Zircon U-Pb ages, genetic evolution and geological significance of Carboniferous granites in the Harlik Mountain, East Tianshan, Xinjiang
-
摘要:
新疆北部广泛发育的石炭纪—二叠纪花岗质岩石一直是中亚造山带西段研究的热点之一。新获得东天山哈尔里克地区小铺黑云母二长花岗岩和沁城南含角闪石二长花岗岩LA-ICP-MS锆石U-Pb年龄分别为316±4Ma和320±3Ma。地球化学特征显示,小铺岩体为弱过铝质高钾钙碱性I型花岗岩,沁城南岩体为准铝质高钾钙碱性A型花岗岩。小铺岩体的εHf(t)值为+8.0~+13.8,沁城南岩体则更高,达到+10.8~+16.7,对应的地壳模式年龄(TDMc)分别为822~450Ma和641~268Ma,反映源区为年轻地壳物质。结合区域同时代产出的基性岩,指示这些年轻物质很可能与新的幔源基性底侵岩浆有关,为北疆哈尔里克地区石炭纪后碰撞地壳垂向生长提供了新证据。此外,沁城南岩体具有A型特征花岗岩的出现,进一步揭示晚石炭世为碰撞-后碰撞的重要构造转换期。
Abstract:Extensively developed granitoids in northern Xinjiang have constituted one of the hotspots in the study of granite in the western Central Asian Orogenic Belt. LA-ICP-MS zircon U-Pb analysis of the Xiaopu biotite monzogranite and Qinchengnan hornblende monzogranite in the Harlic area yielded crystallization ages of 316±4Ma and 320±3Ma. Their petrological and geochemical characteristics show that Xiaopu pluton belongs to high-K calc-alkaline and weakly peraluminous series of I-type granite, whereas the Qinchengnan pluton belongs to high-K calc-alkaline and metaluminous series with A-type granite characteristics. The Xiaopu pluton has positive zircon εHf (t) values of +8.0~+13.8, and the Qinchengnan pluton has higher εHf (t) values up to +10.8~+16.7, with corresponding Hf model ages (TDMc) of 822~450Ma and 641~268Ma, respectively. These isotopic compositions indicate that young crust served as the main source of the granite generation. Combined with coeval basic rocks with similar isotopic compositions in this region, it can be believed that these young granites might have been related to the new mantle-derived basic magma underplating and exhibited the post-collision vertical growth. Additionally, the Qinchengnan granites have A-type granite characteristics, thus providing a further evidence for the transition period of Late Carboniferous from collision to post-collision settings.
-
Keywords:
- granites /
- crustal growth /
- zircon U-Pb ages /
- East Tianshan /
- Carboniferous
-
黄金是人类发现的第一种贵金属,是美好和富有的象征,一直受到人类的喜爱。胶东是中国最重要的黄金基地、世界闻名的黄金产区,也是全球金矿床勘查和研究的热点区域。胶东金矿的开采历史悠久,最早可上溯至唐代。新中国成立以来,国家对胶东金矿的勘查一直非常重视,部署了大量地质工作。胶东地区也不负众望,不断涌现新的找矿突破,由建国初期的仅20余吨金资源量,到现今金资源总量超过5000 t,成为世界第三大金成矿区。目前,中国的黄金产量连续十多年居世界第一,其中胶东的三山岛、焦家、玲珑和新城4座矿山建国以来累计生产黄金均超过100 t,胶东为中国的黄金产业乃至经济社会发展做出了重要贡献。
胶东屡现金矿找矿奇迹,产生了找矿勘查的多项第一。1965年,首次在胶东三山岛断裂的破碎蚀变带中发现了金矿体;1966年,在焦家断裂带中发现破碎带蚀变岩型金矿体并肯定了其工业价值。1969年完成的三山岛金矿区勘探,提交金资源量63.56 t,是中国探明的第一个特大型蚀变岩型金矿床;其后于1972年完成了焦家金矿床勘探,提交金资源量70余吨。1977年,全国第二次金矿地质工作会议以纪要形式,将焦家式破碎带蚀变岩型金矿(简称焦家式金矿)确定为中国新发现的金矿床类型。焦家式金矿的发现,突破了当时地学界“大断裂只导矿不贮矿”的传统认识,指导地质人员将找矿方向由以往的石英脉型金矿转向破碎带蚀变岩型金矿,陆续发现和探明了新城、河西、河东、新立、仓上、大尹格庄、台上等大型金矿床,奠定了胶东作为中国第一黄金基地的地位,推动了中国黄金产业的发展。1985年,《焦家式新类型金矿的发现及其突出的找矿效果》荣获国家科技进步特等奖(图片1),焦家式金矿成矿和找矿理论为中国的金矿勘查提供了重要指导。
进入21世纪,中国的地下浅表部金矿资源严重枯竭,地质人员在胶东地区开展了深部找矿探索。于2006年首先探明了莱州寺庄深部特大型金矿床,实现了“攻深找盲”的率先突破;2008年,完成了莱州焦家深部金矿详查,提交金资源量105 t,是胶东地区第一个一次性提交详查资源量超过百吨的金矿床;其后,胶东地区陆续探明了10余个资源量超过100 t的超大型金矿床,尤其是探明了三山岛北部海域、西岭、纱岭3个资源量均超过300 t的金矿床。2014年,在莱州湾东侧的浅海海域探明的三山岛北部海域金矿床,勘探资源量470余吨,是中国和世界上最大的海域金矿。随着深部找矿的持续推进,胶东地区的勘查和钻探深度不断刷新纪录。目前,已施工1500~3000 m深度的钻孔300余个,其中,三山岛、焦家、水旺庄、大尹格庄等矿区控制矿体的深度均已超过2000 m,是国内平均勘查深度最大的金矿区;已施工超过3000 m深度的钻孔3个,在莱州三山岛金矿深部(西岭矿区)施工的4006.17 m深孔被誉为中国岩金勘查第一深钻,在焦家断裂带深部施工的3266.06 m深度的钻孔是该成矿带见矿深度最深的钻孔。2011年全国找矿突破战略行动以来,胶东作为全国重要的整装勘查区之一,深部找矿取得了新的重大突破,10年新增深部金资源量约2958 t,新增资源量约占全国同期的40%,超过了胶东历史上累计探明金资源量的总和,三山岛、焦家和招平3条成矿带的金资源量均已超过千吨。深部找矿的过程也是找矿理论认识和找矿方法不断提升的过程,胶东型金矿热隆-伸展成矿理论、阶梯成矿模式、阶梯找矿方法、先进的地球物理勘探技术、深孔和海域钻探方法等在深部找矿中发挥了重要作用。通过三维可视化分析发现,三山岛和焦家地区的多个原来认为独立的金矿床在深部合为一体,实际上是2个资源量均超过千吨的超巨型金矿床。2014年,《胶东金矿理论技术创新与深部找矿突破》成果获得国家科技进步二等奖。2017年5月3日,原国土资源部专门举行胶东地区深部金矿找矿成果新闻发布会指出:“胶东地区金矿深部勘查重大突破具有世界级影响”。
全国找矿突破战略行动的实施,为胶东深部找矿突破提供了重要机遇。本专辑撷取了找矿突破战略行动以来有关人员在胶东深部找矿中开展的部分工作和取得的部分成果予以展示,主要包括以下4方面内容:矿床三维地质建模及基于三维模型对深部矿床空间分布和成矿规律的新认识,稳定同位素、矿石微量元素和矿物微区地球化学分析测试结果及对金成矿的指示,流体包裹体测试结果及成因解释,地球物理方法及其在胶东深部找矿中的作用。期望本专辑阐述的成果能为深化胶东金成矿的认识及指导进一步找矿提供启发和帮助,也期望中国其他地区的深部找矿和相关研究能从中得到有益借鉴。
胶东地区金矿找矿不断取得新突破,得益于国家有关部门的高度重视和大力支持,得益于地勘队伍、科研院所和矿山企业的共同努力,得益于广大工程技术人员、基础理论研究人员的艰苦努力和无私奉献。山东省地质矿产勘查开发局第六地质大队无疑是胶东金矿找矿的突出贡献者,该队探获了胶东50%以上金资源量,发现并建立了焦家式金矿矿床式,创新了金矿成矿理论,提出了金矿找矿新方法,也因其突出的找矿贡献获得了崇高的荣誉:1992年10月19日国务院下达了《国务院关于表彰山东省地质矿产局第六地质队的决定》(国发〔1992〕59号),授予六队“功勋卓著无私奉献的英雄地质队”荣誉称号(图片2),于1992年12月10日在北京举行了隆重的命名大会,并授予奖旗;2009年9月19日,时任国务院总理温家宝在原国土资源部转呈的山东地矿六队胶东找矿成果汇报材料上亲笔批示“请国土资源部转告六队职工:祝贺他们在金矿勘探中取得的重大发现,向大家致以亲切的问候。”
2022年是山东地矿六队被国务院授予“功勋卓著无私奉献的英雄地质队”荣誉称号30周年,谨以此专辑纪念这一光荣的时刻,并向为胶东地区金矿勘查和找矿突破战略行动取得重大成果做出贡献的所有人致以崇高的敬意!
致谢: 感谢中国地质科学院地质研究所贾孝新硕士和中国地质大学(北京)张义、王玮、许元全、刘鹏杰、陈林君硕士在数据测试中提供的帮助,以及评审专家对本文提出的宝贵修改意见。 -
图 2 哈尔里克山地质图(据参考文献[16]修改)
Figure 2. Geological map of the Harlik Mountain
图 8 小铺花岗岩和沁城南花岗岩A型花岗岩判别图解(底图据参考文献[35])
I & S—I型和S型花岗岩分布区;FG—分异的I & S型花岗岩分布区;OGT—未分异的I、S & M型花岗岩分布区
Figure 8. Discrimination diagrams of A-type granite for Xiaopu and Qinchengnan granites
图 9 小铺和沁城南花岗岩100(MgO+TFeO+TiO2)/SiO2-(Al2O3+CaO)/(TFeO+Na2O+K2O)图解
(底图据参考文献[36])
Figure 9. 100(MgO+TFeO+TiO2)/SiO2 versus (Al2O3+CaO)/(TFeO+Na2O+K2O) diagram of Xiaopu and Qinchengnan granites
表 1 哈尔里克地区花岗岩LA-ICP-MS锆石U-Th-Pb测试结果
Table 1 LA-ICP-MS zircon U-Th-Pb dating results for representative granites from the Harlik area
测点 含量/10-6 Th/U 同位素比值 年龄/Ma 232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 小铺黑云母二长花岗岩(T12716-1.2) 1 54 163 0.33 0.05173 0.00202 0.3546 0.0153 0.04973 0.00149 273 87 308 11 313 9 2 120 207 0.58 0.05585 0.00199 0.3819 0.0154 0.04960 0.00148 446 77 328 11 312 9 3 154 250 0.62 0.05439 0.00187 0.3766 0.0147 0.05023 0.00149 387 75 325 11 316 9 4 314 522 0.60 0.05594 0.00149 0.4101 0.0136 0.05318 0.00155 450 58 349 10 334 9 5 136 350 0.39 0.05440 0.00165 0.3897 0.0140 0.05196 0.00153 387 66 334 10 327 9 6 195 348 0.56 0.05692 0.00190 0.4083 0.0156 0.05204 0.00155 488 73 348 11 327 9 7 150 476 0.32 0.05325 0.00148 0.3844 0.0130 0.05235 0.00153 340 62 330 10 329 9 8 165 358 0.46 0.05340 0.00159 0.3607 0.0128 0.04900 0.00143 346 66 313 10 308 9 9 130 281 0.46 0.05541 0.00189 0.3818 0.0148 0.04998 0.00149 428 74 328 11 314 9 10 112 272 0.41 0.05319 0.00172 0.3684 0.0138 0.05024 0.00148 337 72 319 10 316 9 11 36 103 0.35 0.06523 0.00348 0.4443 0.0246 0.04941 0.00158 782 108 373 17 311 10 12 140 229 0.61 0.05454 0.00233 0.3584 0.0165 0.04767 0.00146 393 93 311 12 300 9 13 557 1491 0.37 0.05345 0.00120 0.3630 0.0109 0.04927 0.00141 348 50 315 8 310 9 14 128 351 0.36 0.05448 0.00168 0.3595 0.0131 0.04786 0.00140 391 68 312 10 301 9 15 107 258 0.41 0.05380 0.00193 0.3614 0.0146 0.04874 0.00144 362 79 313 11 307 9 16 62 230 0.27 0.04969 0.00186 0.3425 0.0143 0.05000 0.00147 181 85 299 11 315 9 17 256 419 0.61 0.05165 0.00155 0.3448 0.0123 0.04842 0.00141 270 68 301 9 305 9 18 104 169 0.61 0.05825 0.00300 0.3879 0.0209 0.04831 0.00152 539 109 333 15 304 9 19 88 240 0.36 0.05384 0.00220 0.3716 0.0166 0.05006 0.00150 364 89 321 12 315 9 20 467 1412 0.33 0.05409 0.00125 0.3975 0.0121 0.05331 0.00153 375 51 340 9 335 9 21 78 223 0.35 0.05076 0.00233 0.3567 0.0176 0.05097 0.00154 230 103 310 13 321 9 22 206 741 0.28 0.05351 0.00143 0.3617 0.0120 0.04903 0.00142 351 59 314 9 309 9 23 115 234 0.49 0.05064 0.00219 0.3467 0.0162 0.04966 0.00148 225 97 302 12 312 9 24 404 1376 0.29 0.05227 0.00136 0.3762 0.0122 0.05221 0.00151 297 58 324 9 328 9 25 251 986 0.25 0.05378 0.00191 0.3788 0.0152 0.05109 0.00151 362 78 326 11 321 9 26 31 117 0.26 0.06350 0.00525 0.4605 0.0383 0.05260 0.00181 725 166 385 27 331 11 27 70 212 0.33 0.05436 0.00322 0.3948 0.0242 0.05268 0.00163 386 128 338 18 331 10 28 49 192 0.25 0.05125 0.00514 0.3394 0.0342 0.04805 0.00163 252 215 297 26 303 10 29 1719 2834 0.61 0.43478 0.00925 3.5435 0.1017 0.05912 0.00171 4034 31 1537 23 370 10 30 129 315 0.41 0.05343 0.00256 0.3774 0.0192 0.05123 0.00155 347 105 325 14 322 10 沁城南含角闪石二长花岗岩(T12716-8.4) 1 148 282 0.53 0.04889 0.00171 0.3410 0.0134 0.05059 0.00146 143 80 298 10 318 9 2 242 562 0.43 0.05170 0.00136 0.3669 0.0118 0.05148 0.00146 272 59 317 9 324 9 3 305 526 0.58 0.05566 0.00142 0.3941 0.0125 0.05135 0.00146 439 56 337 9 323 9 4 246 468 0.53 0.22401 0.00481 1.9986 0.0569 0.06472 0.00184 3010 34 1115 19 404 11 5 240 416 0.58 0.05017 0.00144 0.3573 0.0122 0.05166 0.00147 203 65 310 9 325 9 6 213 421 0.50 0.05427 0.00156 0.3821 0.0130 0.05107 0.00146 382 63 329 10 321 9 7 206 397 0.52 0.05493 0.00153 0.3900 0.0130 0.05151 0.00147 409 60 334 10 324 9 8 198 386 0.51 0.05496 0.00159 0.3920 0.0134 0.05174 0.00148 410 63 336 10 325 9 9 219 420 0.52 0.05295 0.00148 0.3781 0.0127 0.05180 0.00148 326 62 326 9 326 9 10 166 340 0.49 0.05108 0.00157 0.3660 0.0131 0.05198 0.00149 245 69 317 10 327 9 11 147 319 0.46 0.05108 0.00163 0.3595 0.0132 0.05105 0.00147 245 72 312 10 321 9 12 214 382 0.56 0.05201 0.00147 0.3688 0.0125 0.05143 0.00147 286 63 319 9 323 9 13 240 418 0.57 0.05669 0.00157 0.4070 0.0135 0.05208 0.00148 479 60 347 10 327 9 14 221 376 0.59 0.05361 0.00152 0.3737 0.0126 0.05057 0.00144 355 63 322 9 318 9 15 130 245 0.53 0.05095 0.00172 0.3506 0.0134 0.04991 0.00144 239 76 305 10 314 9 16 198 344 0.58 0.05386 0.00156 0.3843 0.0132 0.05175 0.00148 365 64 330 10 325 9 17 161 298 0.54 0.05326 0.00170 0.3819 0.0140 0.05201 0.00149 340 71 328 10 327 9 18 124 191 0.65 0.05260 0.00200 0.3676 0.0154 0.05068 0.00148 312 84 318 11 319 9 19 212 422 0.50 0.06529 0.00178 0.3884 0.0127 0.04315 0.00123 784 56 333 9 272 8 20 253 475 0.53 0.05268 0.00141 0.3623 0.0118 0.04988 0.00141 315 60 314 9 314 9 21 240 440 0.54 0.05032 0.00140 0.3461 0.0115 0.04989 0.00142 210 63 302 9 314 9 22 418 542 0.77 0.05178 0.00140 0.3712 0.0121 0.05200 0.00148 276 61 321 9 327 9 23 173 272 0.64 0.05357 0.00172 0.3645 0.0134 0.04935 0.00142 353 71 316 10 311 9 24 484 659 0.73 0.05319 0.00133 0.3679 0.0114 0.05018 0.00142 337 56 318 8 316 9 25 88 187 0.47 0.04631 0.00230 0.3176 0.0166 0.04975 0.00146 14 115 280 13 313 9 26 235 428 0.55 0.05346 0.00145 0.3710 0.0122 0.05034 0.00143 348 60 320 9 317 9 27 430 654 0.66 0.05292 0.00130 0.3731 0.0115 0.05113 0.00144 326 55 322 8 321 9 28 252 425 0.59 0.05277 0.00146 0.3670 0.0122 0.05044 0.00143 319 62 317 9 317 9 29 205 368 0.56 0.05202 0.00154 0.3605 0.0125 0.05026 0.00143 286 66 313 9 316 9 30 291 558 0.52 0.05420 0.00137 0.3763 0.0118 0.05035 0.00142 379 56 324 9 317 9 表 2 哈尔里克地区花岗岩主量、微量和稀土元素组成
Table 2 Major, trace and rare earth elements compositions of granites from the Harlik area
含量 小铺黑云母二长花岗岩(316Ma) 沁城南含角闪石二长花岗岩(320Ma) T12716-1.1 T12716-1.2 T12716-1.3 T12716-1.4 T12716-8.2 T12716-8.3 T12716-8.4 T12716-8.5 SiO2 72.83 71.38 71.78 68.42 67.71 72.26 71.88 72.07 Al2O3 14.04 14.86 14.20 16.15 17.00 13.87 13.96 14.04 Fe2O3T 2.24 2.22 2.84 2.66 2.23 2.51 2.74 2.67 MgO 0.33 0.31 0.41 0.40 0.16 0.17 0.18 0.17 CaO 1.57 1.99 1.88 2.58 0.91 0.73 0.75 0.68 Na2O 4.07 4.17 4.13 4.68 7.03 5.52 5.61 5.59 K2O 3.64 3.83 3.42 3.45 3.85 3.80 3.85 3.92 TiO2 0.19 0.19 0.24 0.24 0.17 0.19 0.20 0.19 P2O5 0.05 0.06 0.07 0.06 0.04 0.03 0.04 0.02 MnO 0.07 0.07 0.09 0.08 0.07 0.11 0.13 0.12 烧失量 0.80 0.70 0.80 1.10 0.50 0.60 0.40 0.30 总计 99.85 99.81 99.82 99.82 99.68 99.78 99.77 99.78 A/CNK 1.04 1.02 1.02 1.00 0.98 0.96 0.95 0.96 Mg# 25.56 24.55 25.17 25.95 14.33 13.63 13.28 12.92 La 18.60 22.20 20.90 31.40 10.20 42.20 44.10 42.70 Ce 40.10 48.90 46.90 63.30 25.60 89.60 96.80 91.50 Pr 4.00 5.07 4.74 6.73 3.49 9.77 10.75 9.98 Nd 14.90 20.20 17.70 24.80 16.10 38.40 40.80 36.80 Sm 2.47 3.78 3.92 4.46 4.36 7.08 6.93 6.79 Eu 1.07 1.12 1.01 1.23 1.81 0.90 0.87 1.02 Gd 2.50 3.40 3.85 4.12 4.71 5.76 6.55 6.16 Tb 0.40 0.55 0.65 0.63 0.85 0.87 0.92 0.90 Dy 2.22 3.16 3.97 3.73 5.13 5.03 5.16 5.28 Ho 0.43 0.59 0.79 0.73 1.14 1.07 1.08 1.01 Er 1.41 1.69 2.02 2.08 3.46 2.95 2.96 3.27 Tm 0.20 0.24 0.30 0.29 0.50 0.45 0.46 0.49 Yb 1.12 1.51 1.77 1.92 3.45 2.90 3.18 3.22 Lu 0.20 0.23 0.29 0.25 0.64 0.52 0.56 0.56 Y 13.20 17.00 19.40 18.20 29.50 25.80 26.30 27.20 ΣREE 89.62 112.64 108.81 145.67 81.44 207.50 221.12 209.68 δEu 1.30 0.94 0.79 0.86 1.21 0.42 0.39 0.47 (La/Yb)N 11.91 10.55 8.47 11.73 2.12 10.44 9.95 9.51 Ba 992.00 1195.00 1029.00 990.00 2145.00 1218.00 1220.00 1205.00 Co 2.30 2.80 2.80 2.80 1.00 1.10 1.40 1.10 Cs 1.10 1.10 1.20 1.50 0.90 0.80 0.70 1.10 Ga 14.90 15.80 15.90 17.10 20.40 16.60 17.40 17.00 Hf 4.50 4.40 4.70 4.60 11.30 8.10 9.10 8.80 Nb 4.60 4.40 6.20 5.50 3.20 3.90 4.10 4.50 Rb 69.00 69.10 67.00 63.90 56.20 35.40 35.80 36.10 Sr 198.20 226.40 213.20 260.90 51.40 36.00 38.60 33.80 Ta 0.20 0.20 0.50 0.30 0.40 0.30 0.20 0.30 Th 3.60 4.70 3.90 5.60 3.70 4.50 4.30 4.90 U 0.60 0.40 0.50 0.50 1.40 1.60 1.40 1.30 V 21.00 22.00 23.00 16.00 8.00 9.00 8.00 9.00 Zr 153.30 154.20 173.40 174.10 589.40 428.90 495.00 442.60 Zn 28.00 38.00 63.00 36.00 8.00 19.00 23.00 17.00 Ni 1.70 1.30 1.60 1.40 0.90 1.00 1.30 0.90 Cu 2.70 2.40 3.10 2.40 2.60 2.30 2.20 1.60 Pb 5.40 5.50 5.80 5.10 2.30 2.90 3.10 2.90 注:主量元素含量单位为%,微量和稀土元素含量为10-6 表 3 哈尔里克地区花岗岩锆石Hf同位素测试结果
Table 3 Zircon Hf isotopic compositions of representative granites from the Harlik area
测点号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(t) TDM/Ma TDMC/Ma fLu/Hf 小铺黑云母二长花岗岩 T12716-1-2 312 0.069446 0.001677 0.282890 0.000026 10.7 523 644 -0.95 T12716-1-4 334 0.202773 0.004751 0.282830 0.000054 8.3 665 812 -0.86 T12716-1-6 327 0.195021 0.004614 0.282987 0.000040 13.8 416 456 -0.86 T12716-1-7 329 0.049102 0.001361 0.282919 0.000028 12.1 477 565 -0.96 T12716-1-8 308 0.121181 0.002904 0.282983 0.000030 13.7 401 450 -0.91 T12716-1-9 314 0.051077 0.001311 0.282927 0.000033 12.1 465 554 -0.96 T12716-1-10 316 0.036445 0.000915 0.282890 0.000026 10.9 512 632 -0.97 T12716-1-12 300 0.076284 0.001858 0.282895 0.000025 10.6 519 643 -0.94 T12716-1-13 310 0.067911 0.001789 0.282842 0.000030 8.9 594 756 -0.95 T12716-1-14 301 0.043140 0.001086 0.282953 0.000027 12.8 425 500 -0.97 T12716-1-16 315 0.037777 0.001030 0.282808 0.000026 8.0 631 822 -0.97 T12716-1-17 305 0.070623 0.001824 0.282979 0.000020 13.6 396 449 -0.95 T12716-1-18 304 0.057167 0.001534 0.282909 0.000025 11.2 493 604 -0.95 T12716-1-19 315 0.048555 0.001268 0.282880 0.000021 10.5 531 660 -0.96 T12716-1-21 321 0.026524 0.000681 0.282837 0.000015 9.2 583 746 -0.98 T12716-1-23 312 0.054500 0.001383 0.282885 0.000017 10.6 526 652 -0.96 T12716-1-24 328 0.077601 0.001999 0.282853 0.000014 9.6 582 725 -0.94 T12716-1-27 331 0.033128 0.000769 0.282848 0.000018 9.8 569 716 -0.98 T12716-1-30 322 0.070264 0.001529 0.282921 0.000020 12.0 476 567 -0.95 沁城南含角闪石二长花岗岩 T12716-8-1 318 0.108256 0.002968 0.282983 0.000017 13.8 402 446 -0.91 T12716-8-2 324 0.099801 0.002895 0.282959 0.000016 13.1 437 497 -0.91 T12716-8-3 323 0.156775 0.004297 0.282995 0.000019 14.1 400 435 -0.87 T12716-8-5 325 0.204286 0.005467 0.282951 0.000027 12.3 485 551 -0.84 T12716-8-6 321 0.192843 0.005008 0.282938 0.000030 11.9 499 576 -0.85 T12716-8-11 321 0.091836 0.002740 0.282962 0.000023 13.2 431 489 -0.92 T12716-8-12 323 0.138301 0.003672 0.283064 0.000035 16.7 286 268 -0.89 T12716-8-13 327 0.150635 0.004070 0.282988 0.000021 13.9 408 447 -0.88 T12716-8-14 318 0.150559 0.003944 0.282987 0.000021 13.8 407 450 -0.88 T12716-8-15 314 0.120082 0.003301 0.282934 0.000017 11.9 481 566 -0.90 T12716-8-16 325 0.197142 0.005164 0.283029 0.000034 15.1 355 368 -0.84 T12716-8-18 319 0.053438 0.001720 0.282981 0.000018 14.1 391 433 -0.95 T12716-8-20 314 0.172648 0.004690 0.282909 0.000017 10.8 540 641 -0.86 T12716-8-21 314 0.188188 0.004918 0.283043 0.000028 15.5 330 337 -0.85 T12716-8-24 316 0.123379 0.003591 0.282940 0.000027 12.1 476 555 -0.89 T12716-8-25 313 0.067188 0.002084 0.282984 0.000026 13.9 392 436 -0.94 T12716-8-28 317 0.169237 0.004524 0.283008 0.000023 14.4 382 412 -0.86 T12716-8-29 316 0.163777 0.004255 0.283011 0.000018 14.5 374 402 -0.87 T12716-8-30 317 0.069896 0.001955 0.282934 0.000014 12.3 463 545 -0.94 注:εHf(t)={[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×10000;TDM=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]}; TDMC=1/λ×ln{1+[(176Hf/177Hf)S, t-(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t, 其中, s为样品, (176Hf/177Hf)CHUR, 0=0.282772和(176Lu/177Hf)CHUR=0.0332[32], (176Hf/177Hf)DM=0.28325和(176Lu/177Hf)DM=0.0384[33];t为锆石结晶年龄, λ=1.865×10-11 year-1[34]; (176Lu/177Hf)C=0.015 -
Sengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435):299-307. doi: 10.1038/364299a0
Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1):31-47. doi: 10.1144/0016-76492006-022
Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia:Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1):477-507. doi: 10.1146/annurev-earth-060614-105254
Jahn B M, Wu F Y, Chen B. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 23(2):82-92. https://www.researchgate.net/publication/279887806_Massive_granitoid_generation_in_Central_Asia_Nd_isotope_evidence_and_implication_for_continental_growth_in_the_Phanerozoic
Jahn B M, Wu F Y, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh. Earth Sciences, 2000, 91(1):181-193. https://www.cambridge.org/core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh/article/div-classtitlegranitoids-of-the-central-asian-orogenic-belt-and-continental-growth-in-the-phanerozoicdiv/28BDF6E4AF8A7674D081654BE9B22CE7
Wilhem C, Windley B F, Stampfli G M. The Altaids of Central Asia:A tectonic and evolutionary innovative review[J]. Earth Science Reviews, 2012, 113(3/4):303-341. https://www.deepdyve.com/lp/elsevier/the-altaids-of-central-asia-a-tectonic-and-evolutionary-innovative-4GW0AAspfp
Cawood P, Kroner A. Earth accretionary orogens in space and time[J]. Geological Society of London Special Publication, 2009, 318:1-36. doi: 10.1144/SP318.1
Xiao W J, Windley B F, Allen M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J].Gondwana Research, 2013, 23(4):1316-1341. doi: 10.1016/j.gr.2012.01.012
Han B F, Wang S G, Jahn B M, et al. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 1997, 138(3/4):135-159. https://www.deepdyve.com/lp/elsevier/depleted-mantle-source-for-the-ulungur-river-a-type-granites-from-0xE0Pmw0M8
韩宝福, 季建清, 宋彪, 等.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)-后碰撞深成岩浆活动的时限[J].岩石学报, 2006, 22(5):1077-1086. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200605003 韩宝福, 郭召杰, 何国琦."钉合岩体"与新疆北部主要缝合带的形成时限[J].岩石学报, 2010, 26(8):2233-2246. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201008002.htm 童英, 王涛, 洪大卫, 等.北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义[J].岩石矿物学杂志, 2010, 29(6):619-641. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201006003 Ren J S, Niu B G, Wang J, et al. Advances in research of Asian geology-A summary of 1:5M International Geological Map of Asia project[J]. Journal of Asian Earth Sciences, 2013, 72(4):3-11.
Xiao W J, Han C M, Liu W, et al. How many sutures in the southern Central Asian Orogenic Belt:Insights from East Xinjiang-West Gansu (NW China)?[J]. Geoscience Frontiers, 2014, 5(4):525-536. doi: 10.1016/j.gsf.2014.04.002
曹福根, 涂其军, 张晓梅, 等.哈尔里克山早古生代岩浆弧的初步确定——来自塔水河一带花岗质岩体锆石SHRIMP U-Pb测年的证据[J].地质通报, 2006, 25(8):923-927. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=200608162&flag=1 马星华, 陈斌, 王超, 等.早古生代古亚洲洋俯冲作用:来自新疆哈尔里克侵入岩的锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素证据[J].岩石学报, 2015, 31(1):89-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201501007 孙桂华, 李锦轶, 高立明, 等.新疆东部哈尔里克山闪长岩锆石SHRIMP U-Pb定年及其地质意义[J].地质论评, 2005, 51(4):463-469. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200912009.htm 孙桂华, 李锦轶, 朱志新, 等.新疆东部哈尔里克山片麻状黑云母花岗岩锆石SHRIMP U-Pb定年及其地质意义[J].新疆地质, 2007, 25(1):4-10. http://www.cqvip.com/QK/82738X/2007001/24666069.html 黄伟. 东天山哈密地区石炭-二叠纪碱性花岗岩年代学、地球化学及成因[D]. 中国地质大学(北京)硕士学位论文, 2014. 汪传胜, 顾连兴, 张遵忠, 等.新疆哈尔里克山二叠纪碱性花岗岩-石英正长岩组合的成因及其构造意义[J].岩石学报, 2009, 25(12):3182-3196. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200912009.htm 汪传胜, 顾连兴, 张遵忠, 等.东天山哈尔里克山区二叠纪高钾钙碱性花岗岩成因及地质意义[J].岩石学报, 2009, 25(6):1499-1511. http://www.cnki.com.cn/Article/CJFDTotal-GXDX201401006.htm 陈希节, 舒良树.新疆哈尔里克山后碰撞期构造-岩浆活动特征及年代学证据[J].岩石学报, 2010, 26(10):3057-3064. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201010017 陈希节, 张奎华, 张关龙, 等.新疆东天山哈尔里克二叠纪奥莫尔塔格碱性花岗岩特征、成因及构造意义[J].岩石矿物学杂志, 2016, 35(6):929-946. http://www.cnki.com.cn/Article/CJFDTotal-DZLP2007S1005.htm 赵明, 舒良树, 朱文斌, 等.东疆哈尔里克变质带的U-Pb年龄及其地质意义[J].地质学报, 2002, 76(3):379-383. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200203010 郭华春, 钟莉, 李丽群.哈尔里克山口门子地区石英闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].地质通报, 2006, 25(8):928-931. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=200608163&flag=1 Ludwig K R. Isoplot/Ex 3. 70. A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronological Center, Special publication No. 4, 2008.
Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9):1391-1399. doi: 10.1039/c2ja30078h
Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571. https://www.researchgate.net/publication/268411794_Continental_and_Oceanic_Crust_Recycling-Induced_Melt_Peridotite_Interactions_in_the_Trans-North_China_Orogen_UPb_Dating_Hf_Isotopes_and_Trace_Elements_in_Zircons_from_Mantle_Xenoliths
Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):63-81. doi: 10.1007%2FBF00384745
Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2):243-258. https://www.deepdyve.com/lp/elsevier/the-lu-hf-isotope-geochemistry-of-chondrites-and-the-evolution-of-the-Yu4OvE9q3P
Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133-147. doi: 10.1016/S0016-7037(99)00343-9
Scherer E, Münker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293(5530):683-687. doi: 10.1126/science.1061372
Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202
Sylvester P J. Post-collisional alkaline granites[J]. The Journal of Geology, 1989, 97(3):261-280. doi: 10.1086/629302
陈希节. 东天山古生代构造-岩浆作用及地球动力学演化[D]. 南京大学博士学位论文, 2013, 1-127. Rogers G, Hawkesworth C J. A geochemical traverse across the North Chilean Andes:evidence for crust generation from the mantle wedge[J]. Earth Planet. Sci. Lett., 1989, 91(3/4):271-285.
韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘, 2007, 14(3):64-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200703006 Pitcher W S. Granite type and tectonic environment[C]//Hsu K J. Mountain Building Processes. Academic Press, London, 1983: 19-40.
Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3):605-626. doi: 10.1016/S0024-4937(98)00085-1
黄河, 王涛, 秦切, 等.南天山西段巴雷公花岗岩体的地质年代学及锆石Hf同位素特征——岩石成因及对构造演化的约束[J].岩石矿物学杂志, 2015, 34(6):971-990. http://www.cqvip.com/QK/94932X/201506/666723412.html 田健, 廖群安, 樊光明, 等.东准噶尔卡拉麦里断裂以南幔源底侵体、"钉合花岗岩体"的发现及其地质意义[J].岩石学报, 2016, 32(6):1715-1730. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20160611&journal_id=ysxb&year_id=2016 Yang G, Li Y J, Wu H E, et al. Geochronological and geochemical constrains on petrogenesis of the Huangyangshan A-type granite from the East Junggar, Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 2011, 40(3):722-736. doi: 10.1016/j.jseaes.2010.11.008
Liu W, Liu X, Liu L. Underplating generated A-and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma:Insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes[J]. Lithos, 2013, 179:293-319. doi: 10.1016/j.lithos.2013.08.009
王涛, 童英, 李舢, 等.阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例[J].岩石矿物学杂志, 2010, 29(6):595-618. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201006002 王涛, 李伍平, 李金宝, 等.东天山东段同造山到后造山花岗岩幔源组分的递增及陆壳垂向生长意义——Sr、Nd同位素证据[J].岩石学报, 2008, 24(4):762-772. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20080415&journal_id=ysxb Hong D W, Zhang J, Wang T, et al. Continental crustal growth and the supercontinental cycle:evidence from the Central Asian Orogenic Belt[J]. Acta Geologica Sinica, 2004, 23(5):799-813. https://www.researchgate.net/publication/223206324_Continental_crustal_growth_and_the_supercontinental_cycle_Evidence_from_the_Central_Asian_Orogenic_Belt
吴福元, 林强, 江博明.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J].科学通报, 1997, 42(20):2188-2192. doi: 10.3321/j.issn:0023-074X.1997.20.017 顾连兴, 张遵忠, 吴昌志, 等.关于东天山花岗岩与陆壳垂向增生的若干认识[J].岩石学报, 2006, 22(5):1103-1120. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=200605116 王涛, 张磊, 郭磊, 等. 中国北方重要成矿区带显生宙花岗岩时空演变框架、构造背景及其成矿意义成果报告. 2016.