• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

青海尕林格南地区火山岩地球化学特征及锆石U-Pb年龄

张杰, 汤鸿伟, 侯明才, 史俊波, 杨伟, 张辉善, 陈琳, 任清军

张杰, 汤鸿伟, 侯明才, 史俊波, 杨伟, 张辉善, 陈琳, 任清军. 2018: 青海尕林格南地区火山岩地球化学特征及锆石U-Pb年龄. 地质通报, 37(5): 819-829.
引用本文: 张杰, 汤鸿伟, 侯明才, 史俊波, 杨伟, 张辉善, 陈琳, 任清军. 2018: 青海尕林格南地区火山岩地球化学特征及锆石U-Pb年龄. 地质通报, 37(5): 819-829.
ZHANG Jie, TANG Hongwei, HOU Mingcai, SHI Junbo, YANG Wei, ZHANG Huishan, CHEN Lin, REN Qingjun. 2018: Geochemistry and zircon U-Pb ages of the volcanic rocks in southern Galinge, Qinghai Province. Geological Bulletin of China, 37(5): 819-829.
Citation: ZHANG Jie, TANG Hongwei, HOU Mingcai, SHI Junbo, YANG Wei, ZHANG Huishan, CHEN Lin, REN Qingjun. 2018: Geochemistry and zircon U-Pb ages of the volcanic rocks in southern Galinge, Qinghai Province. Geological Bulletin of China, 37(5): 819-829.

青海尕林格南地区火山岩地球化学特征及锆石U-Pb年龄

基金项目: 

中国地质调查局项目《青海省格尔木市尕林格南地区J46E020008、J46E020009两幅1:5万区调》 12120113033013

详细信息
    作者简介:

    张杰(1985-), 男, 硕士, 工程师, 从事区域地质调查与固体矿产勘查。E-mail:574076635@qq.com

  • 中图分类号: P588.12;P597

Geochemistry and zircon U-Pb ages of the volcanic rocks in southern Galinge, Qinghai Province

  • 摘要:

    在东昆仑山脉西段祁漫塔格山中东部的尕林格南地区发育一套火山岩,调查显示火山活动爆发相→溢流相相间的韵律周期较明显,见由玄武质含火山角砾凝灰岩→玄武岩、玄武质凝灰岩→安山岩、安山质角砾凝灰岩→安山岩,以及安山质含火山角砾凝灰岩和安山岩质凝灰岩→玄武岩组成的4个韵律。根据研究区安山质火山角砾凝灰岩的LA-ICP-MS锆石U-Pb年龄222.2±2.1Ma,将该火山岩地层由前人划分的顶志留统—下泥盆统契盖苏组火山岩段重新厘定为上三叠统鄂拉山组。岩石地球化学研究结果表明,该套火山岩属于亚碱性钙碱性系列岩石,具有富钾、同源岩浆演化的特点,并具弧火山岩和碰撞火山岩的地球化学特征,为陆内造山作用下的产物,较好地记录了东昆仑祁漫塔格造山带在晚三叠世岩浆演化的地质信息。

    Abstract:

    Volcanic rocks are well developed in southern Galinge which lies in mid-eastern Qimantag Mountain of the western part of the East Kunlun Mountains. The investigation shows that the volcanic activity from explosive phase to overflow phase is more pronounced and there are four rhythms at most. According to the zircon U-Pb age (222.2±2.1Ma) obtained by the LA-ICPMS for the tuff in the study area, the volcanic rocks should be assigned to Late Triassic (T3e) rather than to volcanic rocks of top Silurian-Early Devonian Qigaisu Formation (S4D1q1) assigned by previous researchers. Geochemical studies of the rocks show that the volcanic rocks are of sub-alkaline-calc-alkaline series rich in potassium and characterized by cognate magma evolution, and have the geochemical features of arc rocks and collisional volcanic rocks. They are the products of intracontinental orogenesis, and hence the geological information of magmatic evolution of the East Kunlun Qimantag orogenic belt in the Late Triassic period is well documented.

  • 班公湖-怒江结合带(BNS)位于青藏高原北部, 西起班公湖, 向东经改则、东巧、丁青与昌宁-孟连带相连, 向西延伸向克什米尔, 与东地中海特提斯蛇绿岩相连, 在中国境内长达2000km, 是青藏高原一条重要的结合带[1]。班公湖-怒江结合带中存在规模巨大的蛇绿岩、增生杂岩, 以及夹持其中的残余弧或岛弧变质地块, 发育韧性剪切带、逆冲断层、构造混杂岩、复杂褶皱等多种构造行迹, 沿断裂还发育晚白垩世-新近纪陆相火山岩、新生代陆相走滑拉分盆地和第四纪谷地[2]。为更好地认识班公湖-怒江结合带内物质的形成机制及相关的构造背景, 需要对其开展深入的研究。

    通过对沉积岩中的碎屑锆石进行U-Pb定年分析, 可有效地探讨其源区并开展历史时期的古大陆重建。本文对该地区早白垩统多尼组(原1:25万区调划为上三叠统巫嘎组)砂岩的碎屑锆石开展了形态学及U-Pb年代学研究, 为揭示班公湖-怒江缝合带内该地层单元的物源区提供新的证据, 同时为探讨班公湖-怒江结合带的构造演化史提供一定的依据。

    多尼组出露于改则县南西的洞错一带(图 1), 呈近东西向带状分布, 区域上为一套灰色-深灰色含煤碎屑岩地层。岩性主要为泥岩、砂岩、板岩、页岩、粉砂岩、石英砂岩、长石石英砂岩, 局部含火山岩, 产植物、菊石、双壳类、腹足类、珊瑚、层孔虫、海胆、腕足类、介形类等化石。根据野外实测剖面特征, 研究区多尼组主要岩性为深灰色、灰色泥质粉砂岩、粉砂岩, 局部夹灰色钙质岩屑石英砂岩、长石石英砂岩及少量灰岩等, 在灰岩中局部可见生物碎屑, 未见完整化石。

    图  1  多尼组分布略图
    Figure  1.  Distribution of Duoni Formation

    样品采集于西藏改则县洞错乡南约15km处欧仁一带的PM009地层剖面上。样品岩性主要为灰色中细粒长石石英砂岩, 主要由石英(84%)、长石(13%)、岩屑(2%)、胶结物等组成, 颗粒大小以0.15~ 0.60mm为主, 分选性好, 磨圆度一般, 呈次棱角状, 次圆状。石英主要为单晶石英, 长石类以斜长石为主, 岩屑成分主要为灰岩、泥岩、粉砂岩等, 孔隙式胶结(图 2)。

    图  2  样品野外露头
    Figure  2.  The outcrop of the sample

    样品锆石的分离和挑选由廊坊市地岩矿物分选有限公司完成, 在双目镜下挑选出晶形和透明度好的锆石颗粒, 粘贴在环氧树脂表面, 抛光后将锆石进行透射光、放射光和阴极发光显微照相。锆石制靶及阴极发光图像制备由北京中美美科科技有限公司完成, LA-ICP-MS锆石U-Pb定年测试分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。其中LA-ICP-MS锆石U-Pb同位素年龄分析仪器为Elan6100DRC型激光剥蚀系统, 激光器为193nmArF准分子激光器。激光剥蚀斑束直径为32μm, 激光剥蚀深度为20~40μm。实验中采用氦气为剥蚀物质的载气, 采用标准锆石91500为外标, 采用美国国家标准物质局人工合成硅酸盐玻璃NIST SRM610为内标。详细的实验原理、流程和仪器参数见Yuan等[3]的文献。

    多尼组砂岩碎屑锆石U-Pb年龄数据见表 1。在多尼组砂岩样品中, 随机挑选71粒锆石进行分析。从阴极发光(CL)图像(图 3)看出, 锆石颗粒大小在50~180μm之间。研究表明, 不同成因的锆石具有不同的Th/U值, 岩浆锆石的Th/U值较大(一般大于0.4);而变质锆石的Th/U值较小(一般小于0.1)[4]。多尼组砂岩碎屑锆石的Th/U值较大, 51颗锆石的Th/U值大于0.4, 平均值约为0.64, 说明锆石大部分为岩浆成因, 部分可能为变质成因。

    表  1  洞错地区多尼组砂岩碎屑锆石U-Th-Pb同位素年龄数据
    Table  1.  Detrital zircons U-Th-Pb data of sandstones in the Duoni Formation from Dongcuo area
    下载: 导出CSV 
    | 显示表格
    图  3  洞错地区多尼组砂岩碎屑锆石阴极发光图(年龄单位为Ma)
    Figure  3.  Cathodoluminescene images of detrital zircons of sandstones in the Duoni Formation from Dongcuo area

    对于年轻锆石而言, 207Pb/206Pb年龄误差较大, 而对于古老锆石而言, 206Pb/238U年龄的误差较大。本文在年龄选取时, 对小于1000Ma的锆石, 选取206Pb/238U计算年龄值; 年龄大于1000Ma的锆石, 选取207Pb/206Pb计算年龄值[5]。从碎屑锆石年龄分布频率直方图(图 4)可以看出, 多尼组砂岩碎屑锆石年龄值分布在125~3261Ma之间。其中125~1000Ma的锆石有37粒, 最年轻年龄值为125Ma(测点号为PM009/26-17, 和谐度为97%); 大于1000Ma的年龄值为34个, 最老年龄值为3261Ma(测点号为PM009/26-35, 和谐度为96%)。碎屑锆石主要年龄区间(或峰值)为3261Ma、2739~2335Ma、1880~ 1750Ma、1006~657Ma、577~510Ma、456~409Ma和252~202Ma(表 1)。

    图  4  青藏高原碎屑锆石U-Pb年龄频率图(据参考文献[15]修改)
    Figure  4.  Age distributions of detrital zircons from the Tibetan Plateau

    多尼组的碎屑锆石年龄数据跨度较大, 不同的年龄峰值代表不同的地质意义。

    (1) 3261Ma, 大于3000Ma的碎屑锆石在样品中仅出现1粒, 表明物源区存在古老地壳的残留[6], 为研究班怒带物源区的形成和演化奠定了物质基础。

    (2) 2739~2335Ma年龄组包含10颗碎屑锆石, 代表物源区可能存在构造-岩浆事件。从全球地质背景看, 华北、北美、瑞芬及其他克拉通在2.5Ga左右发生了大规模的拼合事件(如Grenville事件、Pan-Afriean事件等), 形成有记载的最古老的超级大陆[7]。近年来, 众多学者在羌塘盆地发现1.8~ 2.7Ga的锆石, 如盆地中央隆起带差桑-茶布一带的戈木日群[8], 盆地西南部龙木错-双湖缝合带南侧荣玛温泉地区石英岩[9], 以及羌塘盆地北部唐古拉山温泉地区雁石坪群[10]。暗示羌塘盆地有太古宙的地壳物质, 支持羌塘盆地存在前寒武纪结晶基底的可能性。这也说明, 研究区多尼组的物源很可能为北部的南羌塘地块。

    (3) 1880~1750Ma年龄组包含16颗碎屑锆石, 指示源区存在古元古代早期的构造热事件。研究表明[11-12], Columbia超级大陆各个组成陆块是在2.1~ 1.8Ga碰撞事件中拼合在一起的, 并在中元古代早-中期Columbia超级大陆边缘向外增生, 随后开始裂解, 1880~1750Ma可能也是羌塘结晶基底的主期变质年龄。

    (4) 1006~657Ma年龄组包含13颗碎屑锆石, 该期是全球构造运动演化的一系列重大热事件时期, Grenvillian碰撞造山期(1000~900Ma)形成了罗迪尼亚超大陆, 在850~750Ma开始隆升、裂解[13]。在700Ma发生分解, 反映了早期的泛非碰撞, 中国大陆主要的构造表现为普遍存在张裂, 在羌塘结晶基底的戈木日群中发现1016~929Ma的热事件, 说明此时羌塘地块存在构造热事件[1]

    (5) 577~510Ma年龄组包含5颗碎屑锆石, 指示了新元古代晚期的一次构造热事件, 该组年龄值可能是泛非造山运动(550±100Ma)在物源区的记录。

    (6) 456~409Ma年龄组包含8颗碎屑锆石, 可能指示了冈瓦纳大陆北缘在早泥盆世-奥陶纪的增生过程[14]

    (7) 252~202Ma年龄组包含5颗碎屑锆石, 指示拉萨地块与羌塘地块之间发生了俯冲消减及碰撞与缝合作用。

    (8) 最小年龄125Ma和126Ma, 可能代表该套地层的沉积时代, 说明该套地层于早白垩世沉积形成。

    班公湖地区中生代沙木罗组和日松组碎屑锆石显示, 其沉积物的物源区可能为北部的羌塘地块[1]。商旭地区中生代沉积物中含有部分来自其北部南羌塘地块中的物质, 暗示班公湖-怒江洋壳在中生代向北俯冲[15]。南羌塘与特提斯喜马拉雅沉积变质岩的碎屑锆石年龄具有相似的频率分布特征, 且二者的主要年龄峰值为530Ma、950Ma, 其与高喜马拉雅新元古代沉积变质岩碎屑锆石的年龄主峰一致, 表明其在古生代与高喜马拉雅相邻; 同时, 拉萨地块与澳大利亚西部的碎屑锆石具有一致的年龄峰值1170Ma, 表明拉萨地块可能在石炭纪-二叠纪与澳大利亚西北部毗邻[16]。从锆石年龄分布频率图可见, 研究区碎屑锆石年龄分布直方图与南羌塘更具相似性, 西藏洞错地区班公湖-怒江结合带早白垩世沉积物的物源可能来自北部的南羌塘地块。

    (1) 班公湖地区早白垩世多尼组砂岩碎屑锆石LA-ICP-MS U-Pb测年结果显示, 碎屑锆石最年轻颗粒的年龄值为125Ma, 说明其形成时代晚于早白垩世; 最老碎屑锆石年龄值为3261Ma, 表明物源区存在古老地壳的残留。

    (2) 将研究区早白垩世碎屑锆石的年龄分布频率图与南部的拉萨地块及北部的南羌塘地块对比, 其与南羌塘地块更具相似性, 说明研究区的早白垩世沉积物的物源可能来自北部的南羌塘地块。

    致谢: 项目组成员给予了支持和帮助,天津地质矿产研究所崔玉荣同志测定锆石U-Pb年龄值,编写中得到成都理工大学刘登忠和侯明才教授的指导,审稿专家提出宝贵意见,在此一并表示衷心的感谢。
  • 图  1   研究区地质简图

    Figure  1.   Geological sketch map of the study area

    图  2   晚三叠世鄂拉山组火山岩旋回和韵律图

    Figure  2.   The rhythm and cycle of volcanic rock in Late Triassic Elashan Formation

    图  3   鄂拉山组火山岩TAS图解

    Pc-苦橄玄武岩;B-玄武岩;O1-玄武安山岩;O2-安山岩;O3-英安岩;R-流纹岩;S1-粗面玄武岩;S2-玄武质粗面安山岩;S3-粗面安山岩;T-粗面岩、粗面英安岩;F-副长石岩;U1-碱玄岩、碧玄岩;U2-响岩质碱玄岩;U3-碱玄质响岩;Ph-响岩

    Figure  3.   Diagram of TAS

    图  4   鄂拉山组火山岩SiO2-K2O图解

    Figure  4.   Diagram of SiO2-K2O

    图  5   鄂拉山组火山岩硅-碱图解[8]

    A—碱性;S—亚碱性

    Figure  5.   Diagram of SiO2-(K2O+Na2O)

    图  6   鄂拉山组火山岩AFM图解

    T—拉斑玄武岩系列;C—钙碱性系列

    Figure  6.   Diagram of AFM

    图  7   鄂拉山组火山岩An-Ab-Or图解[8]

    Figure  7.   Diagram of An-Ab-Or

    图  8   鄂拉山组火山岩稀土元素配分模式[11]

    Figure  8.   Chondrite-normalized REE patterns

    图  9   鄂拉山组火山岩微量元素蛛网图[11]

    Figure  9.   Primitive-mantle-normalized trace element distribution patterns

    图  10   安山质火山角砾凝灰岩照片

    a—火山角砾凝灰结构5×10(-);b—安山质火山角砾凝灰岩宏观照片

    Figure  10.   The pictures of andesitic volcanic breccia tuff

    图  11   火山岩锆石阴极发光图像

    Figure  11.   The cathodoluminescence images of zircon grains

    图  12   安山质火山角砾凝灰岩锆石U-Pb谐和图(a)和206Pb/238U年龄图(b)

    Figure  12.   Zircon U-Pb age concordia diagram(a) and histogram(b) of the tuff

    表  1   鄂拉山组火山岩主量元素含量及CIPW标准矿物参数

    Table  1   The analyzed data of major elements and CIPW of volcanic rocks in Elashan Formation

    %
    样品编号岩性SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5H2O+烧失量总计Q
    YM11-01-ZH1变质流纹质火山角砾凝灰岩75.920.05912.900.800.350.0260.0700.513.674.120.0040.660.8099.8938.04
    YM08-27-ZH1变质安山质凝灰岩57.941.1216.802.154.190.112.166.483.222.710.310.721.8299.7312.35
    PM09-04-ZH1变质玄武岩55.861.2317.382.844.710.134.896.493.122.180.380.761.04101.07.78
    PM09-09-ZH1变质安山质含火山角砾凝灰岩51.641.2818.203.196.020.244.517.023.351.420.291.322.3100.73.27
    PM09-18-ZH1变质安山质含火山角砾凝灰岩66.440.6015.561.841.830.0990.731.833.525.360.120.740.9699.6320.53
    PM15-05-ZH1变质石英安山质凝灰岩59.660.8517.512.684.100.142.766.412.132.500.180.920.92100.718.6
    PM15-07-ZH1变质英安质凝灰岩76.560.1913.010.831.050.0440.301.123.582.750.0350.240.94100.642.1
    PM19-01-ZH1花岗质压碎角砾岩70.080.3515.261.261.570.0460.620.941.975.370.141.161.28100.035.64
    PM19-02-ZH1变质凝灰岩65.580.6017.200.922.970.121.133.933.122.510.100.761.06100.026.58
    PM19-04-ZH1变质流纹质凝灰岩67.680.5115.601.253.090.100.913.602.022.620.1011.4499.9236.09
    PM19-06-ZH1变质流纹质凝灰岩69.000.5814.522.541.970.121.053.793.022.210.150.861.22101.033.12
    PM22-01-ZH1含火山角砾凝灰岩60.760.9416.853.313.660.162.116.682.771.400.210.881.18100.921.39
    PM22-04-ZH1变质安山质火山角砾凝灰岩60.361.1317.251.914.190.132.015.813.442.380.350.621.1100.615.21
    PM22-07-ZH1变质安山岩70.820.2315.101.981.160.0670.190.973.704.000.0280.420.8299.4931.67
    PM22-10-ZH1变质安山岩70.860.2415.101.840.960.0850.140.943.713.880.0280.521.0299.3232.46
    PM22-17-ZH1变质安山质火山角砾凝灰岩60.381.0515.313.783.490.172.216.322.951.740.271.061.5100.220.58
    PM23-04-ZH1变质熔结含火山角砾凝灰岩66.460.4715.102.301.400.0970.642.563.804.040.141.993.41100.422.96
    样品编号岩性AnAbOrCDiHyIlMtApZrCmDISIARσ43
    YM11-01-ZH1变质流纹质火山角砾凝灰岩2.5531.5524.741.5100.520.110.940.010.03094.330.783.771.84
    YM08-27-ZH1变质安山质凝灰岩24.0428.0116.47066.992.183.210.750.04056.8314.971.682.24
    PM09-04-ZH1变质玄武岩27.1826.5912.9802.3815.642.364.150.90.040.0447.3527.561.572.15
    PM09-09-ZH1变质安山质含火山角砾凝灰岩31.329.168.6302.2817.382.54.760.680.03041.0624.391.472.38
    PM09-18-ZH1变质安山质含火山角砾凝灰岩8.830.4132.340.8202.911.172.720.280.09083.285.53.093.31
    PM15-05-ZH1变质石英安山质凝灰岩31.0318.2214.930.05011.151.633.930.430.04051.7519.481.481.27
    PM15-07-ZH1变质英安质凝灰岩5.5930.4516.332.1201.770.361.210.080.03088.883.532.621.19
    PM19-01-ZH1花岗质压碎角砾岩4.0817.0832.514.8602.960.691.870.320.030.0185.235.752.661.96
    PM19-02-ZH1变质凝灰岩19.3926.8815.12.4206.851.161.360.250.04068.5610.611.731.38
    PM19-04-ZH1变质流纹质凝灰岩17.8317.5315.883.1506.410.991.860.240.04069.59.21.640.86
    PM19-06-ZH1变质流纹质凝灰岩18.2125.8313.20.5604.491.13.110.340.04072.159.771.81.04
    PM22-01-ZH1含火山角砾凝灰岩29.7523.718.3702.18.111.84.240.490.05053.4715.981.430.96
    PM22-04-ZH1变质安山质火山角砾凝灰岩24.8429.414.201.868.672.172.80.830.05058.8114.431.681.92
    PM22-07-ZH1变质安山岩4.9531.8724.072.9501.50.452.460.070.06087.611.732.842.11
    PM22-10-ZH1变质安山岩4.8332.1123.463.1401.290.462.190.070.060.0188.031.332.82.04
    PM22-17-ZH1变质安山质火山角砾凝灰岩23.9525.5610.5305.376.722.054.560.650.04056.6715.671.551.22
    PM23-04-ZH1变质熔结含火山角砾凝灰岩12.433.1124.590.0802.720.932.860.340.06080.665.282.592.56
    注:分析方法为容量法、等离子体发射光谱法;检测仪器为Optima 5300V等离子体发射光谱仪(015);测试单位为四川省冶金地质岩矿测试中心
    下载: 导出CSV

    表  2   鄂拉山组火山岩稀土元素特征

    Table  2   The analyzed data of REE of volcanic rocks

    10-6
    样品编号岩性LaCePrNdΣREEEuGdTbDyHoEr
    YM11-01-ZH1变质流纹质火山角砾凝灰岩9.8531.623.5614.5381.670.223.230.765.811.123.12
    YM08-27-ZH1变质安山质凝灰岩23.7450.736.5825.17125.341.893.760.603.550.571.50
    PM09-04-ZH1变质玄武岩25.8055.667.4226.77134.641.453.950.633.600.561.45
    PM09-09-ZH1变质安山质含火山角砾凝灰岩10.9330.034.3316.5577.661.092.680.543.370.571.46
    PM09-18-ZH1变质安山质含火山角砾凝灰岩35.1573.439.0530.15171.421.714.740.744.460.742.01
    PM15-05-ZH1变质石英安山质凝灰岩20.5736.705.0518.1798.241.053.160.593.950.651.76
    PM15-07-ZH1变质英安质凝灰岩27.4756.016.6321.59129.211.093.360.543.420.601.59
    PM19-01-ZH1花岗质压碎角砾岩23.1343.516.4019.49111.011.083.540.633.940.641.64
    PM19-02-ZH1变质凝灰岩20.7140.835.1316.3698.191.182.800.483.080.531.42
    PM19-04-ZH1变质流纹质凝灰岩21.8247.015.6717.88109.001.053.230.523.310.551.53
    PM19-06-ZH1变质流纹质凝灰岩18.5741.224.8115.9395.541.032.820.472.970.521.38
    PM22-01-ZH1含火山角砾凝灰岩24.7851.856.8823.55126.901.213.810.654.000.661.73
    PM22-04-ZH1变质安山质火山角砾凝灰岩31.8480.468.7031.31177.971.695.670.834.750.842.39
    PM22-07-ZH1变质安山岩38.3472.778.5830.39172.561.204.670.724.250.782.27
    PM22-10-ZH1变质安山岩39.0578.739.0132.28181.641.214.660.734.200.772.32
    PM22-17-ZH1变质安山质火山角砾凝灰岩34.5468.778.2631.94166.231.465.110.744.200.752.07
    PM23-04-ZH1变质熔结含火山角砾凝灰岩51.13100.2913.0545.05247.421.417.921.297.011.424.61
    样品编号岩性TmYbLuYSmLREEHREELREE/HREELaN/YbNδEuδCe
    YM11-01-ZH1变质流纹质火山角砾凝灰岩0.532.980.4430.923.8963.6718.003.542.370.191.31
    YM08-27-ZH1变质安山质凝灰岩0.251.530.2518.285.21113.3212.029.4311.121.240.98
    PM09-04-ZH1变质玄武岩0.251.510.2617.985.34122.4312.2110.0212.280.920.97
    PM09-09-ZH1变质安山质含火山角砾凝灰岩0.251.600.2418.594.0366.9510.706.264.910.951.07
    PM09-18-ZH1变质安山质含火山角砾凝灰岩0.362.210.4322.866.25155.7415.689.9311.410.920.99
    PM15-05-ZH1变质石英安山质凝灰岩0.301.950.2920.514.0585.5912.656.777.560.870.86
    PM15-07-ZH1变质英安质凝灰岩0.312.020.3117.904.27117.0612.159.649.740.850.99
    PM19-01-ZH1花岗质压碎角砾岩0.291.680.2815.874.7698.3712.647.789.850.770.86
    PM19-02-ZH1变质凝灰岩0.251.590.2716.813.5587.7710.428.429.341.110.94
    PM19-04-ZH1变质流纹质凝灰岩0.281.780.3119.634.0797.5011.508.488.800.861.01
    PM19-06-ZH1变质流纹质凝灰岩0.271.720.3017.053.5285.0910.458.147.720.971.04
    PM22-01-ZH1含火山角砾凝灰岩0.312.010.3420.855.10113.3813.528.388.860.810.96
    PM22-04-ZH1变质安山质火山角砾凝灰岩0.392.340.3223.846.41160.4317.549.159.750.841.16
    PM22-07-ZH1变质安山岩0.382.370.3918.155.45156.7315.839.9011.600.710.94
    PM22-10-ZH1变质安山岩0.362.420.3720.005.52165.8115.8310.4711.600.710.99
    PM22-17-ZH1变质安山质火山角砾凝灰岩0.342.040.3021.835.71150.6915.549.6912.170.810.97
    PM23-04-ZH1变质熔结含火山角砾凝灰岩0.724.830.7442.75757.96218.8928.537.677.590.540.93
    注:分析方法为电感耦合等离子体质谱法;检测仪器为aurora m90电感耦合等离子体质谱仪(010);测试单位为四川省冶金地质岩矿测试中心
    下载: 导出CSV

    表  3   鄂拉山组火山岩微量元素特征

    Table  3   The analyzed data of trace elements of volcanic rocks

    10-6
    样品编号岩性RbSrBaThNbTaZrHfScCr
    YM11-01-ZH1变质流纹质火山角砾凝灰岩39712.723.025.826.51.401617.417.764.7
    YM08-27-ZH1变质安山质凝灰岩81.756810513.5613.11.271814.4412.316.9
    PM09-04-ZH1变质玄武岩93.14554655.1711.01.271884.2310.4165.7
    PM09-09-ZH1变质安山质含火山角砾凝灰岩1205161682.206.021.121373.1211.412.1
    PM09-18-ZH1变质安山质含火山角砾凝灰岩253199126912.317.71.294419.3911.810.7
    PM15-05-ZH1变质石英安山质凝灰岩1511942239.457.841.321764.0912.821.9
    PM15-07-ZH1变质英安质凝灰岩16716987418.79.781.311624.167.527.3
    PM19-01-ZH1花岗质压碎角砾岩24611184519.39.991.381704.168.7823.7
    PM19-02-ZH1变质凝灰岩18627667610.67.661.232075.009.0919.4
    PM19-04-ZH1变质流纹质凝灰岩19424852911.59.001.242074.515.4816.8
    PM19-06-ZH1变质流纹质凝灰岩1142514719.547.871.272144.609.1414.1
    PM22-01-ZH1含火山角砾凝灰岩1053522658.4211.51.132355.678.6621.4
    PM22-04-ZH1变质安山质火山角砾凝灰岩94.848381613.613.61.142676.107.566.7
    PM22-07-ZH1变质安山岩17684.5104619.718.21.373217.709.3415.9
    PM22-10-ZH1变质安山岩18785.4105914.818.21.363237.398.9927.1
    PM22-17-ZH1变质安山质火山角砾凝灰岩75.14345065.8113.71.342215.2912.114.1
    PM23-04-ZH1变质熔结含火山角砾凝灰岩14623688118.615.91.4027816.39.36
    克拉克值(维1962)150340650×202.5170183
    注:分析方法为电感耦合等离子体质谱法;检测仪器为aurora m90电感耦合等离子体质谱仪(010);测试单位为四川省冶金地质岩矿测试中心
    下载: 导出CSV

    表  4   鄂拉山组安山质火山角砾凝灰岩LA-ICP-MS锆石U-Pb同位素数据

    Table  4   LA-MC-ICP-MS U-Pb analyzed data of the zircons for the tuff

    点号含量/10-6同位素比值年龄/Ma
    PbU206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U207Pb/235U207Pb/206Pb
    115.0702260.064800.000600.4920.0120.05500.001340544061041253
    23.9401050.035100.000400.2470.0230.05110.0048222322421244218
    333.6605140.067700.000700.5190.0080.05560.00084224424743732
    46.9001880.036000.000400.2530.0120.05100.0023228222911239105
    524.9406970.035200.000300.2490.0050.05120.00092232226425140
    618.7005010.036700.000700.2570.0270.05070.0057232423224229260
    712.9003220.035600.000300.2470.0090.05040.00162252224821175
    811.8103150.035900.000400.2530.0100.05110.00182272229824782
    98.2602070.035400.000400.2530.0100.05180.00192242229927886
    109.3602510.034700.000300.2430.0100.05070.00192202221922887
    1136.2505500.068200.000700.5270.0090.05610.00084254430745733
    1212.7503390.035600.000400.2490.0090.05070.00182252225822583
    1321.3305710.035800.000400.2500.0060.05060.00112272226522152
    1411.8803390.034900.000300.2470.0070.05130.00142212224625761
    157.4602100.034600.000300.2470.0120.05180.0024219222411278107
    169.1402440.033800.000300.2380.0170.05100.0035214221615242159
    174.9301490.033400.000400.2380.0190.05170.0041212221717270183
    187.5802070.035800.000400.2520.0120.05090.0025227222811238113
    197.7702090.033900.000300.2400.0120.05120.0025215221811250111
    208.0202450.035500.000400.2520.0120.05160.0023225222811266104
    213.190930.034300.000400.2440.0270.05150.0059217222125264261
    2214.7403870.034700.000300.2440.0060.05110.00122202222524554
    233.390930.035100.000400.2510.0270.05180.0055222222724277244
    243.180880.035400.000400.2480.0210.05080.0044224322519230199
    2510.4302870.035300.000400.2440.0090.05020.00182242222820384
    注:测试单位为天津地质矿产研究所;仪器为LA-MC-ICP-MS,实验条件为温度22℃、湿度28%;主检人为崔玉荣
    下载: 导出CSV
  • 李荣社, 计文化, 杨永成.昆仑山及邻区地质[M].北京:科学出版社, 2008.
    李增乾, 徐宪, 潘桂棠, 等.青藏高原大地构造与形成演化[M].北京:地质出版社, 1990:7-57.
    姜春发.中央造山带几个重要地质问题及其研究进展(代序)[J].地质通报, 2002, 21(9):1-3. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=200208112&flag=1
    殷鸿福, 张克信.东昆仑造山带的一些特点[J].地球科学(中国地质大学学报), 1997, 22(4):339-346. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX704.000.htm
    李永祥, 李善平, 王树林, 等.青海鄂拉山地区陆相火山岩地球化学特征及构造环境[J].西北地质, 2011, 44(4):23-32. http://www.oalib.com/paper/4773566
    孟勇. 新疆东天山卡瓦布拉克地区新元古代火山岩石地球化学特征及其构造意义[D]. 长安大学硕士学位论文, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1526022

    Peccerillo R, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contrib. Mineral Petrol., 1976, 58:63-81. doi: 10.1007/BF00384745

    Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Can. Earth Sci., 1971, 8:523-548. doi: 10.1139/e71-055

    沈远超, 王岳军.新疆东昆仑祁漫塔格地区上三叠统火山岩岩石成因初探[J].大地构造与成矿学, 1999, 23(1):50-58. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK199901006.htm
    邱家骧, 邓晋福, 王方正, 等.岩浆岩岩石学[M].成都:成都理工大学出版社, 2007.

    Sun S S, McDonough WF. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42: 313-345.

    Herron M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Petrology, 1986, 58:820-829. http://www.scirp.org/Journal/PaperInformation.aspx?paperID=67314&

    Vinogradov A P. Average content of chemical elements in the chief types of igneous rocks of the crust of the Earth[J]. Geokhimia, 1962, 7:555-571(in Russian with English abstract). doi: 10.1134/S001670290601006X

    李昌年.火山岩微量元素岩石学[M].武汉:中国地质大学出版社, 1992.

    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth Planet. Sci. Lett., 1980, 50:11-30. doi: 10.1016/0012-821X(80)90116-8

    王秉璋, 罗照华, 潘彤, 等.青藏高原祁漫塔格地区早古生代火山岩岩石构造组合和LA-ICP-MS锆石U-Pb年龄[J].地质通报, 2012, 31(6):860-874. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20120605&flag=1
    青海省地质矿产局.青海省区域地质志[M].北京:地质出版社, 1991.
    刘红涛.祁漫塔格陆相火山岩:塔里木陆块南缘印支期活动大陆边缘的岩石学证据[J].岩石学报, 2001, 17(3):337-351. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200112002032.htm
    夏楚林, 任二峰, 高莉, 等.青海喀雅克登塔格晚三叠世鄂拉山组火山熔岩地球化学特征及构造环境探析[J].青海大学学报(自然科学版), 2011, 29(6):48-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb-zr201106013
    张洪美, 李海平, 冯乔, 等.柴达木盆地东南缘晚三叠世火山岩地球化学特征及构造环境分析[J].西北地质, 2011, 44(4):15-22. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201104008.htm
    青海省地质矿产局.青海省岩石地层[M].武汉:中国地质大学出版社, 1997.
    青海省地矿局第一区调队和青海省区调综合大队. 1: 20万《伯喀里克幅》《那陵格勒幅》《乌图美仁幅》区域地质调查地质矿产报告及相应的图件. 1985.
    青海省地质调查院. 1: 25万《布伦台幅》区域地质调查报告及相关图件. 2012.
    四川省核工业地质局二八二大队. 青海省格尔木市尕林格南地区J46E020008、J46E020009两幅1: 5万区调》报告及相关图件. 2015.
  • 期刊类型引用(0)

    其他类型引用(4)

图(12)  /  表(4)
计量
  • 文章访问数:  3299
  • HTML全文浏览量:  286
  • PDF下载量:  1847
  • 被引次数: 4
出版历程
  • 收稿日期:  2017-06-26
  • 修回日期:  2017-10-08
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2018-05-14

目录

/

返回文章
返回