• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

南秦岭桐柏地区程湾花岗岩LA-MC-ICP-MS锆石U-Pb年龄及地球化学特征

李运冬

李运冬. 2018: 南秦岭桐柏地区程湾花岗岩LA-MC-ICP-MS锆石U-Pb年龄及地球化学特征. 地质通报, 37(7): 1213-1225.
引用本文: 李运冬. 2018: 南秦岭桐柏地区程湾花岗岩LA-MC-ICP-MS锆石U-Pb年龄及地球化学特征. 地质通报, 37(7): 1213-1225.
LI Yundong. 2018: LA-MC-ICP-MS zircon U-Pb age and geochemical characteristics of the Chengwan granite in Tongbai area, South Qinling. Geological Bulletin of China, 37(7): 1213-1225.
Citation: LI Yundong. 2018: LA-MC-ICP-MS zircon U-Pb age and geochemical characteristics of the Chengwan granite in Tongbai area, South Qinling. Geological Bulletin of China, 37(7): 1213-1225.

南秦岭桐柏地区程湾花岗岩LA-MC-ICP-MS锆石U-Pb年龄及地球化学特征

基金项目: 

中国地质调查局项目《河南1:5万官庄(I49E019022)、泌阳县(I49E020022)、平氏(I49E021021)、马道幅(I49E021022)区域地质矿产调查》 1212011220499

《河南省围山城地区深部资源调查》 DD2016005237

详细信息
    作者简介:

    李运冬(1984-), 男, 硕士, 高级工程师, 从事区域地质矿产调查工作。E-mail:184264846lyd@163.com

  • 中图分类号: P588.12+1;P597+.3

LA-MC-ICP-MS zircon U-Pb age and geochemical characteristics of the Chengwan granite in Tongbai area, South Qinling

  • 摘要:

    程湾花岗岩位于南秦岭桐柏地区,岩性主要为片麻状(黑云母)正长花岗岩,岩石地球化学成分显示其高硅、富碱、贫镁、低磷和低钛的特征,A/CNK=0.99~1.40,平均为1.17,为高钾钙碱性系列过铝质岩石,稀土元素配分曲线总体表现为右倾斜的"海鸥式",具有负Eu异常(δEu=0.11~0.81,平均0.46)。岩石富集高场强元素Zr、Th、Hf和Rb、K,强烈亏损Ba、Sr、P、Ti,10000Ga/Al值在2.84~3.63之间,计算锆石饱和温度为817~879℃,属于A2型花岗岩。正长花岗岩LA-MC-ICP-MS锆石U-Pb测年结果表明,其206Pb/238U年龄加权平均值为793.0±4.1Ma,表明岩体形成于新元古代青白口纪晚期,而非前人认为的早古生代,其形成与Rodinia超大陆的裂解有关,且形成于裂解的初期阶段。桐柏地区当时仍为扬子大陆北缘的南秦岭,在新元古代中-晚期(825~611Ma)整体上处于陆内裂解的构造体制。

    Abstract:

    The Chengwan granite is located in Tongbai area, South Qinling. The lithology is mainly granulite (biotite) syenite granite. Lithochemical analysis shows that it has high SiO2, high alkali, poor MgO and low TiO2, and A/CNK=0.99~1.40, with an average of 1.17, thus belonging to the high-K calc-alkaline series. Chondrite-normalized REE patterns of the Chenwang granite are characterized by right-inclined "seagull"with Eu anomalies (δEu=0.11~0.81, 0.46 on average). The rock is characterized by enrichment of HFSE (Zr, Th, Hf), Rb, K, and strong depletion of Ba, Sr, P and Ti. The values of 10000Ga/Al range from 2.84 to 3.63. Zircon saturation temperatures range from 817~879℃. All these features suggest that the Chengwan granite belongs to A2-type granite. LA-MC-ICP-MS U-Pb dating yielded a weighted mean 206Pb/238U age of 793.0±4.1Ma for the zircon from syenogranite, indicating that the Chengwan granite was formed in the late Neoproterozoic Qingbaikouan period rather than previously considered Early Paleozoic. Its formation was related to the breakup of Rodinia supercontinent, and was formed in the early stage of breakup. The South Qinling still belonged to the northern margin of the Yangtze continental margin in Tongbai area, globally belonging to continental cleavage at the middle to late stage of the Neoproterozoic (about 825Ma to 611Ma).

  • 致谢: 撰写过程中得到中国地质大学(武汉)资源学院付乐兵博士、河南地矿三院杨泽强教授级高工的指点,锆石样品测试得到天津地质矿产研究所实验室王家松同志的帮助,审稿专家提出了宝贵的意见,在此谨致谢意。
  • 图  1   桐柏地区地质简图(据参考文献修改)

    1—新生界;2—泥盆系南湾组;3—奥陶系二郎坪群;4—早古生代歪头山组;5—震旦系陡山沱组;6—中南华系肖家庙岩组;7—青白口系武当岩群;8—中新元古界龟山岩组;9—中元古界秦岭岩群;10—早白垩世花岗岩;11—北秦岭早志留世花岗岩;12—南秦岭晚古生代花岗岩;13—南秦岭早古生代花岗岩;14—南秦岭青白口纪花岗岩;15—南秦岭中元古代桐柏杂岩;16—早古生代基性-超基性岩;17—断裂及编号:F1—朱阳关-大河断裂;F2—松扒断裂(商南-丹凤断裂);F3—老湾断裂;F4—桐柏-商城断裂;F5—固庙断裂;F6—新城-黄陂断裂;①—三门峡-鲁山断裂;②—栾川-明港断裂;③—商南-丹凤断裂;④—襄樊-广济断裂;⑤—郯庐断裂;18—锆石U-Pb样品采样位置

    Figure  1.   Simplified geological map of Tongbai area

    图  2   程湾花岗岩宏观及微观特征

    a—程湾花岗岩与肖家庙岩组断层接触;b—程湾花岗岩野外露头;c、d—程湾花岗岩镜下照片(正交偏光)。Kfs—钾长石;Qtz—石英;Pl—斜长石;Bt—黑云母;Ap—磷灰石

    Figure  2.   Macroscopic and microscopic characteristics of the Chengwan granite

    图  3   程湾花岗岩锆石阴极发光(CL)图像及测点年龄

    Figure  3.   CL images and dating spots of zircons from the Chengwan granite

    图  4   程湾花岗岩锆石U-Pb谐和图

    Figure  4.   U-Pb concordia diagram of the zircon from the Chengwan granite

    图  5   程湾花岗岩R1-R2分类图解(底图据参考文献[19])

    1—碱性辉长岩;2—橄榄辉长岩;3—辉长苏长岩;4—正长辉长岩;5—二长辉长岩;6—辉长岩;7—正长闪长岩;8—二长岩;9—二长闪长岩;10—闪长岩;11—霞石正长岩;12—正长岩;13—石英正长岩;14—石英二长岩;15—英云闪长岩;16—碱性花岗岩;17—正长花岗岩;18—二长花岗岩;19—花岗闪长岩

    Figure  5.   R1-R2 diagrams of the Chengwan granite

    图  6   程湾花岗岩系列判别图(a、b、c、d底图分别据参考文献[20-23])

    Figure  6.   Discrimination diagrams of the Chengwan granite

    图  7   程湾花岗岩球粒陨石标准化稀土元素配分模式图

    (标准化值据参考文献[25])

    Figure  7.   Chondrite-normalized REE patterns of the Chengwan granite

    图  8   程湾花岗岩原始地幔标准化微量元素蛛网图

    (标准化值据参考文献[25])

    Figure  8.   PM-normalized incompatible element spider patterns of the Chengwan granite

    图  9   程湾花岗岩10000Ga/Al-(Na2O+K2O) /CaO (a)和10000Ga/Al-Zr (b)图解

    (a底图据参考文献[40];b底图据参考文献[41],图例同图 7)

    Figure  9.   Diagrams of 10000Ga/Al-(Na2O+K2O)/CaO (a)and 10000Ga/Al-Zr (b)of the Chengwan granite

    图  10   程湾花岗岩Nb-Y-Ce(a)和Nb-Y-3Ga(b)三角图解(底图据参考文献[35],图例同图 7)

    A1—A1型花岗岩;A2—A2型花岗岩

    Figure  10.   Nb-Y-Ce(a) and Nb-Y-3Ga(b) triangle diagrams of the Chengwan granite

    图  11   程湾花岗岩(Yb+Ta)-Rb (a) (底图据参考文献[35])和Rb/30-Hf-3Ta (b)构造环境判别图解(底图据参考文献[42],图例同图 7)

    Figure  11.   Tectonic discrimination diagrams of (Yb+Ta)-Rb (a) and Rb/30-Hf-3Ta (b) for Chengwan granite

    表  1   程湾花岗岩LA-MC-ICP-MS锆石U-Th-Pb同位素测定数据

    Table  1   The U-Th-Pb isotope composition of zircons from the Chengwan granite measured by LA-MC-ICP-MS

    测点号 Pb U Th/U 206Pb/238U 207Pb/235U 207Pb/206Pb 年龄/Ma
    /10-6 206Pb/238U 207Pb/235U 207Pb/206Pb
    1 13 85 1.08 0.1319 0.001 1.1950 0.030 0.0657 0.002 798 8 798 20 798 49
    2 10 65 0.85 0.1316 0.001 1.1948 0.041 0.0658 0.002 797 8 798 27 801 70
    3 28 196 0.68 0.1313 0.001 1.1915 0.019 0.0658 0.001 795 8 797 13 800 30
    4 32 241 0.54 0.1243 0.001 1.1578 0.019 0.0676 0.001 755 7 781 13 855 33
    5 23 165 0.52 0.1306 0.001 1.1892 0.021 0.0661 0.001 791 8 796 14 808 34
    6 16 109 0.65 0.1300 0.001 1.1785 0.029 0.0657 0.002 788 8 791 20 798 50
    7 11 72 0.75 0.1298 0.001 1.1933 0.029 0.0667 0.002 787 8 797 19 828 48
    8 7 46 0.89 0.1334 0.001 1.2067 0.044 0.0656 0.002 807 8 804 29 794 74
    9 28 197 0.51 0.1313 0.001 1.1933 0.025 0.0659 0.001 795 8 797 17 804 42
    10 15 106 0.64 0.1308 0.001 1.1821 0.027 0.0655 0.001 793 8 792 18 791 46
    11 22 144 0.82 0.1316 0.001 1.1930 0.023 0.0658 0.001 797 8 797 15 799 38
    12 54 378 0.69 0.1302 0.001 1.1808 0.016 0.0658 0.001 789 8 792 11 799 26
    13 22 144 1.22 0.1247 0.001 1.1592 0.026 0.0674 0.001 757 7 782 17 852 44
    14 47 398 0.87 0.0970 0.001 0.9539 0.013 0.0713 0.001 597 6 680 9 967 26
    15 44 322 0.67 0.1258 0.001 1.1609 0.020 0.0669 0.001 764 7 782 14 835 33
    16 22 183 0.60 0.1088 0.001 1.0219 0.020 0.0681 0.001 666 7 715 14 872 38
    17 26 216 0.72 0.1043 0.001 0.9915 0.018 0.0690 0.001 640 6 700 13 897 35
    18 38 306 0.84 0.1090 0.001 1.0150 0.020 0.0675 0.001 667 6 711 14 855 40
    19 37 331 0.73 0.1008 0.001 0.9674 0.015 0.0696 0.001 619 6 687 10 916 28
    20 19 149 0.57 0.1149 0.001 1.0682 0.025 0.0674 0.002 701 7 738 17 851 48
    21 34 309 0.41 0.1025 0.001 0.9795 0.020 0.0693 0.001 629 6 693 14 908 38
    22 27 175 0.94 0.1317 0.001 1.1926 0.020 0.0657 0.001 798 8 797 14 796 33
    23 28 184 0.87 0.1304 0.001 1.1965 0.020 0.0665 0.001 790 8 799 14 823 33
    24 14 88 1.15 0.1286 0.001 1.1767 0.031 0.0664 0.002 780 8 790 21 818 54
    下载: 导出CSV

    表  2   程湾花岗岩主量、微量及稀土元素分析结果

    Table  2   Major, trace and rare earth element concentrations of the Chengwan granite

    样号 D0556 D0557 D9051 D9027 D9028 ZW-1* 0003/6* 102/1* ZY25*
    SiO2 75.60 74.78 75.38 77.16 74.48 77.78 76.76 76.09 76.91
    TiO2 0.05 0.21 0.23 0.19 0.24 0.20 0.15 0.08 0.13
    Al2O3 13.52 13.41 13.16 11.74 13.98 11.37 12.28 12.85 12.16
    Fe2O3 0.27 0.18 0.18 1.59 1.28 1.70 1.33 1.61 1.40
    FeO 0.58 1.67 1.03 0.48 0.73 0.18 0.26 0.35 0.34
    MnO 0.05 0.07 0.02 0.08 0.07 0.02 0.13 0.025 0.05
    MgO 0.09 0.35 0.12 0.31 0.33 0.05 0.48 0.13 0.17
    CaO 0.69 0.73 0.40 0.85 0.86 0.42 0.11 0.18 0.25
    Na2O 4.37 3.00 3.62 3.30 3.20 3.90 2.88 3.71 3.61
    K2O 3.69 3.95 4.64 3.59 4.00 4.00 3.54 4.31 4.02
    P2O5 0.02 0.05 0.01 0.05 0.09 0.03 0.04 0.145 0.06
    H2O+ 0.73 0.79 0.87 1.05 0.65
    烧失量 0.59 0.76 0.69 0.55 0.52 0.33 0.84 0.88 0.62
    总计 99.66 99.19 99.66 100.40 99.91 99.65 98.8 99.48 99.72
    A/CNK 1.09 1.27 1.12 1.08 1.25 0.99 1.40 1.16 1.13
    A/NK 1.21 1.46 1.20 1.26 1.46 1.06 1.43 1.19 1.18
    ALK 8.06 6.95 8.26 6.89 7.20 7.90 6.42 8.02 7.63
    R1 2624 2983 2643 3092 2852 2819 3286 2706 2880
    R2 347 364 311 339 386 272 282 279 276
    σ 1.99 1.51 2.01 1.39 1.64 1.79 1.22 1.94 1.72
    DI 93.82 89.10 94.00 91.25 89.30 95.57 92.31 94.68 94.61
    Mg# 16.32 25.41 15.22 22.44 23.83 4.96 37.02 11.42 15.94
    TZr/℃ 732.50 844.50 837.54 823.75 864.72 817.52 829.51 879.46 843.85
    Rb 205 176 164 137 184 89 90 115 98
    Ba 484 678 694 500 597 500 200 600 433
    Th 14.38 17.6 11.1 18.7 13.9 5.9 8.5 5.2 6.5
    U 1.17 1.12 0.79 3.04 1.33
    Nb 13.0 18.2 17.6 26.1 22.9 10.3 22.6 14.1 15.7
    Ta 1.09 0.89 1.43 1.33 1.49 1.29 1.89 0.99 1.39
    Sr 124.0 83.1 82.7 99.0 105 94 58 88 80
    Zr 47.6 158 157 137 196 135 127 234 165
    Hf 2.93 6.86 8.62 7.83 11.70 5.00 4.70 7.40 5.70
    Ga 26.0 22.5 19.8 21.8 25.9
    La 22.35 30.26 34.91 27.60 41.70 27.50 14.05 22.93 20.09
    Ce 46.44 85.74 48.16 52.00 74.90 59.04 36.22 80.96 53.42
    Pr 5.30 7.01 6.78 5.74 9.64 6.05 3.72 5.09 4.83
    Nd 18.59 24.00 23.15 20.00 33.80 18.48 14.89 17.67 15.98
    Sm 3.02 4.08 4.11 3.55 6.69 3.68 3.63 3.90 3.53
    Eu 0.78 0.79 0.70 0.68 0.94 0.40 0.14 0.56 0.32
    Gd 2.72 4.01 3.99 3.34 6.19 3.28 3.82 3.38 3.35
    Tb 0.35 0.49 0.71 0.51 1.05 0.58 0.85 0.71 0.65
    Dy 1.87 2.38 4.46 2.89 6.23 3.53 6.01 4.72 4.37
    Ho 0.42 0.47 0.98 0.61 1.24 0.71 1.34 1.01 0.94
    Er 1.51 1.38 3.15 1.89 3.88 2.20 4.39 3.36 3.04
    Tm 0.34 0.23 0.59 0.34 0.68 0.37 0.77 0.55 0.57
    Yb 2.98 1.57 4.09 2.43 4.67 2.42 5.36 3.85 4.09
    Lu 0.58 0.25 0.66 0.43 0.74 0.36 0.81 0.57 0.54
    Y 14.83 12.73 27.57 17.10 34.60 19.67 36.4 27.79 30.48
    ∑REE 122.06 175.39 164.01 139.11 226.95 148.27 132.40 177.05 146.19
    LREE 96.48 151.88 117.81 109.57 167.67 115.15 72.65 131.11 115.71
    HREE 10.75 10.78 18.63 12.44 24.68 13.45 23.35 18.15 17.55
    LREE/HREE 8.97 14.09 6.32 8.81 6.79 8.56 3.11 7.22 6.59
    (La/Yb)N 5.38 13.83 6.12 8.15 6.41 8.15 1.88 4.27 3.52
    (La/Sm)N 4.77 4.79 5.48 5.02 4.02 4.82 2.50 3.80 3.68
    (Gd/Yb)N 0.75 2.11 0.81 1.13 1.09 1.12 0.59 0.72 0.68
    δEu 0.81 0.59 0.52 0.59 0.44 0.35 0.11 0.46 0.28
    δCe 1.01 1.39 0.72 0.96 0.88 1.07 1.20 1.76 1.29
    注:*数据据参考文献;主量元素含量单位为%,微量和稀土元素为10-6
    下载: 导出CSV
  • 张国伟, 张本仁, 袁学诚, 等.秦岭造山带与大陆动力学[M].北京:科学出版社, 2001:1-855.
    王宗起, 闫全人, 闫臻, 等.秦岭造山带主要大地构造单元的新划分[J].地质学报, 2009, 83(11):1527-1546. doi: 10.3321/j.issn:0001-5717.2009.11.001
    刘鑫, 李三忠, 索艳慧, 等.桐柏碰撞造山带及其邻区变形特征与构造格局[J].岩石学报, 2010, 26(4):1289-1302. http://d.wanfangdata.com.cn/Periodical/ysxb98201004023

    Liu X C, Jahn B M, Li S Z, et al. U-Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China[J]. Tectonophysics, 2013, 599(4):67-88. https://www.deepdyve.com/lp/elsevier/u-pb-zircon-age-and-geochemical-constraints-on-tectonic-evolution-of-NUE9HNLQJz

    刘晓春, 李三忠, 江博明.桐柏-红安造山带的构造演化:从大洋俯冲/增生到陆陆碰撞[J].中国科学:地球科学, 2015.45(8):1088-1108. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201508002&dbname=CJFD&dbcode=CJFQ
    许志琴, 李源, 梁凤华, 等."秦岭-大别-苏鲁"造山带中"古特提斯缝合带"的连接[J].地质学报, 2015, 89(4):671-680. http://d.wanfangdata.com.cn/Periodical/dizhixb201504001
    肖庆辉, 邓晋福, 马大铨, 等.花岗岩研究思维与方法[M].北京:地质出版社, 2002:1-294.
    第五春荣, 孙勇, 刘良, 等.北秦岭宽坪岩群的解体及新元古代N-MORB[J].岩石学报, 2010, 26(7):2025-2038. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201007007&dbname=CJFD&dbcode=CJFQ
    赵姣, 陈丹玲, 谭清海, 等.北秦岭东段二郎坪群火山岩锆石的LA-ICP-MS U-Pb定年及其地质意义[J].地学前缘, 2012, 19(4):118-125. http://d.wanfangdata.com.cn/Periodical/dxqy201204012
    陆松年, 陈志宏, 相振群, 等.秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义[J].地学前缘, 2006, 13(6):303-310. http://d.wanfangdata.com.cn/Periodical/dxqy200606033
    崔建军. 桐柏杂岩的性质及构造意义[D]. 中国地质科学院博士学位论文, 2009: 1-91. http://cdmd.cnki.com.cn/Article/CDMD-82501-2010024356.htm
    李怀坤, 耿建珍, 郝爽, 等.用激光烧蚀多接受器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物学报, 2009, 28(增刊):600-601. http://d.wanfangdata.com.cn/Periodical_kwxb2009z1311.aspx

    Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductinvely coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1/2):47-69. https://www.sciencedirect.com/science/article/pii/S0009254104002074

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2009, 51(1/2):537-571. https://academic.oup.com/petrology/article/51/1-2/537/1463381

    Ludwig K R. User's manual for a geochronological toolkit for Microsoft Excel (Isoplot/Ex version 3.0)[J].Berkeley Geochronology Center Special Publication, 2003, 4:1-70. http://www.bgc.org/isoplot_etc/isoplot/Isoplot3_75-4_15manual.pdf

    Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79. http://www.sciencedirect.com/science/article/pii/S000925410200195X

    Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon:Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622. doi: 10.1007/s00410-002-0364-7

    Rubatto D. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1):123-138. http://www.sciencedirect.com/science/article/pii/S0009254101003552

    Roche H D L, Leterrier J, Grandclaude P, et al. A classification of volcanic and plutonic rocks using R1-R2 diagram and major-element analyses-Its relationships with current nomenclature[J]. Chemical Geology, 1980, 29(1):183-210. https://www.mendeley.com/research-papers/classification-volcanic-plutonic-rocks-using-r1r2-diagrams-major-element-analysesits-relationship-cu/

    Frost B R, Barnes C G, Collins W J, et al. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033

    Peccerillo A, Taylor S R. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745

    Maniar P, Piccoli P. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2):189-200. doi: 10.1007/BF00374895

    王中刚, 于学元, 赵振华, 等.稀土元素地球化学[M].北京:科学出版社, 1989:1-535.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and rocesses[J]. Geological Society Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Sylvester P J. Post-collisional alkaline granites[J]. Journal of Geology, 1989, 97(3):261-280. doi: 10.1086/629302

    Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3/4):347-359. http://www.sciencedirect.com/science/article/pii/000925419400145X

    刘昌实, 陈小明, 陈培荣, 等. A型岩套的分类、判别标志和成因[J].高校地质学报, 2003, 9(4):573-591. http://www.cqvip.com/Main/Detail.aspx?id=8755882

    King P L, White A J R, Chappell B W, et al. Characterization and origin of almnious A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371-391. doi: 10.1093/petroj/38.3.371

    Watson E B, Harrison T M. Zircon saturation revisited:temperature and composition effect in avariety of crustal magmas types[J]. Earth and Planetary Science Letters, 1983, 64(2):295-304. doi: 10.1016/0012-821X(83)90211-X

    Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Abstracts with Programs-Geological Society of America, 1979, 11(7):468. http://ci.nii.ac.jp/naid/10019292165

    许保良, 阎国翰, 张臣, 等. A型花岗岩的岩石学亚类及其物质来源[J].地学前缘, 1998, 5(3):113-124. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy803.015&dbname=CJFD&dbcode=CJFQ
    吴锁平, 王梅英, 戚开静. A型花岗岩研究现状及其评述[J].岩石矿物学杂志, 2007, 26(1):57-66. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200701008.htm
    张旗, 李承东.花岗岩:地球动力学意义[M].北京:海洋出版社, 2012:1-276.

    Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7):641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    洪大卫, 王式洸, 韩宝福.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学, 1995, 25(4):418-426. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jbxk199504012&dbname=CJFD&dbcode=CJFQ
    王东升, 王宗起, 武昱东, 等.南秦岭随州地区正长花岗岩锆石SHRIMP U-Pb年代学与地球化学特征[J].地质学报, 2017, 91(5):1007-1021. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe201705004&dbname=CJFD&dbcode=CJFQ
    王涛, 刘燊, 胡瑞忠, 等.苏鲁造山带A型花岗岩的元素地球化学及其成因[J].吉林大学学报(地球科学版), 2009, 39(4):676-688. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ccdz200904011&dbname=CJFD&dbcode=CJFQ

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202

    吴福元, 刘小驰, 纪伟强, 等.高分异花岗岩的识别与研究[J].中国科学:地球科学, 2017, 47(7):745-765. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201707001&dbname=CJFD&dbcode=CJFQ

    Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[J]. Geological Society London Special Publications, 1986, 19(5):67-81. http://adsabs.harvard.edu/abs/1986GSLSP..19...67H

    陆松年, 李怀坤, 陈志宏, 等.秦岭中-新元古代地质演化及对Rodina超级大陆事件的响应[M].北京:地质出版社, 2003:1-194.
    闫全人, 王宗起, 闫臻, 等.秦岭勉略构造混杂带康县-勉县段蛇绿岩块-铁镁质岩块的SHRIMP年代及其意义[J].地质论评, 2007, 53(6):755-764. http://www.oalib.com/paper/4326026
    刘丙祥, 聂虎, 齐玥, 等.豫西南地区北秦岭地体新元古代花岗岩类岩石成因及其地质意义[J].岩石学报, 2013, 29(7):2437-2455. http://d.wanfangdata.com.cn/Periodical/ysxb98201307013

    Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 2003, 122(1/4):85-109. http://www.sciencedirect.com/science/article/pii/S0301926802002085

    李怀坤, 陆松年, 陈志宏, 等.南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学[J].地质通报, 2003, 22(10):775-781. doi: 10.3969/j.issn.1671-2552.2003.10.005
    刘晓春, 董树文, 李三忠, 等.湖北红安群的时代:变质花岗质侵入体U-Pb定年提供的制约[J].中国地质, 2005, 32(1):75-81. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi200501010&dbname=CJFD&dbcode=CJFQ
    卢欣祥, 董有, 尉向东, 等.东秦岭吐雾山A型花岗岩的时代及其构造意义[J].科学通报, 1999, 44(9):975-978. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199909018.htm
    吴发富, 王宗起, 王涛, 等.南秦岭山阳板板山钾长花岗岩体SHRIMP锆石U-Pb年龄与地球化学特征[J].矿物岩石, 2012, 32(2):63-73. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kwys201202010&dbname=CJFD&dbcode=CJFQ
    王涛, 王宗起, 闫臻, 等.山阳色河花岗岩地球化学特征和锆石SHRIMP U-Pb年代学[J].地质学报, 2009, 83(11):1657-1666. doi: 10.3321/j.issn:0001-5717.2009.11.010
    陈玲, 马昌前, 佘振兵, 等.大别山北淮阳构造带柳林辉长岩:新元古代晚期裂解事件的记录[J].地球科学, 2006, 31(4):578-584. http://www.cqvip.com/Main/Detail.aspx?id=22296827
    刘贻灿, 李曙光, 古晓锋, 等.北淮阳王母观橄榄辉长岩锆石SHRIMP U-Pb年龄及其地质意义[J].科学通报, 2006, 51(18):2175-2180. doi: 10.3321/j.issn:0023-074X.2006.18.014
    凌文黎, 任邦方, 段瑞春, 等.南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义[J].科学通报, 2007, 52(12):1445-1456. doi: 10.3321/j.issn:0023-074X.2007.12.015
    李承东. 豫西成矿带基础地质综合研究. 天津地质调查中心, 2013.
    曾宪友, 武太安, 裴中朝, 等. 中华人民共和国区域地质调查报告1: 25万枣阳市幅. 河南省地质调查院, 2007.
图(11)  /  表(2)
计量
  • 文章访问数:  2848
  • HTML全文浏览量:  291
  • PDF下载量:  2278
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-02
  • 修回日期:  2017-12-20
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2018-06-30

目录

    /

    返回文章
    返回