• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

新疆西准噶尔塔尔根一带花岗岩锆石U-Pb年龄、地球化学特征及其地质意义

支倩, 李永军, 王冉, 段丰浩, 晁文迪, 石歌

支倩, 李永军, 王冉, 段丰浩, 晁文迪, 石歌. 2018: 新疆西准噶尔塔尔根一带花岗岩锆石U-Pb年龄、地球化学特征及其地质意义. 地质通报, 37(5): 805-818.
引用本文: 支倩, 李永军, 王冉, 段丰浩, 晁文迪, 石歌. 2018: 新疆西准噶尔塔尔根一带花岗岩锆石U-Pb年龄、地球化学特征及其地质意义. 地质通报, 37(5): 805-818.
ZHI Qian, LI Yongjun, WANG Ran, DUAN Fenghao, CHAO Wendi, SHI Ge. 2018: Zircon U-Pb chronology, geochemistry of the Taergen granite in Western Junggar, Xinjiang, and their geological significance. Geological Bulletin of China, 37(5): 805-818.
Citation: ZHI Qian, LI Yongjun, WANG Ran, DUAN Fenghao, CHAO Wendi, SHI Ge. 2018: Zircon U-Pb chronology, geochemistry of the Taergen granite in Western Junggar, Xinjiang, and their geological significance. Geological Bulletin of China, 37(5): 805-818.

新疆西准噶尔塔尔根一带花岗岩锆石U-Pb年龄、地球化学特征及其地质意义

基金项目: 

国家自然科学基金项目《西准噶尔玉依塔勒盆克提花岗岩中石榴石的形成机制及地质意义》 41402044

新疆国土厅地质勘查基金项目《新疆西准噶尔地区构造-岩浆带成矿地质作用及矿化特征调查与研究》 Y14-5-LQ06

《新疆东、西准噶尔泥盆系—石炭系典型剖面对比研究》 Y15-1-LQ01

详细信息
    作者简介:

    支倩(1994-), 女, 在读硕士生, 从事矿物学、岩石学、矿床学专业研究。E-mail:2511979891@qq.com

    通讯作者:

    李永军(1961-), 男, 教授, 博士生导师, 从事区域地质学及地球化学调查研究。E-mail:yongjunl@chd.edu.cn

  • 中图分类号: P588.12+1;P597

Zircon U-Pb chronology, geochemistry of the Taergen granite in Western Junggar, Xinjiang, and their geological significance

  • 摘要:

    新疆西准噶尔达尔布特构造-岩浆带分布大量的中酸性侵入体,其成因类型和侵位期次对于认识区域岩浆演化具有重要意义。通过对玛依勒山北段塔尔根一带的岩体进行野外地质调查,并结合LA-ICP-MS锆石U-Pb年代学及岩石地球化学分析,确定其形成时代、岩石成因及形成的构造环境。塔尔根一带岩体主要由正长花岗岩和二长花岗岩组成,正长花岗岩锆石U-Pb年龄为296.6±2.0Ma(n=27,MSWD=0.33),属早二叠世早期。岩石地球化学研究表明,其具有高硅、富碱、低钛和铝、贫钙镁,富集大离子亲石元素Rb、Th、K及高场强元素Zr、Hf,强烈亏损Sr、Eu、P、Ti,中等亏损Ba、Nb、Ta等元素,104Ga/Al值及Zr+Nb+Ce+Y含量较高的特征,属碱性准铝质-弱过铝质A型花岗岩,为低压高温条件下长英质地壳物质部分熔融的产物。综合区域构造演化并结合前人认识可知,西准噶尔地区在晚石炭世—早二叠世仍处于俯冲体系,很可能与晚石炭世洋脊俯冲作用有关。

    Abstract:

    There are large numbers of intermediate-acid intrusions distributed along the Darbut tectono-magmatic belt in Western Junggar, Xinjiang. It is of great significance to understand the regional magmatic evolution through their petrogenesis and emplacement periods. The formation time, petronenesis and tectonic setting of Taergen granites, located in the northern part of Mayile Mountain, are reported in this study through field observation, LA-ICP-MS zircon U-Pb dating and geochemical analysis. The Taergen granites are mainly composed of monzonitic granite and syenogranite, LA-ICP-MS zircon U-Pb dating of monzonitic granite yielded an age of 296.6±2.0Ma (n=27, MSWD=0.33), corresponding to early Early Permian. Petrogeochemical analysis indicates that Taergen granites are characterized by high silica, alkali, low titanium and aluminum, lean calcium and magnesium. They are also enriched in large ion lithophile elements (e. g. Rb, Th, K) and high strength field elements (e. g. Zr, Hf) and are strongly depleted in Sr, Eu, P, Ti and mediate depleted in Ba, Nb, Ta, with high 104Ga/Al ratios and Zr+Nb+Ce+Y contents. These features indicate that Taergen granites are metaluminous to weakly peraluminous alkaline series A-type granite, which were originated from the partial melting of felsic crust under high temperature and low pressure conditions. Combined with regional tectonic evolution and previous results, we suggest that the Western Junggar region was still in a subduction-dominated setting in the Late Carboniferous-Early Permian, and probably associated with the ridge subduction during Late Carboniferous period.

  • 黄金是人类发现的第一种贵金属,是美好和富有的象征,一直受到人类的喜爱。胶东是中国最重要的黄金基地、世界闻名的黄金产区,也是全球金矿床勘查和研究的热点区域。胶东金矿的开采历史悠久,最早可上溯至唐代。新中国成立以来,国家对胶东金矿的勘查一直非常重视,部署了大量地质工作。胶东地区也不负众望,不断涌现新的找矿突破,由建国初期的仅20余吨金资源量,到现今金资源总量超过5000 t,成为世界第三大金成矿区。目前,中国的黄金产量连续十多年居世界第一,其中胶东的三山岛、焦家、玲珑和新城4座矿山建国以来累计生产黄金均超过100 t,胶东为中国的黄金产业乃至经济社会发展做出了重要贡献。

    胶东屡现金矿找矿奇迹,产生了找矿勘查的多项第一。1965年,首次在胶东三山岛断裂的破碎蚀变带中发现了金矿体;1966年,在焦家断裂带中发现破碎带蚀变岩型金矿体并肯定了其工业价值。1969年完成的三山岛金矿区勘探,提交金资源量63.56 t,是中国探明的第一个特大型蚀变岩型金矿床;其后于1972年完成了焦家金矿床勘探,提交金资源量70余吨。1977年,全国第二次金矿地质工作会议以纪要形式,将焦家式破碎带蚀变岩型金矿(简称焦家式金矿)确定为中国新发现的金矿床类型。焦家式金矿的发现,突破了当时地学界“大断裂只导矿不贮矿”的传统认识,指导地质人员将找矿方向由以往的石英脉型金矿转向破碎带蚀变岩型金矿,陆续发现和探明了新城、河西、河东、新立、仓上、大尹格庄、台上等大型金矿床,奠定了胶东作为中国第一黄金基地的地位,推动了中国黄金产业的发展。1985年,《焦家式新类型金矿的发现及其突出的找矿效果》荣获国家科技进步特等奖(图片1),焦家式金矿成矿和找矿理论为中国的金矿勘查提供了重要指导。

    进入21世纪,中国的地下浅表部金矿资源严重枯竭,地质人员在胶东地区开展了深部找矿探索。于2006年首先探明了莱州寺庄深部特大型金矿床,实现了“攻深找盲”的率先突破;2008年,完成了莱州焦家深部金矿详查,提交金资源量105 t,是胶东地区第一个一次性提交详查资源量超过百吨的金矿床;其后,胶东地区陆续探明了10余个资源量超过100 t的超大型金矿床,尤其是探明了三山岛北部海域、西岭、纱岭3个资源量均超过300 t的金矿床。2014年,在莱州湾东侧的浅海海域探明的三山岛北部海域金矿床,勘探资源量470余吨,是中国和世界上最大的海域金矿。随着深部找矿的持续推进,胶东地区的勘查和钻探深度不断刷新纪录。目前,已施工1500~3000 m深度的钻孔300余个,其中,三山岛、焦家、水旺庄、大尹格庄等矿区控制矿体的深度均已超过2000 m,是国内平均勘查深度最大的金矿区;已施工超过3000 m深度的钻孔3个,在莱州三山岛金矿深部(西岭矿区)施工的4006.17 m深孔被誉为中国岩金勘查第一深钻,在焦家断裂带深部施工的3266.06 m深度的钻孔是该成矿带见矿深度最深的钻孔。2011年全国找矿突破战略行动以来,胶东作为全国重要的整装勘查区之一,深部找矿取得了新的重大突破,10年新增深部金资源量约2958 t,新增资源量约占全国同期的40%,超过了胶东历史上累计探明金资源量的总和,三山岛、焦家和招平3条成矿带的金资源量均已超过千吨。深部找矿的过程也是找矿理论认识和找矿方法不断提升的过程,胶东型金矿热隆-伸展成矿理论、阶梯成矿模式、阶梯找矿方法、先进的地球物理勘探技术、深孔和海域钻探方法等在深部找矿中发挥了重要作用。通过三维可视化分析发现,三山岛和焦家地区的多个原来认为独立的金矿床在深部合为一体,实际上是2个资源量均超过千吨的超巨型金矿床。2014年,《胶东金矿理论技术创新与深部找矿突破》成果获得国家科技进步二等奖。2017年5月3日,原国土资源部专门举行胶东地区深部金矿找矿成果新闻发布会指出:“胶东地区金矿深部勘查重大突破具有世界级影响”。

    全国找矿突破战略行动的实施,为胶东深部找矿突破提供了重要机遇。本专辑撷取了找矿突破战略行动以来有关人员在胶东深部找矿中开展的部分工作和取得的部分成果予以展示,主要包括以下4方面内容:矿床三维地质建模及基于三维模型对深部矿床空间分布和成矿规律的新认识,稳定同位素、矿石微量元素和矿物微区地球化学分析测试结果及对金成矿的指示,流体包裹体测试结果及成因解释,地球物理方法及其在胶东深部找矿中的作用。期望本专辑阐述的成果能为深化胶东金成矿的认识及指导进一步找矿提供启发和帮助,也期望中国其他地区的深部找矿和相关研究能从中得到有益借鉴。

    胶东地区金矿找矿不断取得新突破,得益于国家有关部门的高度重视和大力支持,得益于地勘队伍、科研院所和矿山企业的共同努力,得益于广大工程技术人员、基础理论研究人员的艰苦努力和无私奉献。山东省地质矿产勘查开发局第六地质大队无疑是胶东金矿找矿的突出贡献者,该队探获了胶东50%以上金资源量,发现并建立了焦家式金矿矿床式,创新了金矿成矿理论,提出了金矿找矿新方法,也因其突出的找矿贡献获得了崇高的荣誉:1992年10月19日国务院下达了《国务院关于表彰山东省地质矿产局第六地质队的决定》(国发〔1992〕59号),授予六队“功勋卓著无私奉献的英雄地质队”荣誉称号(图片2),于1992年12月10日在北京举行了隆重的命名大会,并授予奖旗;2009年9月19日,时任国务院总理温家宝在原国土资源部转呈的山东地矿六队胶东找矿成果汇报材料上亲笔批示“请国土资源部转告六队职工:祝贺他们在金矿勘探中取得的重大发现,向大家致以亲切的问候。”

    2022年是山东地矿六队被国务院授予“功勋卓著无私奉献的英雄地质队”荣誉称号30周年,谨以此专辑纪念这一光荣的时刻,并向为胶东地区金矿勘查和找矿突破战略行动取得重大成果做出贡献的所有人致以崇高的敬意!

    致谢: 实验测试分析得到长安大学王柱命老师和中国科学院广州地球化学研究所孙胜玲研究员的热情帮助;审稿专家对本文提出了许多宝贵的意见,在此一并致谢。
  • 图  1   中亚造山带构造简图[35](a)、西准噶尔南部地质简图(b)(据参考文献[30]修改)及塔尔根岩体地质图(c)

    Figure  1.   Simplified tectonic sketch of the Central Asian Orogenic Belt(a), regional geological map of the southern west Junggar, Xinjiang(b) and distribution map of the Taergen pluton in the west Junggar(c)

    图  2   塔尔根一带岩体岩石学及岩相学显微照片(正交偏光)

    a—正长花岗岩;b—二长花岗岩;Qtz—石英;Pl—斜长石;Kfs—钾长石;Am—角闪石;Bi—黑云母

    Figure  2.   Microphotographs of Taergen granite (Orthogonal polarized)

    图  3   塔尔根岩体典型锆石阴极发光(CL)图像

    Figure  3.   Cathodoluminescence images of zircon gains of Taergen granite

    图  4   塔尔根岩体锆石U-Pb谐和图(a)和年龄直方图(b)

    Figure  4.   Concordia plots of zircon U-Pb dating results (a) and age histogram (b) of Taergen granite

    图  5   塔尔根岩体主量元素相关图解

    Figure  5.   Major elements related diagrams for Taergen granite

    图  6   塔尔根岩体主量元素哈克图解

    Figure  6.   Hark diagrams of major elements for the Taergen granite

    图  7   塔尔根岩体稀土元素配分曲线图(a)和微量元素蛛网图(b)(标准化值据参考文献[48])

    Figure  7.   Chondrite-normalized REE patterns plot (a) and primitive mantle-normalized trace element spider plot (b) for Taergen granite

    图  8   塔尔根岩体岩石类型判别图解(a~c据参考文献[51]; d据参考文献[54])

    A—A型花岗岩类;I & S—I型和S型花岗岩类;FG—分异的长英质I型和S型花岗岩类;OGT—未分异的I,S和M型花岗岩类;OIB—洋岛玄武岩;IAB—岛弧玄武岩

    Figure  8.   The rock type discrimination diagrams for Taergen granite

    图  9   西准噶尔南部地区中酸性侵入体构造环境判别图解[67]

    (①中数据据参考文献[12, 15-17, 19-21, 24-25, 28-29, 40]及部分未发表数据; ②中数据据参考文献[8-9, 12-14, 30-31]及部分未发表数据)

    Figure  9.   Tectonic setting discriminiation diagrams for intermediate-acidic intrusions in southern west Junggar

    表  1   塔尔根Ⅰ号岩体LA-ICP-MS锆石U-Th-Pb分析结果

    Table  1   LA-ICP-MS zircon U-Th-Pb isotopic analysis of Taergen granite

    点号同位素比值同位素年/MaTh/10-6U/10-6Th/U
    207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th
    比值比值比值比值年龄年龄年龄年龄
    TEG010.052650.002710.34580.01740.047630.001230.012480.00167314683021330082513338.393.90.41
    TEG020.053520.002050.35810.01350.048520.001140.017910.00128351453111030573592549.9109.00.46
    TEG030.053180.002280.34730.01460.047350.001150.010740.00127336533031129872162552.5112.00.47
    TEG040.052220.002200.34250.01420.047560.001150.011220.00138295522991130072262854.2114.00.48
    TEG050.053550.002230.35240.01440.047720.001140.016310.00139352513061130173272848.4106.00.46
    TEG060.052440.001800.33970.01160.046980.001070.012170.0010030539297929672441882.6174.00.48
    TEG070.052660.003030.34030.01910.046870.001230.010190.00204314802971429582054127.362.70.44
    TEG080.052430.001950.34690.01280.047980.001120.014390.00108304443021030272892264.2129.00.50
    TEG090.052350.002050.33860.01310.046920.001100.015070.00126301472961029673022564.8139.00.47
    TEG100.052960.003500.33730.02170.046190.001270.017230.00286327972951729183455718.146.20.39
    TEG110.052530.002490.33450.01540.046190.001150.013210.00133309612931229172652765.4105.00.62
    TEG120.052470.002650.35560.01760.049160.001230.014670.00178306683091330782943519.945.00.44
    TEG130.052560.002080.35680.01390.049240.001170.015910.00127310473101030873192550.692.80.55
    TEG140.052670.002440.35710.01610.049180.001220.014710.00155315593101230872953139.284.40.46
    TEG150.051840.001660.34610.01100.048440.001080.016290.0010227836302830573272065.4125.00.52
    TEG160.052440.001890.34770.01240.048100.001100.014970.0012130542303930373002439.788.30.45
    TEG170.051810.002330.32790.01440.045930.001120.011670.00119277572881128972352451.988.20.59
    TEG180.052050.003710.35230.02440.049110.001450.016040.002672881043061830693225328.257.30.49
    TEG190.052510.002020.35230.01330.048680.001130.016140.00127308463061030673242548.999.90.49
    TEG200.052520.002080.34040.01320.047020.001100.015510.00163308482971029673113230.181.10.37
    TEG210.052360.001840.33980.01180.047080.001070.016060.0012230140297929773222443.899.80.44
    TEG220.052270.002150.34860.01410.048390.001150.013810.00142297503041130572772840.787.00.47
    TEG230.052320.001880.33980.01210.047130.001070.017520.0014729942297929773512928.884.60.34
    TEG240.052420.002170.35120.01420.048610.001150.012770.00145304513061130672562938.692.90.42
    TEG250.052150.001890.33080.01180.046040.001050.013270.0014229243290929062662836.691.70.40
    TEG260.052550.002700.34460.01720.047590.001200.013400.00175309693011330072693527.158.90.46
    TEG270.052600.002070.34210.01320.047200.001100.015800.00154312472991029773173129.068.50.42
    下载: 导出CSV

    表  2   塔尔根岩体主量、微量及稀土元素分析结果

    Table  2   Major, trace elements and REE contents of Taergen granite

    元素TEGⅠ-1WTEGⅠ-2WTEGⅠ-3WTEGⅠ-4WTEGⅠ-5WTEGⅠ-6WTEGⅡ-1WTEGⅡ-2WTEGⅡ-3WTEGⅡ-4WTEGⅡ-5WTEGⅡ-6W
    SiO274.8374.6374.6373.8876.1373.7374.7874.8575.2074.7574.8575.29
    TiO20.300.280.260.280.240.300.320.320.260.260.240.20
    Al2O313.3013.3213.3813.2712.8013.8713.0212.8813.3113.1313.0313.16
    TFe2O32.362.252.082.282.062.222.442.462.302.292.141.87
    MnO0.030.020.020.030.030.050.040.040.030.020.020.02
    MgO0.210.210.200.250.190.360.430.320.170.110.100.06
    CaO0.210.340.860.280.230.990.670.470.370.550.550.28
    Na2O4.014.043.864.993.744.313.653.973.784.004.164.14
    K2O4.704.894.664.714.554.114.584.644.534.874.874.96
    P2O50.040.040.040.040.030.060.060.050.040.030.020.02
    烧失量0.711.391.280.790.831.161.181.151.040.861.030.45
    总计98.9398.9399.6598.6698.4298.42100.6798.4999.5998.6798.5499.46
    A/CNK1.101.061.030.961.111.041.071.041.131.020.991.04
    R12391.312327.512449.291983.362619.422354.262542.092419.992540.082355.352306.632330.70
    R2294.20307.49364.82301.92284.72395.39348.70318.95308.67322.03319.90291.30
    TZr/℃878.88869.13860.10844.62863.11844.45840.33891.23875.33864.38852.36849.36
    AR4.634.783.986.034.503.624.024.634.104.684.975.19
    Ga20.0220.5020.2420.3717.9818.2518.0225.6420.5420.4320.0020.42
    Rb105.70114.40105.00110.20102.2084.6999.19135.1091.73116.00112.30125.60
    Sr53.9154.8257.1061.9643.13144.40112.00146.5049.3723.1220.5423.70
    Y36.5045.7845.8439.2841.3630.5835.7973.0852.0549.2848.2435.15
    Ti1373.501304.901272.101301.901083.201340.801508.601551.101262.201184.301076.90951.90
    Zr390.00371.20349.90333.60322.60100.80273.00468.60363.70368.90338.50309.90
    Nb9.5910.239.499.597.806.588.1412.1810.2810.039.198.47
    Cs1.962.582.402.301.851.592.201.641.532.172.511.98
    Ba593.10583.30504.90530.80660.60554.60541.20868.30482.30445.60389.20494.00
    Hf10.7010.209.439.618.903.677.8213.2810.0410.229.048.73
    Ta0.690.810.750.770.610.570.700.980.710.760.700.69
    Pb19.8519.2014.3414.1311.6110.2413.0917.5312.3518.6617.2412.81
    Th7.6810.768.4810.037.978.2512.3613.198.099.649.549.13
    U1.751.701.332.560.971.112.242.751.521.992.131.79
    La17.9630.5223.1423.4326.5720.2721.6430.2525.3930.3930.1123.40
    Ce42.2069.4151.3251.5060.7643.4648.7471.5562.4169.0668.6352.34
    Pr5.618.957.186.807.755.716.719.958.149.028.906.83
    Nd22.6035.6330.2027.3730.8922.7327.5942.5233.4036.7735.8227.71
    Sm5.447.977.326.327.025.216.6811.007.978.337.986.34
    Eu0.470.580.600.520.540.670.680.790.540.510.510.43
    Gd5.347.687.276.096.674.996.2911.187.937.927.526.10
    Tb1.011.291.241.091.160.841.062.031.441.381.311.05
    Dy6.678.117.806.887.325.356.6512.758.938.548.076.49
    Ho1.471.721.661.501.551.121.372.731.941.851.771.38
    Er4.415.054.714.354.523.313.967.775.385.244.953.81
    Tm0.700.800.730.690.700.510.611.200.830.820.780.61
    Yb4.685.214.644.474.633.314.067.715.185.174.853.95
    Lu0.710.780.700.690.690.490.601.200.790.790.760.59
    ∑REE119.29183.70148.50141.69160.77117.97136.64212.62170.29185.79181.94141.03
    ∑LREE/∑HREE3.775.004.164.504.904.924.553.574.254.865.074.88
    δEu0.260.220.250.250.240.400.320.170.170.150.160.17
    (La/Yb)N2.754.203.583.764.124.403.820.891.111.341.411.35
    (La/Sm)N2.132.472.042.392.442.512.091.091.271.451.501.47
    (Gd/Yb)N0.941.221.301.131.191.251.281.161.231.231.241.24
    104Ga/Al2.842.912.862.902.652.492.613.762.912.942.902.93
    注: TFe2O3表示全铁,TFeO是在去掉烧失量后,按照侵入岩相关标准铁调整计算所得;A/CNK=Al2O3/(CaO+Na2O+K2O)(分子比);AR=(Al2O3+ CaO+Na2O+K2O)/(Al2O3+CaO-Na2O-K2O);δEu=2×EuN/(SmN+GdN);R1=1000×[4Si-11(Na+K)-2(Fe+Ti)];R2=1000×(Al+2Mg+6Ca),式中Si等为9种氧化物(SiO2、Na2O、K2O、FeO、Fe2O3、TiO2、CaO、MgO、Al2O3)的阳离子数; 比值中的下标N为球粒陨石标准化值, 标准化值据参考文献[48]。主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV
  • 韩宝福, 季建清, 宋彪, 等.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限[J].岩石学报, 2006, 22(5):1077-1086. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=200605114

    Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China:implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2):102-117. https://www.deepdyve.com/lp/elsevier/middle-cambrian-to-permian-subduction-related-accretionary-orogenesis-C3BkXNQ5t8

    童英, 王涛, 洪大卫, 等.北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义[J].岩石矿物学杂志, 2010, 29(6):619-641. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201006003
    尹继元, 袁超, 王毓婧, 等.新疆西准噶尔晚古生代大地构造演化的岩浆活动记录[J].大地构造与成矿学, 2011, 35(2):278-291. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201102013
    高睿, 肖龙, 王国灿, 等.西准噶尔晚古生代岩浆活动和构造背景[J].岩石学报, 2013, 29(10):3413-3434. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20131008&journal_id=ysxb&year_id=2013

    Chen J F, Han B F, Zhang L, et al. Middle Paleozoic initial amalgamation and crustal growth in the West Junggar(NW China):Constraints from geochronology, geochemistry and Sr-Nd-Hf-Os isotopes of calc-alkaline and alkaline intrusions in the Xiemisitai-Saier Mountains[J]. Journal of Asian Earth Sciences, 2015, 113:90-109. doi: 10.1016/j.jseaes.2014.11.028

    苏玉平, 唐红峰, 侯广顺, 等.新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究[J].地球化学, 2006, 35(1):55-67. http://www.cqvip.com/qk/92960X/200601/20615024.html

    Geng H Y, Sun M, Yuan C, et al. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang:Implications for ridge subduction?[J]. Chemical Geology, 2009, 266(3/4):364-389. https://www.deepdyve.com/lp/elsevier/geochemical-sr-nd-and-zircon-u-pb-hf-isotopic-studies-of-late-DNwTTZil6c

    庞振甲, 李永军, 赵玉梅, 等.西准阿克巴斯陶铝质A型花岗岩厘定及意义[J].新疆地质, 2010, 28(2):119-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz201002001
    魏荣珠.新疆西准噶尔拉巴花岗岩地球化学特征及年代学研究[J].岩石矿物学杂志, 2010, 29(6):663-674. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201006005
    冯乾文, 李锦轶, 刘建峰, 等.新疆西准噶尔红山岩体及其中闪长质岩墙的时代:来自锆石LA-ICP-MS定年的证据[J].岩石学报, 2012, 28(9):2935-2949. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20120921&journal_id=ysxb&year_id=2012

    Gao R, Xiao L, Pirajno F, et al. Carboniferous-Permian extensive magmatism in the West Junggar, Xinjiang, northwestern China:Its geochemistry, geochronology, and petrogenesis[J]. Lithos, 2014, 204:125-143. doi: 10.1016/j.lithos.2014.05.028

    胡洋, 王居里, 王建其, 等.新疆西准噶尔庙尔沟岩体的地球化学及年代学研究[J].岩石学报, 2015, 31(2):505-522. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201502016.htm
    姜芸, 肖龙, 周佩, 等.新疆西准噶尔红山岩体地质地球化学特征及对下地壳性质的启示[J].地球科学——中国地质大学学报, 2015, 40(7):1129-1147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201507003
    高山林, 何治亮, 周祖翼.西准噶尔克拉玛依花岗岩体地球化学特征及其意义[J].新疆地质, 2006, 24(2):125-130. http://mall.cnki.net/magazine/Article/XJDI200602006.htm
    贺敬博, 陈斌.西准噶尔克拉玛依岩体的成因:年代学、岩石学和地球化学证据[J].地学前缘, 2011, 18(2):191-211. http://www.cqvip.com/QK/98600X/201102/37381753.html
    魏少妮, 朱永峰.新疆西准噶尔包古图地区中酸性侵入体的岩石学、年代学和地球化学研究[J].岩石学报, 2015, 31(1):143-160. http://www.ysxb.ac.cn/ysxb/ch/reader/download_pdf.aspx?file_no=20150111&year_id=2015&quarter_id=1&falg=1

    Shen P, Shen Y C, Pan H D, et al. Geochronology and isotope geochemistry of the Baogutu porphyry copper deposit in the West Junggar region, Xinjiang, China[J]. Journal of Asian Earth Sciences, 2012, 49:99-115. doi: 10.1016/j.jseaes.2011.11.025

    杨钢, 肖龙, 王国灿, 等.西准噶尔别鲁阿嘎希花岗闪长岩年代学、地球化学特征及岩石成因[J].地球科学——中国地质大学学报, 2015, 40(5):810-823. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201505004

    Cao M J, Qin K Z, Li G M, et al. Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW China[J]. Lithos, 2016, 246:13-30. http://adsabs.harvard.edu/abs/2016Litho.246...13C

    段丰浩, 支倩, 李永军, 等.新疆西准噶尔库什库都克岩体地质时代、地球化学及岩石成因[J].地质科学, 2017, 52(2):506-525. doi: 10.12017/dzkx.2017.034
    康磊, 李永军, 张兵, 等.新疆西准噶尔夏尔莆岩体岩浆混合的岩相学证据[J].岩石矿物学杂志, 2009, 28(5):423-432. http://www.cqvip.com/QK/94932X/200905/31711917.html
    晁文迪, 李永军, 王冉, 等.西准噶尔托里县布尔克斯台岩体岩浆混合成因的确认及其地质意义[J].西北地质, 2015, 48(3):149-156. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201603003.htm
    张连昌, 万博, 焦学军, 等.西准包古图含铜斑岩的埃达克岩特征及其地质意义[J].中国地质, 2006, 33(3):626-631. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200603020

    Shen P, Shen Y C, Liu T B, et al. Geochemical signature of porphyries in the Baogutu porphyry copper belt, western Junggar, NW China[J]. Gondwana Research, 2009, 16(2):227-242. doi: 10.1016/j.gr.2009.04.004

    唐功建, 王强, 赵振华, 等.西准噶尔包古图成矿斑岩年代学与地球化学:岩石成因与构造、铜金成矿意义[J].地球科学-中国地质大学学报, 2009, 34(1):56-74. https://www.cnki.com.cn/qikan-DQKX200901008.html
    段丰浩, 李永军, 王冉, 等.西准噶尔托里县都伦河东岩体埃达克岩特征及其地质意义[J].矿物岩石, 2015, 35(4):8-16. http://www.cqvip.com/QK/94361X/201504/667218479.html
    尹继元, 陈文, 肖文交, 等.西准噶尔包古图Ⅰ号岩体的锆石UPb年代学和地球化学特征[J].吉林大学学报(地球科学版), 2016, 46(6):1754-1768. http://mall.cnki.net/magazine/Article/YSXB200906010.htm

    Shen P, Pan H D. Country-rock contamination of magmas associated with the Baogutu porphyry Cu deposit, Xinjiang, China[J]. Lithos, 2013, 177:451-469. doi: 10.1016/j.lithos.2013.07.019

    Yang G X, Li Y J, Yan J, et al. Geochronological and geochemical constraints on the origin of the 304±5 Ma Karamay A-type granites from West Junggar, Northwest China:Implications for understanding the Central Asian Orogenic Belt[J]. International Geology Review, 2014, 56(4):393-407. doi: 10.1080/00206814.2013.847608

    Chen B, Arakawa Y. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth[J]. Geochimica et Cosmochimica Acta, 2005, 69(5):1307-1320. doi: 10.1016/j.gca.2004.09.019

    宋彪, 李锦轶, 张进, 等.西准噶尔托里地区塔尔根二长花岗岩锆石U-Pb年龄——托里断裂左行走滑运动开始的时间约束[J].地质通报, 2011, 30(1):19-25. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20110102&flag=1
    晁文迪, 李永军, 王冉, 等.西准噶尔托里县布尔克斯台岩体岩浆混合的锆石U-Pb年代学证据[J].矿物岩石地球化学通报, 2016, 35(1):99-108. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20130905&journal_id=ysxb&year_id=2013
    申萍, 沈远超, 潘成泽, 等.新疆哈图-包古图金铜矿集区锆石年龄及成矿特点[J].岩石学报, 2010, 26(10):2879-2893. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20101001&journal_id=ysxb

    Jahn B M, Windley B, Natal'in B, et al. Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences, 2004, 23:599-603. doi: 10.1016/S1367-9120(03)00124-X

    Şengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364:209-304. https://www.researchgate.net/publication/31960368_Evolution_of_the_Altaid_Tectonic_collage_and_Palaeozoic_Crustal_Growth_in_Eurasia

    Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164:31-47. doi: 10.1144/0016-76492006-022

    Xiao W J, Santosh M. The western Central Asian Orogenic Belt:A window to accretionary orogenesis an continental growth[J]. Gondwana Research, 2014, 25:1429-1444. doi: 10.1016/j.gr.2014.01.008

    李锦轶, 何国琦, 徐新, 等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报, 2006, 80(1):148-168. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601020.htm

    Tang G J, Wang Q, Wyman D A, et al. Ridge subduction and crustal growth in the Central Asian Orogenic Belt:Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (West China)[J]. Chemical Geology, 2010, 277(3):281-300. https://www.sciencedirect.com/science/article/pii/S0009254110002913

    辜平阳, 李永军, 张兵, 等.西准达尔布特蛇绿岩中辉长岩LAICP-MS锆石U-Pb测年[J].岩石学报, 2009, 25(2):1364-1372. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200906008

    Yang G X, Li Y J, Xiao W J, et al. OIB-type rocks within West Junggar ophiolitic mélanges:Evidence for the accretion of seamounts[J]. Earth-Science Reviews, 2015, 150:477-496. doi: 10.1016/j.earscirev.2015.09.002

    Zhu Y F, Chen B, Qiu T. Geology and geochemistry of the Baijiantan-Baikouquan ophiolitic mélanges:Implications for geological evolution of west Junggar, Xinjiang, NW China[J]. Geological Magazine, 2015, 152:41-69. doi: 10.1017/S0016756814000168

    Tang G J, Wang Q, Wyman D A, et al. Late Carboniferous high εNd(t)-εHf(t) granitoids, enclaves and dikes in western Junggar, NW China:Ridge-subduction-related magmatism and crustal growth[J]. Lithos, 2012, 140/141(5):86-102.

    Chen B, Jahn B. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China:Nd-Sr isotope and trace element evidence[J]. Journal of Asian Earth Sciences, 2004, 23(5):691-703. doi: 10.1016/S1367-9120(03)00118-4

    Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICPMS[J]. Chemical Geology, 2008, 247(1/2):100-18. doi: 10.1007%2Fs11434-010-3052-4

    李献华, 刘颖, 涂湘林, 等.硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱溶分解样品方法的对比[J].地球化学, 2002, 31(3):289-294. http://mall.cnki.net/magazine/Article/DQHX200203009.htm

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Chappell B W, White A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8(2):173-174. http://faculty.uml.edu/Nelson_Eby/Research/A-type%20granites/Chappell%20and%20White%20S%20and%20I%20type%20granites.pdf

    King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371-391. doi: 10.1093/petroj/38.3.371

    Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202

    Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 1992, 83(1/2):1-26.

    王强, 赵振华, 熊小林.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学杂志, 2000, 19(4):297-306. http://d.wanfangdata.com.cn/Periodical_yskwxzz200004002.aspx

    Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7):641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    Frost C D, Frost B R. On ferroan (A-type) granitoids:Their compositional variability and modes of origin[J]. Journal of Petrology, 2011, 52(1):39-53. doi: 10.1093/petrology/egq070

    Hofmann A W. Chemical differentiation of the Earth:The relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90(3):297-314. doi: 10.1016/0012-821X(88)90132-X

    Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Gelolgy, 1995, 120(3/4):347-359. http://www.doc88.com/p-9455294174057.html

    Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evolution[M]. Blackwell Scientific Publication, 1985:57-72.

    Green T H. Experimental studies of trace-element partitioning applicable to igneous petrogenesis-Sedona 16 years later[J]. Chemical Geology, 1994, 117(1/4):1-36. https://www.researchgate.net/publication/223945035_Experimental_studies_of_trace-element_partitioning_applicable_to_igneous_petrogenesis--Sedona_16_years_later

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8~32 kbar:Implications for continental growth and crust-mantle recy-cling[J]. Journal of Petrology, 1995, 36:891-931. doi: 10.1093/petrology/36.4.891

    Watson E B, Harrison T M. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2):295-304. doi: 10.1016/0012-821X(83)90211-X

    Yin J Y, Yuan C, Sun M, et al. Late Carboniferous high-Mg dioritic dikes in western Junggar, NW China:Geochemical features, petrogenesis and tectonic implications[J]. Gondwana Research, 2010, 17(1):145-152. doi: 10.1016/j.gr.2009.05.011

    Ma C, Xiao W J, Windley B F, et al. Tracing a subducted ridgetransform system in a late Carboniferous accretionary prism of the southern Altaids:Orthogonal sanukitoid dyke swarms in western Junggar, NW China[J]. Lithos, 2012, 140/141(3):152-165. https://www.researchgate.net/publication/232207100_Tracing_a_subducted_ridge-transform_system_in_a_late_Carboniferous_accretionary_prism_of_the_southern_Altaids_Orthogonal_sanukitoid_dyke_swarms_in_Western_Junggar_NW_China

    李菊英, 晋慧娟.新疆准噶尔盆地西北缘石炭纪浊积岩系中遗迹化石的发现及其意义[J].地质科学, 1989, 24(1):9-15. http://cdmd.cnki.com.cn/Article/CDMD-10697-1013251870.htm
    晋慧娟, 李育慈.准噶尔盆地西北缘石炭纪生物成因的沉积构造研究[J].科学通报, 1998, 43(17):1888-1891. doi: 10.3321/j.issn:0023-074X.1998.17.024

    Wang B, Chen Y, Zhang S, et al. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J]. Earth and Planetary Science Letters, 2007, 263(3/4):288-308. https://core.ac.uk/download/pdf/52761456.pdf

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984. 25(4):956-983. doi: 10.1093/petrology/25.4.956

    Yin J Y, Chen W, Xiao W J, et al. Petrogenesis of Early-Permian sanukitoids from West Junggar, northwest China:Implications for later Paleozoic crustal growth in central Asia[J]. Tectonophysics, 2015, 662:385-397. doi: 10.1016/j.tecto.2015.01.005

    Li G Y, Li Y J, Wang X C, et al. Identifying late Carboniferous sanukitoids in Hala'alate mountain, Northwest China:New constraint on the closing time of remnant ocean basin in West Junggar[J]. International Geology Review, 2017, 59(9):1116-1130. https://www.researchgate.net/publication/304576491_Identifying_late_Carboniferous_sanukitoids_in_Hala%27alate_Mountain_Northwest_China_new_constraint_on_the_closing_time_of_remnant_ocean_basin_in_West_Junggar

    吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. http://mall.cnki.net/magazine/article/YSXB200706000.htm

    Yin J Y, Long X P, Yuan C, et al. A late Carboniferous slab window:Geochronological and geochemical evidence from mafic to intermediate dykes in West Junggar, NW China[J]. Lithos, 2013, 175(176):146-162.

图(9)  /  表(2)
计量
  • 文章访问数:  2911
  • HTML全文浏览量:  296
  • PDF下载量:  2565
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-19
  • 修回日期:  2017-05-07
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2018-05-14

目录

    /

    返回文章
    返回