The magma records and mineralization of early subduction of Neo-Tethyan oceanic slab: Zircon U-Pb and Hf isotopic composition of granitoids in the northwest of Xigaza
-
摘要:
拉萨地体南缘的晚三叠世—中侏罗世岩浆岩被认为是新特提斯洋早期北向俯冲的岩浆记录,并形成与之相关的雄村特大型斑岩-浅成低温热液铜-金矿床。对该时期岩浆岩成因背景的研究有助于评价其成矿潜力。选取拉萨地体南缘日喀则西北部花岗岩类进行锆石U-Pb测年及Lu-Hf同位素分析。花岗岩类LA-ICP-MS锆石U-Pb定年结果为175~180.1Ma,εHf(t)平均值为+13.4,显示幔源特征,为岛弧(洋内弧)背景成因,具有斑岩铜金成矿潜力。结合前人对拉萨地体南缘晚三叠世—白垩纪岩浆岩的研究,认为拉萨地体南缘未被剥蚀的晚三叠世—白垩纪火山岩中有可能保存有新特提斯洋俯冲形成的斑岩铜金成矿系统。
-
关键词:
- 新特提斯洋 /
- 晚三叠世-中侏罗世岩浆岩 /
- 斑岩铜金矿 /
- 岛弧(洋内弧)
Abstract:The Late Triassic-Middle Jurassic magmatic rocks distributed sporadically in the south of Lhasa terrane are considered to be the magmatic records of the early subduction of the Neo-Tethys. In addition, Xiongcun porphyry copper system was associated with the magma. Therefore, research on the Late Triassic-Jurassic magmatic can help to evaluate its metallogenic potential. This pa-per reports LA-ICP MS zircon U-Pb age and in situ Hf isotopic compositions of the granodiorite in the northwest of Xigaza. The obtained U-Pb zircon age of the granodiorite is 175~180.1Ma. Zircon Hf isotopic compositions of the granodiorite display εHf(180.1Ma)=(+13.4), which shows the characteristics of mantle source with an affinity for island arc which was capable of forming the porphyry Cu-Au system. Therefore, the Late Triassic-Cretaceous volcanic rocks in the south of Lhasa terrane have the potential for exploration of the porphyry Cu-Au system.
-
致谢: 资料收集阶段得到成都理工大学杨宗耀同学的大力帮助,实验过程中得到中国地质大学(北京)相鹏博士的悉心指导,在此深表感谢。
-
表 1 侏罗纪花岗岩类的LA-ICP-MS锆石U-Th-Pb年龄分析结果
Table 1 LA-ICP-MS zircon U-Th-Pb dating results of the Jurassic granitoids
测点 Th/10-6 U/10-6 Th/U 同位素比值 年龄/Ma 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ TD134-1 185 260 0.71 0.05048 0.0045 0.1899 0.0154 0.02744 0.0005 217 193 177 13.2 175 3.1 TD134-2 89.2 157 0.57 0.05150 0.0054 0.1974 0.0186 0.02791 0.0007 265 43.5 183 15.8 177 4.6 TD134-3 114 192 0.59 0.05185 0.0043 0.1953 0.0141 0.02804 0.0005 280 191 181 12.0 178 3.3 TD134-4 185 239 0.77 0.05118 0.0046 0.1892 0.0151 0.02780 0.0006 256 207 176 12.9 177 3.6 TD134-5 96.6 150 0.64 0.05160 0.0053 0.2031 0.0188 0.02887 0.0006 333 237 188 15.9 183 3.7 TD134-6 124 204 0.61 0.05097 0.0045 0.1918 0.0164 0.02788 0.0007 239 199 178 14.0 177 4.3 TD134-7 157 200 0.79 0.05143 0.0058 0.1908 0.0187 0.02741 0.0005 261 237 177 15.9 174 3.4 TD134-8 213 260 0.82 0.05597 0.0048 0.2040 0.0176 0.02768 0.0014 450 188 188 14.8 176 8.6 TD134-9 92.1 157 0.59 0.04925 0.0047 0.1931 0.0168 0.02862 0.0006 167 202 179 14.3 182 3.7 TD134-10 135 221 0.61 0.04986 0.0044 0.1821 0.0137 0.02689 0.0006 187 202 170 11.8 171 3.5 TD134-11 124 207 0.60 0.04969 0.0062 0.2033 0.0221 0.03024 0.0007 189 261 188 18.7 192 4.4 TD134-12 184 242 0.76 0.04916 0.0044 0.2036 0.0176 0.02956 0.0006 154 200 188 14.8 188 3.7 TD134-13 156 186 0.84 0.05484 0.0079 0.2034 0.0177 0.02999 0.0007 406 321 188 14.9 190 4.4 TD134-14 119 170 0.70 0.05112 0.0043 0.2034 0.0153 0.02947 0.0006 256 193 188 12.9 187 3.7 TD134-15 163 232 0.70 0.04823 0.0036 0.1953 0.0142 0.02880 0.0006 109 167 181 12.1 183 4.1 TD134-16 144 198 0.73 0.04860 0.0039 0.1917 0.0129 0.02864 0.0006 128 181 178 11.0 182 3.9 TD134-17 117 194 0.60 0.04707 0.0036 0.1983 0.0134 0.03033 0.0007 53.8 180 184 11.4 193 4.3 TD134-18 116 203 0.57 0.04992 0.0049 0.1892 0.0172 0.02774 0.0007 191 215 176 14.7 176 4.4 TD134-19 267 330 0.81 0.04920 0.0035 0.1944 0.0129 0.02827 0.0004 167 150 180 11.0 180 2.7 TD134-20 147 197 0.75 0.05087 0.0041 0.1935 0.0130 0.02813 0.0006 235 185 180 11.1 179 3.6 TD134-21 79.8 145 0.55 0.05025 0.0062 0.2107 0.0239 0.02975 0.0010 206 272 194 20.1 189 6.0 TD134-22 137 210 0.65 0.04833 0.0061 0.1846 0.0211 0.02783 0.0007 122 265 172 18.1 177 4.5 TD134-23 113 183 0.62 0.04968 0.0046 0.1965 0.0167 0.02873 0.0006 189 200 182 14.2 183 3.9 TD134-24 248 278 0.89 0.05256 0.0044 0.1954 0.0140 0.02741 0.0005 309 197 181 11.9 174 3.3 TD134-25 122 180 0.68 0.04750 0.0042 0.1863 0.0156 0.02738 0.0007 76.0 196 173 13.4 174 4.2 TD136-2 282 345 0.82 0.05098 0.0027 0.1947 0.0096 0.02800 0.0004 239 122 181 8.1 178 2.8 TD136-3 138 142 0.97 0.05285 0.0079 0.1988 0.0260 0.02817 0.0009 324 307 184 22.0 179 5.5 TD136-4 213 191 1.12 0.05250 0.0046 0.1961 0.0157 0.02760 0.0005 306 200 182 13.3 176 3.2 TD136-6 175 222 0.79 0.05111 0.0043 0.2104 0.0156 0.03068 0.0005 150 174 181 12.7 181 3.7 TD136-7 108 120 0.90 0.04904 0.0038 0.1946 0.0149 0.02851 0.0006 254 252 173 16.5 173 4.0 TD136-8 209 213 0.98 0.05132 0.0060 0.1863 0.0193 0.02720 0.0006 220 183 176 11.6 174 3.4 TD136-9 256 231 1.11 0.05056 0.0040 0.1897 0.0136 0.02729 0.0005 172 172 176 11.0 176 3.2 TD136-10 491 484 0.79 0.04952 0.0036 0.1897 0.0129 0.02767 0.0005 209 128 183 8.9 181 2.9 TD136-11 155 206 0.82 0.05029 0.0028 0.1977 0.0105 0.02854 0.0005 333 224 181 13.7 180 3.8 TD136-12 111 154 0.59 0.05167 0.0050 0.1946 0.0161 0.02835 0.0006 467 318 185 18.8 177 4.7 TD136-13 125 136 0.61 0.05472 0.0077 0.1993 0.0222 0.02791 0.0008 394 155 185 21.2 174 4.7 TD136-14 229 198 0.60 0.05457 0.0084 0.1994 0.0250 0.02744 0.0007 276 234 166 13.0 164 3.4 TD136-15 148 151 0.76 0.05181 0.0052 0.1777 0.0150 0.02584 0.0005 183 181 175 12.6 175 4.0 TD136-16 98.0 123 0.84 0.04975 0.0041 0.1881 0.0148 0.02758 0.0006 339 315 176 21.3 177 4.2 TD136-17 322 219 0.70 0.05327 0.0081 0.1892 0.0250 0.02788 0.0007 333 226 171 14.7 167 3.7 TD136-18 170 232 0.70 0.05163 0.0050 0.1831 0.0172 0.02625 0.0006 250 226 178 14.2 179 3.6 TD136-19 75.3 101 0.73 0.05121 0.0050 0.1913 0.0166 0.02808 0.0006 300 268 180 21.7 175 5.6 TD136-20 205 368 0.60 0.05217 0.0068 0.1945 0.0256 0.02758 0.0009 233 137 177 9.5 174 3.0 TD136-21 170 275 0.57 0.05061 0.0030 0.1902 0.0111 0.02731 0.0005 191 185 175 13.1 174 3.1 TD136-22 124 137 0.81 0.04991 0.0042 0.1886 0.0153 0.02736 0.0005 117 350 175 18.5 177 5.2 TD136-23 117 131 0.75 0.04837 0.0063 0.1880 0.0216 0.02777 0.0008 220 215 183 15.8 175 4.3 TD136-24 1584 1394 0.55 0.05059 0.0050 0.1973 0.0187 0.02746 0.0007 191 89.8 174 6.5 173 2.7 TD136-25 144 152 0.65 0.04987 0.0020 0.1869 0.0076 0.02714 0.0004 187 202 171 12.3 172 3.6 表 2 侏罗纪花岗岩类锆石稀土元素分析结果
Table 2 REE analyses of zircon of the Jurassic granitoids
10-6 样品号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Th U Th/U TD134-1 0.007 15 0.071 1.4 1.7 1.1 14.4 5.7 77 35 185 45 507 121 1143 185 260 0.71 TD134-2 0.010 10 0.029 0.2 1.7 0.9 9.9 3.8 52 23 129 33 376 92 803 89 157 0.57 TD134-3 1.552 15 0.392 0.8 1.5 0.5 6.9 3.0 42 21 111 28 312 78 670 114 192 0.59 TD134-4 0.008 14 0.019 1.0 1.1 0.6 10.9 4.5 61 27 146 37 410 99 905 185 239 0.77 TD134-5 0.020 9 0.058 1.3 2.2 1.0 11.4 4.3 55 25 126 31 348 83 783 97 150 0.64 TD134-6 0.021 12 0.033 0.4 1.3 0.7 7.6 3.1 45 21 114 28 317 78 676 124 204 0.61 TD134-7 0.013 11 0.096 2.0 3.1 1.7 18.0 6.1 78 33 162 40 426 99 1038 157 200 0.79 TD134-8 0.001 15 0.027 0.6 1.4 0.8 9.9 4.0 56 26 142 35 398 97 865 213 260 0.82 TD134-9 0.019 9 0.041 0.6 1.6 0.7 8.8 3.6 49 23 122 31 355 87 745 92 157 0.59 TD134-10 0.001 15 0.034 1.1 1.5 0.8 12.0 4.6 66 31 167 43 474 116 1021 135 221 0.61 TD134-11 0.001 12 0.049 0.7 1.5 0.8 9.2 3.6 51 24 128 32 361 89 774 124 207 0.60 TD134-12 0.045 15 0.091 1.8 3.1 1.5 17.4 6.5 85 37 190 45 494 118 1156 184 242 0.76 TD134-13 0.038 10 0.023 0.3 0.7 0.5 6.3 2.5 34 15 79 19 220 55 481 156 186 0.84 TD134-14 0.013 10 0.093 1.4 2.9 1.1 15.6 5.2 69 29 146 36 385 92 932 119 170 0.70 TD134-15 0.001 14 0.058 1.5 3.2 1.5 17.6 6.1 81 36 188 46 505 123 1167 163 232 0.70 TD134-16 0.001 11 0.024 0.6 0.9 0.5 5.9 2.4 34 16 81 20 226 55 495 144 198 0.73 TD134-17 0.013 12 0.020 0.3 1.4 0.9 10.2 3.7 51 24 131 33 368 91 785 117 194 0.60 TD134-18 0.089 11 0.065 0.7 1.2 0.5 7.6 3.0 44 21 112 28 321 80 679 116 203 0.57 TD134-19 0.020 21 0.068 0.8 1.8 0.8 14.6 5.6 80 37 198 49 544 132 1210 267 330 0.81 TD134-20 0.001 11 0.020 0.5 0.9 0.9 8.5 3.2 46 21 113 28 317 78 685 147 197 0.75 TD134-21 0.014 9 0.024 0.3 0.7 0.4 5.3 2.1 30 13 72 18 206 52 433 80 145 0.55 TD134-22 0.001 12 0.014 0.5 1.8 0.6 9.1 3.5 50 24 129 33 366 89 764 137 210 0.65 TD134-23 2.299 16 0.505 2.7 1.7 0.9 9.4 3.8 53 25 131 34 373 94 774 113 183 0.62 TD134-24 0.001 15 0.028 0.7 1.7 0.7 10.1 3.7 51 23 121 30 331 80 735 248 278 0.89 TD134-25 0.016 11 0.039 1.0 2.2 0.8 10.1 4.2 57 26 138 34 385 94 843 122 180 0.68 TD136-2 0.007 32 0.109 1.5 3.6 1.7 21.4 7.4 103 44 235 60 663 155 1445 282 345 0.82 TD136-3 0.080 18 0.283 4.8 5.8 3.9 34.5 10.6 125 50 244 55 583 131 1538 138 142 0.97 TD136-4 0.036 29 0.391 6.3 9.7 4.6 48.0 15.1 176 70 325 76 774 171 2139 213 191 1.12 TD136-6 0.009 27 0.057 1.3 2.2 1.4 16.9 6.9 100 45 239 58 618 143 1470 175 222 0.79 TD136-7 0.021 15 0.213 3.6 5.5 2.7 28.5 8.7 104 41 201 46 494 110 1286 108 120 0.90 TD136-8 0.013 28 0.127 2.4 5.0 2.6 30.2 10.5 137 58 290 68 717 161 1847 209 213 0.98 TD136-9 0.054 30 0.418 4.9 9.5 4.9 48.8 15.1 177 72 338 77 801 178 2186 256 231 1.11 TD136-10 0.001 59 0.040 1.3 3.2 1.7 21.8 9.3 131 59 314 77 836 192 1935 491 484 1.01 TD136-11 0.009 24 0.044 1.1 2.3 1.2 17.4 6.7 93 43 229 57 614 141 1415 155 206 0.75 TD136-12 0.014 19 0.096 1.2 2.5 1.2 14.9 5.7 81 36 188 46 504 115 1160 111 154 0.72 TD136-13 0.049 17 0.268 3.7 6.2 3.1 32.3 8.7 108 43 210 49 524 117 1349 125 136 0.92 TD136-14 0.023 30 0.532 6.6 10.8 5.0 51.3 15.8 187 72 349 79 819 180 2267 229 198 1.16 TD136-15 0.485 20 0.306 3.4 6.8 2.9 30.9 10.3 124 49 238 55 583 130 1544 148 151 0.98 TD136-16 0.013 15 0.145 2.6 3.9 1.8 19.9 6.4 78 32 165 39 430 100 1034 98 123 0.80 TD136-17 0.038 39 0.471 8.3 15.8 7.5 69.7 22.4 252 97 448 100 1036 220 2943 322 219 1.47 TD136-18 0.001 9 0.072 1.3 2.1 1.1 10.8 3.3 45 19 93 22 251 58 591 170 232 0.73 TD136-19 0.001 11 0.102 3.3 3.4 1.7 16.5 5.4 66 27 135 32 349 79 863 75 101 0.75 TD136-20 0.007 11 0.015 0.2 0.5 0.5 3.7 1.6 23 11 65 18 213 57 387 205 368 0.56 TD136-21 0.001 10 0.044 0.6 1.2 0.7 6.3 2.6 33 14 80 20 242 59 491 170 275 0.62 TD136-22 0.192 18 0.170 3.8 5.1 2.7 26.7 8.6 105 43 217 51 547 124 1378 124 137 0.90 TD136-23 0.080 17 0.216 3.1 6.7 3.0 27.1 9.0 106 43 211 50 528 118 1346 117 131 0.89 TD136-24 0.025 54 0.077 2.0 2.9 1.3 15.0 5.2 75 36 212 58 692 170 1259 1584 1394 1.14 TD136-25 0.070 20 0.247 3.7 6.5 3.3 31.4 10.4 121 49 239 55 584 130 1524 144 152 0.95 表 3 侏罗纪花岗岩类的锆石Lu-Hf同位素数据
Table 3 Zircon Hf isotope data of the Jurassic granitoids
样品号 176Hf/177Hf 2σ 176Lu/177Hf 176Yb/177Hf 年龄/Ma εHf(0) εHf(t) TDM1/Ma 2σ fLu/Hf TDM2-1/Ma 2σ TDM2-2/Hf 2σ TD134-1 0.283134 0.000019 0.001263 0.027206 180.1 12.8 16.6 167 54 -0.96 159 85 150 121 TD134-2 0.282997 0.000013 0.001362 0.029658 180.1 7.9 11.7 365 38 -0.96 471 60 594 85 TD134-3 0.283109 0.000012 0.001589 0.034189 180.1 11.9 15.7 204 35 -0.95 218 54 234 77 TD134-4 0.283010 0.000012 0.001106 0.023603 180.1 8.4 12.2 344 36 -0.97 439 57 548 80 TD134-5 0.282975 0.000014 0.001172 0.025073 180.1 7.2 11.0 394 39 -0.96 519 62 662 89 TD134-6 0.283027 0.000011 0.001029 0.022321 180.1 9.0 12.9 319 31 -0.97 400 50 493 70 TD134-7 0.283046 0.000014 0.001492 0.032106 180.1 9.7 13.5 295 41 -0.96 360 64 435 90 TD134-8 0.282980 0.000011 0.001521 0.032397 180.1 7.3 11.1 391 30 -0.95 511 48 650 68 TD134-9 0.283099 0.000011 0.001786 0.039349 180.1 11.6 15.3 220 33 -0.95 243 51 269 73 TD134-10 0.283037 0.000011 0.000974 0.021004 180.1 9.4 13.2 304 32 -0.97 377 51 459 72 TD134-11 0.282989 0.000013 0.001090 0.023435 180.1 7.7 11.5 374 38 -0.97 487 60 616 85 TD134-12 0.283058 0.000012 0.001589 0.034490 180.1 10.1 13.9 278 34 -0.95 333 53 398 75 TD134-13 0.282928 0.000012 0.001603 0.034201 180.1 5.5 9.3 467 35 -0.95 629 54 818 77 TD134-14 0.283048 0.000012 0.001336 0.028546 180.1 9.8 13.6 291 35 -0.96 354 55 428 78 TD134-15 0.283018 0.000011 0.001142 0.024235 180.1 8.7 12.5 333 32 -0.97 422 51 523 73 TD134-16 0.283153 0.000010 0.001129 0.023995 180.1 13.5 17.3 139 30 -0.97 115 47 88 67 注:εHf(0)=((176Hf/177Hf)s/(176Hf/177Hf)CHUR, O-1)×10000,fLu/Hf=(176Lu/177Hf)s/(176Lu/177Hf)CHUR-1, εHf(t)=((176Hf/177Hf)s- (176Lu/177Hf)s×(eλt-1))/((176Hf/177Hf))CHUR, O-(176Lu/177Hf) CHUR ×(eλt-1))-1)×10000, (176Hf/177Hf)t=(176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)。其中,(176Lu/177Hf)s和(176Hf/177Hf)s为样品测定值,(176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)CHUR, O=0.282772[31]。t为样品形成时间,λ=1.867×10-11 year-1[31] 表 4 拉萨地体南部晚三叠世—中侏罗世岩浆岩锆石U-Pb年龄数据(表中序号①~⑧与图 1-c、d序号相对应)
Table 4 Summary of the zircon U-Pb isotopic ages of the Late Triassic to Middle Jurassic magmatic rocks on the southern margin of Lhasa terrane
样号 岩性 采样位置 方法(锆石) 年龄/Ma 图中位置/参考文献 Td134 闪长岩 E88°42′47″、N29°21′51″ MC-ICP-MS 180.1 ①/本文 Td136 花岗闪长岩 E88°40′39″、N29°21′51″ MC-ICP-MS 175 ①/本文 X-1 含矿石英闪长玢岩 E88°25′53″、N29°21′50″ MC-ICP-MS 161.1 ①/[8] ZK5056-4 含矿石英闪长玢岩 E88°25′40″、N29°21′50″ MC-ICP-MS 167.5 ①/[8] 7226-233.7 石英闪长玢岩 E88°26.00′、N29°22.00′ SHRIMP 181.8 ①/[8] 7224-159.9 石英闪长玢岩 E88°26.01′、N29°22.01′ SHRIMP 175.7 ①/[8] 7235-123.4 石英闪长玢岩 E88°26.02′、N29°22.02′ SHRIMP 179 ①/[8] Tafti-1 石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 173 ①/[7] Tafti-2 石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 171.7 ①/[7] Tafti-3 石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 171.3 ①/[7] Tafti-4 细粒闪长岩 E88°26.02′、N29°22.02′ MC-ICP-MS 172.4 ①/[7] Tafti-5 细粒闪长岩 E88°26.02′、N29°22.02′ MC-ICP-MS 173.5 ①/[7] Tafti-6 细粒闪长岩 E88°26.02′、N29°22.02′ MC-ICP-MS 149.1 ①/[7] Tafti-7 石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 171.8 ①/[7] Tafti-8 花岗闪长岩 E88°26.02′、N29°22.02′ MC-ICP-MS 173.9 ①/[7] Tafti-9 花岗闪长岩 E88°26.02′、N29°22.02′ MC-ICP-MS 174.8 ①/[7] Tafti-10 细粒闪长岩 E88°26.02′、N29°22.02′ MC-ICP-MS 177.1 ①/[7] Tafti-11 石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 177.2 ①/[7] Tafti-12 矿化石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 177.8 ①/[7] Tafti-13 矿化石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 178 ①/[7] Tafti-14 矿化石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 178.1 ①/[7] Tafti-15 矿化石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 179.4 ①/[7] Tafti-16 矿化石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 179.5 ①/[7] Tafti-17 矿化石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 180.2 ①/[7] Tafti-18 矿化石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 181 ①/[7] Tafti-19 矿化石英闪长玢岩 E88°26.02′、N29°22.02′ MC-ICP-MS 182.5 ①/[7] Tafti-20 玄武岩 E88°26.02′、N29°22.02′ MC-ICP-MS 184.5 ①/[7] Tafti-21 蚀变镁铁质凝灰岩 E88°26.02′、N29°22.02′ MC-ICP-MS 186.9 ①/[7] XC5-01 花岗闪长玢岩脉 E88°26.00′、N29°22.00′ MC-ICP-MS 179 ①/[37] XC5002 花岗闪长玢岩脉 E88°26.00′、N29°22.00′ MC-ICP-MS 175 ①/[37] 5036-303 闪长玢岩 E88°26.00′、N29°22.00′ MC-ICP-MS 173 ①/[6] XRX-1 英云闪长岩 E88°45.54′、N29°21.92′ LA-ICP-MS 182 ②/[3] XRX-2 英云闪长岩 E88°45.60′、N29°21.92′ LA-ICP-MS 181 ②/[3] XRX-3 花岗闪长岩 E88°41.25′、N29°21.96′ LA-ICP-MS 178 ②/[3] XRX-4 英云闪长岩 E88°41.24′、N29°21.94′ LA-ICP-MS 184 ②/[3] XRX-5 英云闪长岩 E88°38.19′、N29°21.94′ LA-ICP-MS 180 ②/[3] XRX-37 花岗闪长岩 E88°43.45′、N29°21.88′ LA-ICP-MS 170 ②/[3] XRX-38 花岗闪长斑岩 E88°43.77′、N29°21.82′ LA-ICP-MS 168 ②/[3] XRX-40 蚀变花岗闪长岩 E88°50.67′、N29°22.18′ LA-ICP-MS 172 ②/[3] 06FW164 二长花岗岩 E89°37.4′、N29°31.32′ MC-ICP-MS 185 ③/[17] 06FW165 花岗闪长片麻岩 E89°37.87′、N29°30.2′ MC-ICP-MS 194 ③/[17] 06FW166 二长花岗片麻岩 E89°37.87′、N29°30.2′ MC-ICP-MS 205 ③/[17] 06FW167 二长花岗岩 E89°37.92′、N29°26.38′ MC-ICP-MS 156 ③/[17] 06FW168 角闪闪长岩 E89°37.92′、N29°26.38′ MC-ICP-MS 174 ③/[17] 06FW169 正长花岗岩墙 E89°37.92′、N29°26.38′ MC-ICP-MS 152 ③/[17] XN-8 英云闪长岩 E89°37.85′、N29°29.78′ LA-ICP-MS 170 ③/[3] CT10-2-1 闪长岩 E89°38′01″、N29°29′59″ LA-ICP-MS 180.9 ③/[16] CT10-2-3 闪长岩 E89°37′53″、N29°30′12″ LA-ICP-MS 181 ③/[16] XG4-7-1 花岗闪长岩 E89°37′19″、N29°31′38″ LA-ICP-MS 182 ③/[16] XG4-9-1 花岗闪长岩 E89°37′29″、N29°29′39″ LA-ICP-MS 169.2 ③/[16] XY7-5-2 花岗岩 E89°37′29″、N29°31′03″ LA-ICP-MS 191.2 ③/[16] ST134A* 花岗闪长岩 E89°37.2′、N29°31.2′ MC-ICP-MS 188.1 ③/[12] T384 黑云母二长花岗岩 E90°11.47′、N29°21.36′ LA-ICP-MS 178 ④/[12] XN-20 花岗闪长岩 E90°11.47′、N29°21.36′ LA-ICP-MS 180 ④/[3] CT10-1-1 花岗岩 E90°11′17″、N29°21′28″ LA-ICP-MS 179.9 ④/[16] CT8-1-1 角闪辉长岩 E90°36′11″、N29°19′48″ LA-ICP-MS 209.9 ⑤/[5] CT8-1-8 角闪辉长岩 E90°36′11″、N29°19′48″ LA-ICP-MS 210.8 ⑤/[5] CT8-1-13 角闪辉长岩 E90°36′11″、N29°19′48″ LA-ICP-MS 212.4 ⑤/[5] CT8-2-5 角闪辉长岩 E90°36′11″、N29°19′48″ LA-ICP-MS 210.2 ⑤/[5] 10SR-23 火山凝灰岩 E92°02′、N29°16′ LA-ICP-MS 189 ⑥/[19] 10SR-13 安山岩 E92°02′、N29°16′ LA-ICP-MS 195 ⑥/[19] T09-14-2 花岗闪长片麻岩 桑日 LA-ICP-MS 190.4 ⑥/[18] T09-15-1 花岗闪长片麻岩 桑日 LA-ICP-MS 180 ⑥/[18] T09-16-1 二长花岗岩 加查 LA-ICP-MS 195.3 ⑦/[18] T09-16-2 花岗闪长岩 加查 LA-ICP-MS 196.5 ⑦/[18] T09-16-3 花岗闪长岩 加查 LA-ICP-MS 202 ⑦/[18] JD-1 砂岩 E88°22′14″、N29°09′19″ MC-ICP-MS 182 ⑧/[32] 09FW171 砂岩 E88°51′34″、N29°18′47″ MC-ICP-MS 185 ⑧/[32] 09FW172 砂岩 E88°48′28″、N29°13′22″ MC-ICP-MS 171 ⑧/[32] -
莫宣学, 董国臣, 赵志丹, 等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报, 2005, 11(3):281-290. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503001.htm 徐旺春. 西藏冈底斯花岗岩类锆石U-Pb年龄和Hf同位素组成的空间变化及其地质意义[J]. 中国地质大学(武汉)博士学位论文, 2010. Guo L, Liu Y, Liu S, et al. Petrogenesis of Early to Middle Jurassic granitoid rocks from the Gangdese belt, Southern Tibet:Implica-tions for early history of the Neo-Tethys[J]. Lithos, 2013, 179:320-333. doi: 10.1016/j.lithos.2013.06.011
朱杰, 杜远生, 刘早学, 等.西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义[J].中国科学(D辑), 2005, (12):1131-1139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200512004 Meng Y, Xu Z, Santosh M, et al. Late Triassic crustal growth in southern Tibet:Evidence from the Gangdese magmatic belt[J]. Gondwana Research, 2015, 37:449-464.
唐菊兴, 黎风佶, 李志军, 等.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据[J].矿床地质, 2010, (3):461-475. Tafti R, Lang J R, Mortensen J K, et al. Geology and Geochronolo-gy of the Xietongmen (Xiongcun) Cu-Au Porphyry District, South-ern Tibet, China[J]. Economic Geology, 2014, 109(7):1967-2001. doi: 10.2113/econgeo.109.7.1967
Lang X, Tang J, Li Z, et al. U-Pb and Re-Os geochronological evi-dence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC[J]. Journal of Asian Earth Sciences, 2014, 79:608-622. doi: 10.1016/j.jseaes.2013.08.009
Tang J, Lang X, Xie F, et al. Geological characteristics and genesis of the Jurassic No. I porphyry Cu-Au deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet[J]. Ore Geology Reviews, 2015, 70:438-456. doi: 10.1016/j.oregeorev.2015.02.008
Decelles P G, Robinson D M, Zandt G. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau[J]. Tectonics, 2002, 21(6):11-12.
Ma L, Wang Q, Wyman D A, et al. Late Cretaceous crustal growth in the Gangdese area, southern Tibet:Petrological and Sr-Nd-HfO isotopic evidence from Zhengga diorite-gabbro[J]. Chemical Geology, 2013, 349/350:54-70. doi: 10.1016/j.chemgeo.2013.04.005
尹安.喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长[J].地球学报, 2001, (3):193-230. http://mall.cnki.net/magazine/Article/DQXB200103000.htm 莫宣学.岩浆作用与青藏高原演化[J].高校地质学报, 2011, 17(3):351-367. http://www.cqvip.com/QK/90539X/201103/39866061.html Chu M, Chung S, Song B, et al. Zircon U-Pb and Hf isotope con-straints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2006, 34(9):745. doi: 10.1130/G22725.1
张宏飞, 徐旺春, 郭建秋, 等.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据[J].岩石学报, 2007, 23(06):1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011 Meng Y, Dong H, Cong Y, et al. The early-stage evolution of the Neo-Tethys ocean:Evidence from granitoids in the middle Gang-dese batholith, southern Tibet[J]. Journal of Geodynamics, 2016, 94/95:34-49. doi: 10.1016/j.jog.2016.01.003
Ji W, Wu F, Chung S, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262(3):229-245.
董昕, 张泽明.拉萨地体南部早侏罗世岩浆岩的成因和构造意义[J].岩石学报, 2013, 29(6):1933-1948. http://mall.cnki.net/magazine/Article/YSXB201306007.htm Kang Z, Xu J, Wilde S A, et al. Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane:Im-plications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc[J]. Lithos, 2014, 200/201:157-168. doi: 10.1016/j.lithos.2014.04.019
耿全如, 潘桂棠, 王立全, 等.西藏冈底斯带叶巴组火山岩同位素地质年代[J].沉积与特提斯地质, 2006, 26(1):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200601000.htm Zhu D, Pan G, Chung S, et al. SHRIMP zircon age and geochemi-cal constraints on the origin of lower Jurassic volcanic rocks from the Yeba formation, Southern Gangdese, south Tibet[J]. Interna-tional Geology Review, 2008, 50(5):442-471. doi: 10.2747/0020-6814.50.5.442
陈炜, 马昌前, 边秋娟, 等.西藏得明顶地区叶巴组火山岩地球化学特征和同位素U-Pb年龄证据[J].地质科技情报, 2009, 28(3):31-40. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201509006.htm 陈炜, 马昌前, 边秋绢, 等.西藏冈底斯带中段以东得明顶地区晚白垩世花岗岩类锆石U-Pb年代学和地球化学证据[J].矿物岩石, 2010, 30(1):83-92. https://www.wenkuxiazai.com/doc/33ad6dc849649b6648d74744.html 魏友卿. 藏南叶巴组火山岩的年代学、地球化学及岩石成因[D]. 中国地质大学(北京)硕士学位论文, 2014. 黄丰, 许继峰, 陈建林, 等.早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?[J].岩石学报, 2015, 31(7):2089-2100. http://www.doc88.com/p-7146852309002.html Liu Y, Gao S, Hu Z, et al. Continental and Oceanic Crust Recy-cling-induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571.
Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace ele-ments of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43.
Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1):59/79. https://www.researchgate.net/profile/Xiumian_Hu/publication/281855067_Data_Repository_Hu_et_al_2015_GEOLOGY_Direct_stratigraphic_dating_of_India-Asia_collision_onset/data/55fbac3608ae07629e07bf84/Data-Repository-Hu-et-al.pdf
Ludwig K R. User's manual for Isoplot 3. 00: a geochronological toolkit for Microsoft Excel[M]. 2003.
吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay con-stant determined by Lu-Hf and U-Pb isotope systematics of Pre-cambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3):311-324. https://www.researchgate.net/publication/256806486_LA-ICP-MS_zircon_U-Pb_dating_trace_element_and_Hf_isotope_geochemistry_of_the_Heyu_granite_batholith_eastern_Qinling_central_China_Implications_for_Mesozoic_tectono-magmatic_evolution
Wu F, Ji W, Liu C, et al. Detrital zircon U-Pb and Hf isotopic da-ta from the Xigaze forearc basin:Constraints on Transhimalayan magmatic evolution in southern Tibet[J]. Chemical Geology, 2010, 271(1/2):13-25.
郎兴海. 西藏雄村斑岩型铜金矿集区成矿作用与成矿预测[D]. 成都理工大学博士学位论文, 2012. Miller C, Thoni M, Frank W, et al. Geochemistry and tectonomag-matic affinity of the Yungbwa ophiolite, SW Tibet[J]. Lithos, 2003, 66(3):155-172.
Xu J, Castillo P R. Geochemical and Nd-Pb isotopic characteris-tics of the Tethyan asthenosphere:implications for the origin of the Indian Ocean mantle domain[J]. Tectonophysics, 2004, 393(1):9-27. https://www.researchgate.net/profile/Patrizia_Fiannacca/publication/277009447_Enriched_asthenosphere_melting_beneath_the_nascent_North_African_margin_trace_element_and_Nd_isotope_evidence_in_middle-late_Triassic_alkali_basalts_from_central_Sicily_Italy/links/555dddfd08ae8c0cab2bcaf8.pdf
Mcdermid I R C, Aitchison J C, Davis A M, et al. The Zedong ter-rane:a Late Jurassic intra-oceanic magmatic arc within the Yar-lung-Tsangpo suture zone, southeastern Tibet[J]. Chemical Geolo-gy, 2002, 187(3/4):267-277.
曲晓明, 辛洪波, 徐文艺.西藏雄村特大型铜金矿床容矿火山岩的成因及其对成矿的贡献[J].地质学报, 2007, 81(7):964-971. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200707011.htm Hébert R, Bezard R, Guilmette C, et al. The Indus-Yarlung Zang-bo ophiolites from Nanga Parbat to Namche Barwa syntaxes, south-ern Tibet:First synthesis of petrology, geochemistry, and geochro-nology with incidences on geodynamic reconstructions of Neo-Te-thys[J]. Gondwana Research, 2012, 22(2):377-397. doi: 10.1016/j.gr.2011.10.013
Aitchison J C, Badengzhu, Davis A M, et al. Remnants of a Creta-ceous intra-oceanic subduction system within the Yarlung-Zang-bo suture (southern Tibet)[J]. Earth and Planetary Science Letters, 2000, 183(1/2):231-244. https://www.researchgate.net/publication/251666477_Discovery_of_a_dismembered_metamorphic_sole_in_the_Saga_ophiolitic_melange_South_Tibet_Assessing_an_Early_Cretaceous_disruption_of_the_Neo-Tethyan_supra-subduction_zone_and_consequences_on_basin_closi
张立雪, 王青, 朱弟成, 等.拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束[J].岩石学报, 2013, 29(11):3681-3688. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20131103&journal_id=ysxb&year_id=2013 Hou Z, Lianfeng Duan Y L Y Z, Zhusen Yang, et al. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen[J]. Economic Geology, 2015, 110:1541-1575. doi: 10.2113/econgeo.110.6.1541
Liu D, Zhao Z, Zhu D, et al. Postcollisional potassic and ultrapotas-sic rocks in southern Tibet:Mantle and crustal origins in response to India-Asia collision and convergence[J]. Geochimica et Cosmo-chimica Acta, 2014, 143:207-231. doi: 10.1016/j.gca.2014.03.031
Mao J W, Pirajno F, Xiang J F, et al. Mesozoic molybdenum depos-its in the east Qinling-Dabie orogenic belt:Characteristics and tec-tonic settings[J]. Ore Geology Reviews, 2011, 43(1):264-293. doi: 10.1016/j.oregeorev.2011.07.009
Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits:char-acteristics, distribution, and tectonic controls[J]. Economic Geolo-gy, 2005, 100(5):801-818. doi: 10.2113/gsecongeo.100.5.801
Sillitoe R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1):3-41. doi: 10.2113/gsecongeo.105.1.3
梁华英, 魏启荣, 许继峰, 等.西藏冈底斯矿带南缘矽卡岩型铜矿床含矿岩体锆石U-Pb年龄及意义[J].岩石学报, 2010, 26(6):1692-1698. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006006 Jiang Z, Wang Q, Li Z, et al. Late Cretaceous (ca. 90Ma) adakitic intrusive rocks in the Kelu area, Gangdese Belt (southern Tibet):Slab melting and implications for Cu-Au mineralization[J]. Journal of Asian Earth Sciences, 2012, 53:67-81. doi: 10.1016/j.jseaes.2012.02.010
赵珍, 胡道功, 陆露, 等.西藏泽当地区晚白垩世埃达克岩的发现及其成矿意义[J].地质力学学报, 2013, (1):45-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201301005 Jiang Z, Wang Q, Wyman D A, et al. Zircon U-Pb geochronolo-gy and geochemistry of Late Cretaceous-early Eocene granodio-rites in the southern Gangdese batholith of Tibet:petrogenesis and implications for geodynamics and Cu ±Au ±Mo mineralization[J]. International Geology Review, 2015, 57(3):373-392. doi: 10.1080/00206814.2015.1009503
李金祥, 李光明, 秦克章, 等.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报, 2008, (3):531-543. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20080313&journal_id=ysxb 张志, 陈毓川, 唐菊兴, 等.西藏多不杂富金斑岩铜矿床蚀变与脉体系统[J].矿床地质, 2014, (6):1268-1286.