, 刘永江, 李伟民, 等.大兴安岭中段晚石炭世-早二叠世砂岩碎屑锆石LA-ICP-MSU-Pb年龄及地质意义[J].地球科学, 2018, 6:2055-2075. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqkx201806022&dbname=CJFD&dbcode=CJFQ

    Xu W L, Ji W Q, Pei F P, et al. Triassic volcanism in eastern Heilongjiang and Jilin Provinces, NE China:Chronology, geochemistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 2009, 34(3):392-402. doi: 10.1016/j.jseaes.2008.07.001

    Meng E, Xu W L, Pei F P, et al. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt[J].Tectonophysics, 2010, 485(1/4):42-51. http://www.sciencedirect.com/science/article/pii/S004019510900657X

    Wang F, Xu W L, Meng E, et al. Early Paleozoic Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi Massifs in the eastern segment of the Central Asian Orogenic Belt:Geochronological and geochemical evidence from granitoids and rhyolites[J]. Journal of Asian Earth Sciences, 2012, 49:234-248. doi: 10.1016/j.jseaes.2011.09.022

    Cao H H, Xu W L, Pei F P, et al. Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern Margin of the North China Block[J]. Lithos, 2013, 170/171:191-207. doi: 10.1016/j.lithos.2013.03.006

    Li Y, Xu W L, Wang F, et al. Geochronology and geochemistry of Late Paleozoic volcanic rocks on the western Margin of the Songnen-Zhangguangcai Range Massif, NE China:Implications for the amalgamation history of the Xing'an and Songnen-Zhangguangcai Range massifs[J]. Lithos, 2014, 205:394-410. doi: 10.1016/j.lithos.2014.07.008

    赵芝. 大兴安岭北部晚古生代岩浆作用及其构造意义[D]. 吉林大学博士学位论文, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10183-1011098859.htm
    孟凡超, 刘嘉麒, 崔岩, 等.中国东北地区中生代构造体制的转变:来自火山岩时空分布与岩石组合的制约[J].岩石学报, 2014, 30(12):3569-3586. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201412008&dbname=CJFD&dbcode=CJFQ
    许文良, 王枫, 裴福萍, 等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 2013, 29(2):339-353. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201302002&dbname=CJFD&dbcode=CJFQ
    赵磊, 高福红, 张彦龙, 等.海拉尔盆地中生代火山岩锆石U-Pb年代学及其地质意义[J].岩石学报, 2013, 29(3):864-874. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201303011&dbname=CJFD&dbcode=CJFQ

    Li J Y. Permian geodynamic setting of Northeast China and adjacent regions:Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4):207-224. http://www.sciencedirect.com/science/article/pii/S1367912005001598

    许文良, 葛文春, 裴福萍, 等.东北地区中生代火山作用的年代学格架及其构造意义[J].矿物岩石地球化学通报, 2008, 27(增刊):286-287. http://d.wanfangdata.com.cn/Periodical/kwysdqhxtb2008z1153

    Meng E, Xu W L, Pei F P, et al. Permian bimodal volcanism in the Zhangguangcai Range of eastern Heilongjiang Province, NE China:Zircon U-Pb-Hf isotopes and geochemical evidence[J]. Journal of Asian Earth Sciences, 2011, 41(2):119-132. doi: 10.1016/j.jseaes.2011.01.005

    Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30. doi: 10.1016/j.jseaes.2010.11.014

    马强. 辽西三叠纪-侏罗纪火山岩: 华北北缘东段下地壳再造与克拉通破坏[D]. 中国地质大学博士学位论文. 2013. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014158058.htm
    李双庆. 中国东北地区晩中生代典型盆地火山作用及沉积物源演化特征[D]. 中国科学技术大学博士学位论文, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10358-1015723156.htm

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of Major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1/2):34-43. http://www.sciencedirect.com/science/article/pii/S0009254108003501

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from Mantle xenoliths[J].Journal of Petrology, 2010, 51(1/2):537-571.

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LAICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):5135-1546. doi: 10.1007/s11434-010-3052-4

    Ludwig KR. User's Manual for ISOPLOT 3.0:A geochronological toolkit for Microsoft Excel[J]. Berkeley:Berkeley Geochronology Centre, Special Publication, 2003, 4:1-74.

    Irvine T N, Baragar W R A. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5):523-548. doi: 10.1139/e71-055

    Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745

    Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J]. Geological Society of American Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984: 63-114.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 1989, 42(1): 313-345. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=specpubgsl&resid=42/1/313

    杨高学, 李永军, 吴宏恩, 等.东准噶尔卡拉麦里地区黄羊山花岗岩和包体LA-ICP-MS锆石U-Pb测年及地质意义[J].岩石学报, 2009, 25(12):3197-3207. http://2010.cqvip.com/QK/94579X/200912/2000002976.html

    Whalen J B, Currie K L, Chappell B W. A-Type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contrib. Mineral. Petro1., 1987, 95(4):407-419. doi: 10.1007/BF00402202

    贾晓亮, 郭瑞清, 柴凤梅, 等.新疆库鲁克塔格西段泥盆纪二长花岗岩年龄、地球化学特征及其构造意义[J].地质通报, 2013, 32(2/3):239-250. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd2013z1002&dbname=CJFD&dbcode=CJFQ
    胡培远, 李才, 解超明, 等.藏北羌塘中部桃形湖蛇绿岩中钠长花岗岩——古特提斯洋壳消减的证据[J].岩石学报, 2013, 29(12):4404-4414. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201312024&dbname=CJFD&dbcode=CJFQ
    张旗, 王焰, 钱青, 翟明国, 等.晚太古代Sanukite(赞岐岩)与地球早期演化[J].岩石学报, 2004, 20(6):1355-1362. http://d.wanfangdata.com.cn/Periodical/ysxb98200406005

    Stern C R, Killian R. Role of the subduction slab, mantle wedge and continental crust in the generation of adaldtes from the Andean Austral Vocanic Zone[J]. Contrib. Mineral. Petrol., 1996, 123:263-281. doi: 10.1007/s004100050155

    Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362:144-146. doi: 10.1038/362144a0

    Stern C R, Killian R. Role of the subduction slab, mantle wedge and continental crust in the generation of adaldtes from the Andean Austral Vocanic Zone[J]. Contrib. Mineral. Petrol., 996, 123:263-281. http://yrg.sci.kumamoto-u.ac.jp/references/ref for HP.xls

    Martin H. Adalatic magmas:modern analogues of Archaean granitoids[J]. Lithos, 1999, 46:411-429. doi: 10.1016/S0024-4937(98)00076-0

    Muir R J, Weaver S D, Bradshaw J D, et al. Geochem-istry of the Cretaceous Separaton Plint Batholith, New Zerland:granitoid magmas formed by melting of mafic lithosphere[J]. J. Geol. Soc. Lond., 1995, 152:689-701. doi: 10.1144/gsjgs.152.4.0689

    王强, 许继锋, 赵振华, 等.大别山燕山期亏损重稀土元素花岗岩类的成因及动力学意义[J].岩石学报, 2001, 17(4):551-564. http://d.wanfangdata.com.cn/Periodical/ysxb98200104006
    张旗, 钱青, 王二七, 等.燕山中晚期的中国东部高原:埃达克岩的启示[J].地质科学, 2001, 36(2):248-255. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkx200102015&dbname=CJFD&dbcode=CJFQ
    孙德有, 吴福元, 张艳斌, 等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版), 2004, 34(2):174-181. http://d.wanfangdata.com.cn/Periodical_cckjdxxb200402003.aspx

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar:implications for continental growth and crust-mantle recycling[J]. J. Petrology, 1995, 36:891-931. doi: 10.1093/petrology/36.4.891

    张旗, 王焰, 潘国强, 等.花岗岩源岩问题——关于花岗岩研究的思考之四[J].岩石学报, 2008, 24(6):1193-120. http://d.wanfangdata.com.cn/Periodical/ysxb98200806004

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1/4):43-55. http://www.sciencedirect.com/science/article/pii/0009254185900348

    许文良, 王枫, 裴福萍, 等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 2013, 29(2):339-353. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201302002&dbname=CJFD&dbcode=CJFQ
    王伟, 许文良, 王枫, 等. 2012.满洲里-额尔古纳地区中生代花岗岩的锆石U-Pb年代学与岩石组合:对区域构造演化的制约[J].高校地质学报, 2012, 18(1):88-105. http://www.cqvip.com/QK/90539X/201201/41327539.html
    赵忠华, 孙德有, 苟军, 等.满洲里南部塔木兰沟组火山岩年代学与地球化学[J].吉林大学学报(地球科学版), 2011, 41(6):1865-1880. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ccdz201106017&dbname=CJFD&dbcode=CJFQ
    秦克章, 李惠民, 李伟实, 等.内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代[J].地质论评, 1999, 45(2):180-185. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp199902014&dbname=CJFD&dbcode=CJFQ
    陈志广, 张连昌, 卢百志, 等.内蒙古太平川铜钼矿成矿斑岩时代、地球化学及地质意义[J].岩石学报, 2010, 26(5):1437-1449. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201005010&dbname=CJFD&dbcode=CJFQ
    佘宏全, 李进文, 向安平, 等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 2012, 28(2):571-594. http://d.wanfangdata.com.cn/Periodical/ysxb98201202018
    唐杰, 许文良, 王枫, 等.古太平洋板块在欧亚大陆下的俯冲历史:东北亚陆缘中生代-古近纪岩浆记录[J].中国科学:地球科学, 2018, 48(5):549-583. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201805004&dbname=CJFD&dbcode=CJFQ
    李欢. 大兴安岭北段大索尔珠沟地区侏罗纪岩浆演化及找矿潜力评价[D]. 中国地质大学博士学位论文, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10491-1012446557.htm
    赵越, 杨振宇, 马醒华.东亚大地构造发展的重要转折[J].地质科学, 1994, 29(2):105-119. http://www.cqvip.com/Main/Detail.aspx?id=1310534
    赵越, 徐刚, 张拴宏, 等.燕山运动与东亚构造体制的转变[J].地学前缘, 2004, 11(3):319-328. http://d.wanfangdata.com.cn/Periodical/dxqy200403030

    Zhang Y Q, Dong S W, Zhao Y, et al. Jurassic tectonics of North China:A synthetic view[J]. Acta Geologica Sinica, 2008, 82(2):310-326. http://d.wanfangdata.com.cn/Periodical/dzxb-e200802010

图(9)  /  表(2)
计量
  • 文章访问数:  2870
  • HTML全文浏览量:  310
  • PDF下载量:  2263
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-23
  • 修回日期:  2017-10-14
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2018-06-30

目录

    /

    返回文章
    返回