• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

新疆东天山哈尔里克山石炭纪花岗岩锆石U-Pb年龄、成因演化及地质意义

宋鹏, 童英, 王涛, 黄河, 张建军, 黄伟

宋鹏, 童英, 王涛, 黄河, 张建军, 黄伟. 2018: 新疆东天山哈尔里克山石炭纪花岗岩锆石U-Pb年龄、成因演化及地质意义. 地质通报, 37(5): 790-804.
引用本文: 宋鹏, 童英, 王涛, 黄河, 张建军, 黄伟. 2018: 新疆东天山哈尔里克山石炭纪花岗岩锆石U-Pb年龄、成因演化及地质意义. 地质通报, 37(5): 790-804.
SONG Peng, TONG Ying, WANG Tao, HUANG He, ZHANG Jianjun, HUANG Wei. 2018: Zircon U-Pb ages, genetic evolution and geological significance of Carboniferous granites in the Harlik Mountain, East Tianshan, Xinjiang. Geological Bulletin of China, 37(5): 790-804.
Citation: SONG Peng, TONG Ying, WANG Tao, HUANG He, ZHANG Jianjun, HUANG Wei. 2018: Zircon U-Pb ages, genetic evolution and geological significance of Carboniferous granites in the Harlik Mountain, East Tianshan, Xinjiang. Geological Bulletin of China, 37(5): 790-804.

新疆东天山哈尔里克山石炭纪花岗岩锆石U-Pb年龄、成因演化及地质意义

基金项目: 

国家自然科学基金-新疆联合基金重点支持项目《北疆及邻区深部新老地壳时空分布构架及其成矿制约》 U1403291

中国地质调查局项目《显生宙重大岩浆事件调查与岩浆岩试点填图》 DD20160123

《中国岩浆岩综合研究》 DD20160345

详细信息
    作者简介:

    宋鹏(1988-), 男, 在读博士生, 从事花岗岩与大地构造研究。E-mail:songpengyx@foxmail.com

    通讯作者:

    童英(1974-), 男, 博士, 研究员, 从事花岗岩地球动力学研究。E-mail:yingtong@cags.ac.cn

  • 中图分类号: P597;P534.45

Zircon U-Pb ages, genetic evolution and geological significance of Carboniferous granites in the Harlik Mountain, East Tianshan, Xinjiang

  • 摘要:

    新疆北部广泛发育的石炭纪—二叠纪花岗质岩石一直是中亚造山带西段研究的热点之一。新获得东天山哈尔里克地区小铺黑云母二长花岗岩和沁城南含角闪石二长花岗岩LA-ICP-MS锆石U-Pb年龄分别为316±4Ma和320±3Ma。地球化学特征显示,小铺岩体为弱过铝质高钾钙碱性I型花岗岩,沁城南岩体为准铝质高钾钙碱性A型花岗岩。小铺岩体的εHft)值为+8.0~+13.8,沁城南岩体则更高,达到+10.8~+16.7,对应的地壳模式年龄(TDMc)分别为822~450Ma和641~268Ma,反映源区为年轻地壳物质。结合区域同时代产出的基性岩,指示这些年轻物质很可能与新的幔源基性底侵岩浆有关,为北疆哈尔里克地区石炭纪后碰撞地壳垂向生长提供了新证据。此外,沁城南岩体具有A型特征花岗岩的出现,进一步揭示晚石炭世为碰撞-后碰撞的重要构造转换期。

    Abstract:

    Extensively developed granitoids in northern Xinjiang have constituted one of the hotspots in the study of granite in the western Central Asian Orogenic Belt. LA-ICP-MS zircon U-Pb analysis of the Xiaopu biotite monzogranite and Qinchengnan hornblende monzogranite in the Harlic area yielded crystallization ages of 316±4Ma and 320±3Ma. Their petrological and geochemical characteristics show that Xiaopu pluton belongs to high-K calc-alkaline and weakly peraluminous series of I-type granite, whereas the Qinchengnan pluton belongs to high-K calc-alkaline and metaluminous series with A-type granite characteristics. The Xiaopu pluton has positive zircon εHf (t) values of +8.0~+13.8, and the Qinchengnan pluton has higher εHf (t) values up to +10.8~+16.7, with corresponding Hf model ages (TDMc) of 822~450Ma and 641~268Ma, respectively. These isotopic compositions indicate that young crust served as the main source of the granite generation. Combined with coeval basic rocks with similar isotopic compositions in this region, it can be believed that these young granites might have been related to the new mantle-derived basic magma underplating and exhibited the post-collision vertical growth. Additionally, the Qinchengnan granites have A-type granite characteristics, thus providing a further evidence for the transition period of Late Carboniferous from collision to post-collision settings.

  • 黄金是人类发现的第一种贵金属,是美好和富有的象征,一直受到人类的喜爱。胶东是中国最重要的黄金基地、世界闻名的黄金产区,也是全球金矿床勘查和研究的热点区域。胶东金矿的开采历史悠久,最早可上溯至唐代。新中国成立以来,国家对胶东金矿的勘查一直非常重视,部署了大量地质工作。胶东地区也不负众望,不断涌现新的找矿突破,由建国初期的仅20余吨金资源量,到现今金资源总量超过5000 t,成为世界第三大金成矿区。目前,中国的黄金产量连续十多年居世界第一,其中胶东的三山岛、焦家、玲珑和新城4座矿山建国以来累计生产黄金均超过100 t,胶东为中国的黄金产业乃至经济社会发展做出了重要贡献。

    胶东屡现金矿找矿奇迹,产生了找矿勘查的多项第一。1965年,首次在胶东三山岛断裂的破碎蚀变带中发现了金矿体;1966年,在焦家断裂带中发现破碎带蚀变岩型金矿体并肯定了其工业价值。1969年完成的三山岛金矿区勘探,提交金资源量63.56 t,是中国探明的第一个特大型蚀变岩型金矿床;其后于1972年完成了焦家金矿床勘探,提交金资源量70余吨。1977年,全国第二次金矿地质工作会议以纪要形式,将焦家式破碎带蚀变岩型金矿(简称焦家式金矿)确定为中国新发现的金矿床类型。焦家式金矿的发现,突破了当时地学界“大断裂只导矿不贮矿”的传统认识,指导地质人员将找矿方向由以往的石英脉型金矿转向破碎带蚀变岩型金矿,陆续发现和探明了新城、河西、河东、新立、仓上、大尹格庄、台上等大型金矿床,奠定了胶东作为中国第一黄金基地的地位,推动了中国黄金产业的发展。1985年,《焦家式新类型金矿的发现及其突出的找矿效果》荣获国家科技进步特等奖(图片1),焦家式金矿成矿和找矿理论为中国的金矿勘查提供了重要指导。

    进入21世纪,中国的地下浅表部金矿资源严重枯竭,地质人员在胶东地区开展了深部找矿探索。于2006年首先探明了莱州寺庄深部特大型金矿床,实现了“攻深找盲”的率先突破;2008年,完成了莱州焦家深部金矿详查,提交金资源量105 t,是胶东地区第一个一次性提交详查资源量超过百吨的金矿床;其后,胶东地区陆续探明了10余个资源量超过100 t的超大型金矿床,尤其是探明了三山岛北部海域、西岭、纱岭3个资源量均超过300 t的金矿床。2014年,在莱州湾东侧的浅海海域探明的三山岛北部海域金矿床,勘探资源量470余吨,是中国和世界上最大的海域金矿。随着深部找矿的持续推进,胶东地区的勘查和钻探深度不断刷新纪录。目前,已施工1500~3000 m深度的钻孔300余个,其中,三山岛、焦家、水旺庄、大尹格庄等矿区控制矿体的深度均已超过2000 m,是国内平均勘查深度最大的金矿区;已施工超过3000 m深度的钻孔3个,在莱州三山岛金矿深部(西岭矿区)施工的4006.17 m深孔被誉为中国岩金勘查第一深钻,在焦家断裂带深部施工的3266.06 m深度的钻孔是该成矿带见矿深度最深的钻孔。2011年全国找矿突破战略行动以来,胶东作为全国重要的整装勘查区之一,深部找矿取得了新的重大突破,10年新增深部金资源量约2958 t,新增资源量约占全国同期的40%,超过了胶东历史上累计探明金资源量的总和,三山岛、焦家和招平3条成矿带的金资源量均已超过千吨。深部找矿的过程也是找矿理论认识和找矿方法不断提升的过程,胶东型金矿热隆-伸展成矿理论、阶梯成矿模式、阶梯找矿方法、先进的地球物理勘探技术、深孔和海域钻探方法等在深部找矿中发挥了重要作用。通过三维可视化分析发现,三山岛和焦家地区的多个原来认为独立的金矿床在深部合为一体,实际上是2个资源量均超过千吨的超巨型金矿床。2014年,《胶东金矿理论技术创新与深部找矿突破》成果获得国家科技进步二等奖。2017年5月3日,原国土资源部专门举行胶东地区深部金矿找矿成果新闻发布会指出:“胶东地区金矿深部勘查重大突破具有世界级影响”。

    全国找矿突破战略行动的实施,为胶东深部找矿突破提供了重要机遇。本专辑撷取了找矿突破战略行动以来有关人员在胶东深部找矿中开展的部分工作和取得的部分成果予以展示,主要包括以下4方面内容:矿床三维地质建模及基于三维模型对深部矿床空间分布和成矿规律的新认识,稳定同位素、矿石微量元素和矿物微区地球化学分析测试结果及对金成矿的指示,流体包裹体测试结果及成因解释,地球物理方法及其在胶东深部找矿中的作用。期望本专辑阐述的成果能为深化胶东金成矿的认识及指导进一步找矿提供启发和帮助,也期望中国其他地区的深部找矿和相关研究能从中得到有益借鉴。

    胶东地区金矿找矿不断取得新突破,得益于国家有关部门的高度重视和大力支持,得益于地勘队伍、科研院所和矿山企业的共同努力,得益于广大工程技术人员、基础理论研究人员的艰苦努力和无私奉献。山东省地质矿产勘查开发局第六地质大队无疑是胶东金矿找矿的突出贡献者,该队探获了胶东50%以上金资源量,发现并建立了焦家式金矿矿床式,创新了金矿成矿理论,提出了金矿找矿新方法,也因其突出的找矿贡献获得了崇高的荣誉:1992年10月19日国务院下达了《国务院关于表彰山东省地质矿产局第六地质队的决定》(国发〔1992〕59号),授予六队“功勋卓著无私奉献的英雄地质队”荣誉称号(图片2),于1992年12月10日在北京举行了隆重的命名大会,并授予奖旗;2009年9月19日,时任国务院总理温家宝在原国土资源部转呈的山东地矿六队胶东找矿成果汇报材料上亲笔批示“请国土资源部转告六队职工:祝贺他们在金矿勘探中取得的重大发现,向大家致以亲切的问候。”

    2022年是山东地矿六队被国务院授予“功勋卓著无私奉献的英雄地质队”荣誉称号30周年,谨以此专辑纪念这一光荣的时刻,并向为胶东地区金矿勘查和找矿突破战略行动取得重大成果做出贡献的所有人致以崇高的敬意!

    致谢: 感谢中国地质科学院地质研究所贾孝新硕士和中国地质大学(北京)张义、王玮、许元全、刘鹏杰、陈林君硕士在数据测试中提供的帮助,以及评审专家对本文提出的宝贵修改意见。
  • 图  1   北疆及邻区地质简图(花岗岩图据参考文献;主要构造划分据参考文献[13-14])

    Figure  1.   Geological sketch map of North Xinjiang

    图  2   哈尔里克山地质图(据参考文献[16]修改)

    Figure  2.   Geological map of the Harlik Mountain

    图  3   小铺黑云母二长花岗岩(a)和沁城南含角闪石二长花岗岩(b)显微照片

    Qz—石英;Pl—斜长石;Kf—钾长石

    Figure  3.   Photomicrographs of granites from Xiaopu (a) and Qinchengnan (b)

    图  4   小铺黑云母二长花岗岩(T12716-1.2)和沁城南含角闪石二长花岗岩(T12716-8.4)锆石阴极发光(CL)图像

    (图中实线圆圈为年龄分析点位,虚线圆圈为Hf同位素分析点位)

    Figure  4.   Zircon CL images of Xiaopu and Qinchengnan granites

    图  5   小铺黑云二长花岗岩(a)和沁城南含角闪石二长花岗岩(b)锆石U-Pb年龄谐和图

    Figure  5.   Zircon U-Pb concordia diagrams of Xiaopu (a) and Qinchengnan (b) granites

    图  6   哈尔里克山花岗岩类SiO2-K2O(a)和A/CNK-A/NK图解(b)

    (a、b底图分别据参考文献[29][30],数据来源于参考文献[19]和本文)

    Figure  6.   SiO2 versus K2O (a) and A/CNK versus A/NK (b) diagrams for the granitoids in the Harlik Mountain

    图  7   小铺和沁城南花岗岩稀土元素球粒陨石标准化分布型式(a)和微量元素原始地幔标准化蛛网图(b)

    (球粒陨石和原始地幔标准化数据据参考文献[31],小铺东花岗岩数据据参考文献[21])

    Figure  7.   Chondrite-normalized REE patterns (a) and primitive-mantle normalized spidergrams (b) of Xiaopu and Qinchengnan granites

    图  8   小铺花岗岩和沁城南花岗岩A型花岗岩判别图解(底图据参考文献[35])

    I & S—I型和S型花岗岩分布区;FG—分异的I & S型花岗岩分布区;OGT—未分异的I、S & M型花岗岩分布区

    Figure  8.   Discrimination diagrams of A-type granite for Xiaopu and Qinchengnan granites

    图  9   小铺和沁城南花岗岩100(MgO+TFeO+TiO2)/SiO2-(Al2O3+CaO)/(TFeO+Na2O+K2O)图解

    (底图据参考文献[36])

    Figure  9.   100(MgO+TFeO+TiO2)/SiO2 versus (Al2O3+CaO)/(TFeO+Na2O+K2O) diagram of Xiaopu and Qinchengnan granites

    图  10   哈尔里克山地区花岗质岩石的εHf(t)随年龄变化图解(a)及Hf模式年龄TDMC频率分布直方图(b)

    (数据来源于参考文献[19, 23]和本文)

    Figure  10.   206Pb/238U age versus εHf(t) value (a) and frequency distribution histogram of Hf model ages (TDMC) (b) for zircons from the granitic rocks in the Harlik Mountain

    表  1   哈尔里克地区花岗岩LA-ICP-MS锆石U-Th-Pb测试结果

    Table  1   LA-ICP-MS zircon U-Th-Pb dating results for representative granites from the Harlik area

    测点含量/10-6Th/U同位素比值年龄/Ma
    232Th238U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    小铺黑云母二长花岗岩(T12716-1.2)
    1541630.330.051730.002020.35460.01530.049730.0014927387308113139
    21202070.580.055850.001990.38190.01540.049600.0014844677328113129
    31542500.620.054390.001870.37660.01470.050230.0014938775325113169
    43145220.600.055940.001490.41010.01360.053180.0015545058349103349
    51363500.390.054400.001650.38970.01400.051960.0015338766334103279
    61953480.560.056920.001900.40830.01560.052040.0015548873348113279
    71504760.320.053250.001480.38440.01300.052350.0015334062330103299
    81653580.460.053400.001590.36070.01280.049000.0014334666313103089
    91302810.460.055410.001890.38180.01480.049980.0014942874328113149
    101122720.410.053190.001720.36840.01380.050240.0014833772319103169
    11361030.350.065230.003480.44430.02460.049410.001587821083731731110
    121402290.610.054540.002330.35840.01650.047670.0014639393311123009
    1355714910.370.053450.001200.36300.01090.049270.001413485031583109
    141283510.360.054480.001680.35950.01310.047860.0014039168312103019
    151072580.410.053800.001930.36140.01460.048740.0014436279313113079
    16622300.270.049690.001860.34250.01430.050000.0014718185299113159
    172564190.610.051650.001550.34480.01230.048420.001412706830193059
    181041690.610.058250.003000.38790.02090.048310.00152539109333153049
    19882400.360.053840.002200.37160.01660.050060.0015036489321123159
    2046714120.330.054090.001250.39750.01210.053310.001533755134093359
    21782230.350.050760.002330.35670.01760.050970.00154230103310133219
    222067410.280.053510.001430.36170.01200.049030.001423515931493099
    231152340.490.050640.002190.34670.01620.049660.0014822597302123129
    2440413760.290.052270.001360.37620.01220.052210.001512975832493289
    252519860.250.053780.001910.37880.01520.051090.0015136278326113219
    26311170.260.063500.005250.46050.03830.052600.001817251663852733111
    27702120.330.054360.003220.39480.02420.052680.001633861283381833110
    28491920.250.051250.005140.33940.03420.048050.001632522152972630310
    29171928340.610.434780.009253.54350.10170.059120.0017140343115372337010
    301293150.410.053430.002560.37740.01920.051230.001553471053251432210
    沁城南含角闪石二长花岗岩(T12716-8.4)
    11482820.530.048890.001710.34100.01340.050590.0014614380298103189
    22425620.430.051700.001360.36690.01180.051480.001462725931793249
    33055260.580.055660.001420.39410.01250.051350.001464395633793239
    42464680.530.224010.004811.99860.05690.064720.0018430103411151940411
    52404160.580.050170.001440.35730.01220.051660.001472036531093259
    62134210.500.054270.001560.38210.01300.051070.0014638263329103219
    72063970.520.054930.001530.39000.01300.051510.0014740960334103249
    81983860.510.054960.001590.39200.01340.051740.0014841063336103259
    92194200.520.052950.001480.37810.01270.051800.001483266232693269
    101663400.490.051080.001570.36600.01310.051980.0014924569317103279
    111473190.460.051080.001630.35950.01320.051050.0014724572312103219
    122143820.560.052010.001470.36880.01250.051430.001472866331993239
    132404180.570.056690.001570.40700.01350.052080.0014847960347103279
    142213760.590.053610.001520.37370.01260.050570.001443556332293189
    151302450.530.050950.001720.35060.01340.049910.0014423976305103149
    161983440.580.053860.001560.38430.01320.051750.0014836564330103259
    171612980.540.053260.001700.38190.01400.052010.0014934071328103279
    181241910.650.052600.002000.36760.01540.050680.0014831284318113199
    192124220.500.065290.001780.38840.01270.043150.001237845633392728
    202534750.530.052680.001410.36230.01180.049880.001413156031493149
    212404400.540.050320.001400.34610.01150.049890.001422106330293149
    224185420.770.051780.001400.37120.01210.052000.001482766132193279
    231732720.640.053570.001720.36450.01340.049350.0014235371316103119
    244846590.730.053190.001330.36790.01140.050180.001423375631883169
    25881870.470.046310.002300.31760.01660.049750.0014614115280133139
    262354280.550.053460.001450.37100.01220.050340.001433486032093179
    274306540.660.052920.001300.37310.01150.051130.001443265532283219
    282524250.590.052770.001460.36700.01220.050440.001433196231793179
    292053680.560.052020.001540.36050.01250.050260.001432866631393169
    302915580.520.054200.001370.37630.01180.050350.001423795632493179
    下载: 导出CSV

    表  2   哈尔里克地区花岗岩主量、微量和稀土元素组成

    Table  2   Major, trace and rare earth elements compositions of granites from the Harlik area

    含量小铺黑云母二长花岗岩(316Ma)沁城南含角闪石二长花岗岩(320Ma)
    T12716-1.1T12716-1.2T12716-1.3T12716-1.4T12716-8.2T12716-8.3T12716-8.4T12716-8.5
    SiO272.8371.3871.7868.4267.7172.2671.8872.07
    Al2O314.0414.8614.2016.1517.0013.8713.9614.04
    Fe2O3T2.242.222.842.662.232.512.742.67
    MgO0.330.310.410.400.160.170.180.17
    CaO1.571.991.882.580.910.730.750.68
    Na2O4.074.174.134.687.035.525.615.59
    K2O3.643.833.423.453.853.803.853.92
    TiO20.190.190.240.240.170.190.200.19
    P2O50.050.060.070.060.040.030.040.02
    MnO0.070.070.090.080.070.110.130.12
    烧失量0.800.700.801.100.500.600.400.30
    总计99.8599.8199.8299.8299.6899.7899.7799.78
    A/CNK1.041.021.021.000.980.960.950.96
    Mg#25.5624.5525.1725.9514.3313.6313.2812.92
    La18.6022.2020.9031.4010.2042.2044.1042.70
    Ce40.1048.9046.9063.3025.6089.6096.8091.50
    Pr4.005.074.746.733.499.7710.759.98
    Nd14.9020.2017.7024.8016.1038.4040.8036.80
    Sm2.473.783.924.464.367.086.936.79
    Eu1.071.121.011.231.810.900.871.02
    Gd2.503.403.854.124.715.766.556.16
    Tb0.400.550.650.630.850.870.920.90
    Dy2.223.163.973.735.135.035.165.28
    Ho0.430.590.790.731.141.071.081.01
    Er1.411.692.022.083.462.952.963.27
    Tm0.200.240.300.290.500.450.460.49
    Yb1.121.511.771.923.452.903.183.22
    Lu0.200.230.290.250.640.520.560.56
    Y13.2017.0019.4018.2029.5025.8026.3027.20
    ΣREE89.62112.64108.81145.6781.44207.50221.12209.68
    δEu1.300.940.790.861.210.420.390.47
    (La/Yb)N11.9110.558.4711.732.1210.449.959.51
    Ba992.001195.001029.00990.002145.001218.001220.001205.00
    Co2.302.802.802.801.001.101.401.10
    Cs1.101.101.201.500.900.800.701.10
    Ga14.9015.8015.9017.1020.4016.6017.4017.00
    Hf4.504.404.704.6011.308.109.108.80
    Nb4.604.406.205.503.203.904.104.50
    Rb69.0069.1067.0063.9056.2035.4035.8036.10
    Sr198.20226.40213.20260.9051.4036.0038.6033.80
    Ta0.200.200.500.300.400.300.200.30
    Th3.604.703.905.603.704.504.304.90
    U0.600.400.500.501.401.601.401.30
    V21.0022.0023.0016.008.009.008.009.00
    Zr153.30154.20173.40174.10589.40428.90495.00442.60
    Zn28.0038.0063.0036.008.0019.0023.0017.00
    Ni1.701.301.601.400.901.001.300.90
    Cu2.702.403.102.402.602.302.201.60
    Pb5.405.505.805.102.302.903.102.90
    注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV

    表  3   哈尔里克地区花岗岩锆石Hf同位素测试结果

    Table  3   Zircon Hf isotopic compositions of representative granites from the Harlik area

    测点号年龄/Ma176Yb/177Hf176Lu/177Hf176Hf/177HfεHf(t)TDM/MaTDMC/MafLu/Hf
    小铺黑云母二长花岗岩
    T12716-1-23120.0694460.0016770.2828900.00002610.7523644-0.95
    T12716-1-43340.2027730.0047510.2828300.0000548.3665812-0.86
    T12716-1-63270.1950210.0046140.2829870.00004013.8416456-0.86
    T12716-1-73290.0491020.0013610.2829190.00002812.1477565-0.96
    T12716-1-83080.1211810.0029040.2829830.00003013.7401450-0.91
    T12716-1-93140.0510770.0013110.2829270.00003312.1465554-0.96
    T12716-1-103160.0364450.0009150.2828900.00002610.9512632-0.97
    T12716-1-123000.0762840.0018580.2828950.00002510.6519643-0.94
    T12716-1-133100.0679110.0017890.2828420.0000308.9594756-0.95
    T12716-1-143010.0431400.0010860.2829530.00002712.8425500-0.97
    T12716-1-163150.0377770.0010300.2828080.0000268.0631822-0.97
    T12716-1-173050.0706230.0018240.2829790.00002013.6396449-0.95
    T12716-1-183040.0571670.0015340.2829090.00002511.2493604-0.95
    T12716-1-193150.0485550.0012680.2828800.00002110.5531660-0.96
    T12716-1-213210.0265240.0006810.2828370.0000159.2583746-0.98
    T12716-1-233120.0545000.0013830.2828850.00001710.6526652-0.96
    T12716-1-243280.0776010.0019990.2828530.0000149.6582725-0.94
    T12716-1-273310.0331280.0007690.2828480.0000189.8569716-0.98
    T12716-1-303220.0702640.0015290.2829210.00002012.0476567-0.95
    沁城南含角闪石二长花岗岩
    T12716-8-13180.1082560.0029680.2829830.00001713.8402446-0.91
    T12716-8-23240.0998010.0028950.2829590.00001613.1437497-0.91
    T12716-8-33230.1567750.0042970.2829950.00001914.1400435-0.87
    T12716-8-53250.2042860.0054670.2829510.00002712.3485551-0.84
    T12716-8-63210.1928430.0050080.2829380.00003011.9499576-0.85
    T12716-8-113210.0918360.0027400.2829620.00002313.2431489-0.92
    T12716-8-123230.1383010.0036720.2830640.00003516.7286268-0.89
    T12716-8-133270.1506350.0040700.2829880.00002113.9408447-0.88
    T12716-8-143180.1505590.0039440.2829870.00002113.8407450-0.88
    T12716-8-153140.1200820.0033010.2829340.00001711.9481566-0.90
    T12716-8-163250.1971420.0051640.2830290.00003415.1355368-0.84
    T12716-8-183190.0534380.0017200.2829810.00001814.1391433-0.95
    T12716-8-203140.1726480.0046900.2829090.00001710.8540641-0.86
    T12716-8-213140.1881880.0049180.2830430.00002815.5330337-0.85
    T12716-8-243160.1233790.0035910.2829400.00002712.1476555-0.89
    T12716-8-253130.0671880.0020840.2829840.00002613.9392436-0.94
    T12716-8-283170.1692370.0045240.2830080.00002314.4382412-0.86
    T12716-8-293160.1637770.0042550.2830110.00001814.5374402-0.87
    T12716-8-303170.0698960.0019550.2829340.00001412.3463545-0.94
    注:εHf(t)={[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×10000;TDM=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]}; TDMC=1/λ×ln{1+[(176Hf/177Hf)S, t-(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t, 其中, s为样品, (176Hf/177Hf)CHUR, 0=0.282772和(176Lu/177Hf)CHUR=0.0332[32], (176Hf/177Hf)DM=0.28325和(176Lu/177Hf)DM=0.0384[33]t为锆石结晶年龄, λ=1.865×10-11 year-1[34]; (176Lu/177Hf)C=0.015
    下载: 导出CSV
  • Sengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435):299-307. doi: 10.1038/364299a0

    Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1):31-47. doi: 10.1144/0016-76492006-022

    Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia:Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1):477-507. doi: 10.1146/annurev-earth-060614-105254

    Jahn B M, Wu F Y, Chen B. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 23(2):82-92. https://www.researchgate.net/publication/279887806_Massive_granitoid_generation_in_Central_Asia_Nd_isotope_evidence_and_implication_for_continental_growth_in_the_Phanerozoic

    Jahn B M, Wu F Y, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh. Earth Sciences, 2000, 91(1):181-193. https://www.cambridge.org/core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh/article/div-classtitlegranitoids-of-the-central-asian-orogenic-belt-and-continental-growth-in-the-phanerozoicdiv/28BDF6E4AF8A7674D081654BE9B22CE7

    Wilhem C, Windley B F, Stampfli G M. The Altaids of Central Asia:A tectonic and evolutionary innovative review[J]. Earth Science Reviews, 2012, 113(3/4):303-341. https://www.deepdyve.com/lp/elsevier/the-altaids-of-central-asia-a-tectonic-and-evolutionary-innovative-4GW0AAspfp

    Cawood P, Kroner A. Earth accretionary orogens in space and time[J]. Geological Society of London Special Publication, 2009, 318:1-36. doi: 10.1144/SP318.1

    Xiao W J, Windley B F, Allen M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J].Gondwana Research, 2013, 23(4):1316-1341. doi: 10.1016/j.gr.2012.01.012

    Han B F, Wang S G, Jahn B M, et al. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 1997, 138(3/4):135-159. https://www.deepdyve.com/lp/elsevier/depleted-mantle-source-for-the-ulungur-river-a-type-granites-from-0xE0Pmw0M8

    韩宝福, 季建清, 宋彪, 等.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)-后碰撞深成岩浆活动的时限[J].岩石学报, 2006, 22(5):1077-1086. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200605003
    韩宝福, 郭召杰, 何国琦."钉合岩体"与新疆北部主要缝合带的形成时限[J].岩石学报, 2010, 26(8):2233-2246. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201008002.htm
    童英, 王涛, 洪大卫, 等.北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义[J].岩石矿物学杂志, 2010, 29(6):619-641. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201006003

    Ren J S, Niu B G, Wang J, et al. Advances in research of Asian geology-A summary of 1:5M International Geological Map of Asia project[J]. Journal of Asian Earth Sciences, 2013, 72(4):3-11.

    Xiao W J, Han C M, Liu W, et al. How many sutures in the southern Central Asian Orogenic Belt:Insights from East Xinjiang-West Gansu (NW China)?[J]. Geoscience Frontiers, 2014, 5(4):525-536. doi: 10.1016/j.gsf.2014.04.002

    曹福根, 涂其军, 张晓梅, 等.哈尔里克山早古生代岩浆弧的初步确定——来自塔水河一带花岗质岩体锆石SHRIMP U-Pb测年的证据[J].地质通报, 2006, 25(8):923-927. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=200608162&flag=1
    马星华, 陈斌, 王超, 等.早古生代古亚洲洋俯冲作用:来自新疆哈尔里克侵入岩的锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素证据[J].岩石学报, 2015, 31(1):89-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201501007
    孙桂华, 李锦轶, 高立明, 等.新疆东部哈尔里克山闪长岩锆石SHRIMP U-Pb定年及其地质意义[J].地质论评, 2005, 51(4):463-469. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200912009.htm
    孙桂华, 李锦轶, 朱志新, 等.新疆东部哈尔里克山片麻状黑云母花岗岩锆石SHRIMP U-Pb定年及其地质意义[J].新疆地质, 2007, 25(1):4-10. http://www.cqvip.com/QK/82738X/2007001/24666069.html
    黄伟. 东天山哈密地区石炭-二叠纪碱性花岗岩年代学、地球化学及成因[D]. 中国地质大学(北京)硕士学位论文, 2014.
    汪传胜, 顾连兴, 张遵忠, 等.新疆哈尔里克山二叠纪碱性花岗岩-石英正长岩组合的成因及其构造意义[J].岩石学报, 2009, 25(12):3182-3196. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200912009.htm
    汪传胜, 顾连兴, 张遵忠, 等.东天山哈尔里克山区二叠纪高钾钙碱性花岗岩成因及地质意义[J].岩石学报, 2009, 25(6):1499-1511. http://www.cnki.com.cn/Article/CJFDTotal-GXDX201401006.htm
    陈希节, 舒良树.新疆哈尔里克山后碰撞期构造-岩浆活动特征及年代学证据[J].岩石学报, 2010, 26(10):3057-3064. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201010017
    陈希节, 张奎华, 张关龙, 等.新疆东天山哈尔里克二叠纪奥莫尔塔格碱性花岗岩特征、成因及构造意义[J].岩石矿物学杂志, 2016, 35(6):929-946. http://www.cnki.com.cn/Article/CJFDTotal-DZLP2007S1005.htm
    赵明, 舒良树, 朱文斌, 等.东疆哈尔里克变质带的U-Pb年龄及其地质意义[J].地质学报, 2002, 76(3):379-383. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200203010
    郭华春, 钟莉, 李丽群.哈尔里克山口门子地区石英闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].地质通报, 2006, 25(8):928-931. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=200608163&flag=1

    Ludwig K R. Isoplot/Ex 3. 70. A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronological Center, Special publication No. 4, 2008.

    Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9):1391-1399. doi: 10.1039/c2ja30078h

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571. https://www.researchgate.net/publication/268411794_Continental_and_Oceanic_Crust_Recycling-Induced_Melt_Peridotite_Interactions_in_the_Trans-North_China_Orogen_UPb_Dating_Hf_Isotopes_and_Trace_Elements_in_Zircons_from_Mantle_Xenoliths

    Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):63-81. doi: 10.1007%2FBF00384745

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2):243-258. https://www.deepdyve.com/lp/elsevier/the-lu-hf-isotope-geochemistry-of-chondrites-and-the-evolution-of-the-Yu4OvE9q3P

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133-147. doi: 10.1016/S0016-7037(99)00343-9

    Scherer E, Münker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293(5530):683-687. doi: 10.1126/science.1061372

    Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202

    Sylvester P J. Post-collisional alkaline granites[J]. The Journal of Geology, 1989, 97(3):261-280. doi: 10.1086/629302

    陈希节. 东天山古生代构造-岩浆作用及地球动力学演化[D]. 南京大学博士学位论文, 2013, 1-127.

    Rogers G, Hawkesworth C J. A geochemical traverse across the North Chilean Andes:evidence for crust generation from the mantle wedge[J]. Earth Planet. Sci. Lett., 1989, 91(3/4):271-285.

    韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘, 2007, 14(3):64-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200703006

    Pitcher W S. Granite type and tectonic environment[C]//Hsu K J. Mountain Building Processes. Academic Press, London, 1983: 19-40.

    Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3):605-626. doi: 10.1016/S0024-4937(98)00085-1

    黄河, 王涛, 秦切, 等.南天山西段巴雷公花岗岩体的地质年代学及锆石Hf同位素特征——岩石成因及对构造演化的约束[J].岩石矿物学杂志, 2015, 34(6):971-990. http://www.cqvip.com/QK/94932X/201506/666723412.html
    田健, 廖群安, 樊光明, 等.东准噶尔卡拉麦里断裂以南幔源底侵体、"钉合花岗岩体"的发现及其地质意义[J].岩石学报, 2016, 32(6):1715-1730. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20160611&journal_id=ysxb&year_id=2016

    Yang G, Li Y J, Wu H E, et al. Geochronological and geochemical constrains on petrogenesis of the Huangyangshan A-type granite from the East Junggar, Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 2011, 40(3):722-736. doi: 10.1016/j.jseaes.2010.11.008

    Liu W, Liu X, Liu L. Underplating generated A-and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma:Insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes[J]. Lithos, 2013, 179:293-319. doi: 10.1016/j.lithos.2013.08.009

    王涛, 童英, 李舢, 等.阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例[J].岩石矿物学杂志, 2010, 29(6):595-618. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201006002
    王涛, 李伍平, 李金宝, 等.东天山东段同造山到后造山花岗岩幔源组分的递增及陆壳垂向生长意义——Sr、Nd同位素证据[J].岩石学报, 2008, 24(4):762-772. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20080415&journal_id=ysxb

    Hong D W, Zhang J, Wang T, et al. Continental crustal growth and the supercontinental cycle:evidence from the Central Asian Orogenic Belt[J]. Acta Geologica Sinica, 2004, 23(5):799-813. https://www.researchgate.net/publication/223206324_Continental_crustal_growth_and_the_supercontinental_cycle_Evidence_from_the_Central_Asian_Orogenic_Belt

    吴福元, 林强, 江博明.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J].科学通报, 1997, 42(20):2188-2192. doi: 10.3321/j.issn:0023-074X.1997.20.017
    顾连兴, 张遵忠, 吴昌志, 等.关于东天山花岗岩与陆壳垂向增生的若干认识[J].岩石学报, 2006, 22(5):1103-1120. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=200605116
    王涛, 张磊, 郭磊, 等. 中国北方重要成矿区带显生宙花岗岩时空演变框架、构造背景及其成矿意义成果报告. 2016.
图(10)  /  表(3)
计量
  • 文章访问数:  2677
  • HTML全文浏览量:  277
  • PDF下载量:  2008
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-16
  • 修回日期:  2017-05-09
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2018-05-14

目录

    /

    返回文章
    返回