Paleomagnetic study of Pliocene lacustrine strata in the Baoshan Basin at the southeastern edge of the Tibetan Plateau
-
摘要:
青藏高原东南缘受印度板块的持续挤压发生了强烈的陆内变形,前人的研究结果显示,保山地体中新世以来发生强烈的旋转变形,因此,在保山盆地东南缘上新世湖相沉积地层中采集了30个采点(约300块定向样品),其中160块样品分离出了特征剩磁分量,通过了褶皱检验和倒转检验,代表了沉积地层形成时的原生剩磁分量。地层产状校正后剩磁平均方向为:Ds/Is=20.2°/37.1°,Ks=59.7,α95=4.8°,N=16;对应古地磁极为:北纬67.9 °、东经205.7°,A95=2.6。通过与保山盆地东缘科研钻井磁性地层结果进行对比,可以确定羊邑剖面年代为6±0.2Ma;与10Ma东亚构造稳定区古地磁参考极对比发现,保山盆地发生了19.2°±6°的顺时针旋转,表明保山地体上新世以来平均顺时针旋转速率为3.2°±1.0°/Ma,如此快速的旋转速率印证了保山地体和腾冲地块古近纪和中新世古地磁研究所揭示的大角度顺时针旋转变形量。
Abstract:The southeastern part of the Tibetan Plateau has been strongly deformed by the penetration of the Indian Plate since the early Cenozoic. A large clockwise rotation of the Baoshan Terrane was reported through previous paleomagnetic studies. The authors therefore carried out a paleomagnetic study of the Pliocene lacustrine strata in the Baoshan Basin. A total of about 160 samples were treated by thermal demagnetization, and the characteristic remanent magnetism components (ChRMs) were isolated from these sam-ples along the Yangyi section (YYN), southeastern part of Baoshan Basin. Site-mean direction from the YYN is Ds/Is=20.21°/37.1°, Ks=59.7, α95=4.8°, N=16 after tilt correction, which give a paleomagnetic pole at 67.9°N, 205.7°E, A95=2.6°. The ChRM directions of the YYN section pass the fold and reversal tests, indicating that it represents the primary remanent magnetization during the formation of sedimentary rocks. The results reveal that the Baoshan Terrane has suffered from a clockwise rotation about 19.2°±6° relative to the paleomagnetic reference pole of East Asia since the Pliocene. Based on a comparison with the magnetostratigraphic results of the drilled core on the east margin of Baoshan basin, the authors hold that the age of the sampled strata of the YYN section is 6±0.2Ma, and a mean rotating rate of the Baoshan basin is about 3.2°±1.0°/Ma. This result is consistent with the large clockwise rotation of the Baoshan basin since the Miocene revealed by Oligocene and Miocene paleomagnetic studies of the Baoshan Terrane and Tengchong Block.
-
Keywords:
- southeastern Tibetan Plateau /
- Baoshan Terrane /
- paleomagnetism /
- Pliocene /
- rotation
-
硒(Se)是人体与动物必需的微量元素,是一种有机体的重要保护性因子[1]。硒缺乏或过量都会产生不同的生物效应。硒缺乏可引发克山病、大骨节病、白肌病等地方性疾病[2-3];硒过量可导致“蹒跚症”“碱毒症”等慢性中毒症的发生[4-6],体现在皮肤褪色、指甲和手指变形、贫血、智力低下等[7]。土壤Se含量及空间分布状况可直接影响到农作物的吸收,进而通过食物链影响人体健康[8]。
中国约72%市(县)的土壤处于严重缺硒或低硒状态[9],低硒带呈北东—南西走向,中国华北、东部、西北属于缺硒地区[10-11]。富硒土地主要分布在我国东南部平原区[12-15],其中以湖北恩施最著名[7],西北平原区以陕西紫阳较为出名[16],而在高原地区尤为罕见,仅在青海省海东市的平安-乐都[17]和玉树州囊谦县[18]有富硒土的报道。
1. 研究区概况
青海省玉树州囊谦县地处青藏高原东部,南部为横断山脉,北部毗邻青藏高原主体,是青海省通往西藏地区的重要交通枢纽。研究区位于囊谦县及附近扎曲河谷区(东经96°17′00″~96°36′00″、北纬32°06′00″~32°25′00″),总体呈西北高、东南低,河谷低、两侧高的特点,海拔高程在3640~4800 m之间。
研究区地势高寒,太阳辐射强烈,日照时间较长,多年平均气温3.7℃,平均降水量为525.2 mm,平均蒸发量为899.4 mm。全区地形复杂,各地气候差异较大。河谷地带多为小气候区,温暖而湿润。
研究区土层较薄,质地疏松,土壤类型主要有高山寒漠土、高山草甸土、黑钙土、山地草甸土、灰褐土、高山草原土、栗钙土7类。农牧业是囊谦县的支柱产业,占三产总产值比重为79.0%,集中在海拔3800 m以下的低山丘陵区、丘间洼地及河谷平原区。囊谦县还具有丰富的矿产资源(如金、银、铜、铁、铅盐等矿产)。
2. 材料与方法
2.1 样品采集
本研究按照《土地质量地球化学评价规范》(DZ/T 0295—2016)[19],避开明显点状污染地段、垃圾堆,以及新堆积的土壤、田埂等,对重点耕地及开发利用条件相对较好的草地采用网格布点法(取样密度为4点/km2)布设采样点(图 1)。于2018年6~9月在囊谦县城周边农耕区采集表层(采样深度为0~20 cm)农田土壤样品共400组(图 1),采样点控制面积约100 km2。土壤样品采集后混合均匀,现场编录后用优质厚棉布采样袋收集,11℃密封避光保存。样品置于室内阴凉处充分风干,压碎,剔除碎石、砂砾、植物残体等杂物,研磨、过200目筛后,保证样品重量大于500 g,送检。
2.2 样品测试
土壤样品经过混合酸溶液(9 mL浓HNO3 + 2 mL HClO4 + 3 mL HF)和HCl在180℃下消解24 h后,采用非色散原子荧光光谱法(HG-AFS)测定总Se含量,检出限为0.01 mg/kg;称取0.5 g土壤样品经过上述方法消解蒸干并用50 mL 2% HNO3溶解,采用电感耦合等离子体质谱法(ICP-MS)进行微量元素分析;经H2SO4、K2CrO4氧化分解后,采用硫酸亚铁铵滴定法测定土壤总有机碳(Corg)含量,检出限为0.10 mg/kg;土壤腐殖质采用VOL法测定;采用离子选择电极(ISE)法测定土壤pH值,检出限为0.1;经过称重(4 g)、粉末压片后,采用X射线荧光光谱仪(XRF)直接测定土壤Fe2O3、Al2O3、SiO2含量和重金属元素中的Cr、Zn、Cu、Pb含量,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定土壤Na2O、K2O、CaO、MgO含量和土壤有效硫、硅、铁、硼、锰、钼、铜、锌含量;采用原子荧光光谱法(AFS)测定重金属元素中的As和Hg含量,采用ICP-MS测定重金属元素中的Cd和Ni含量。
2.3 数据处理
本文采用Excel 2016进行数据统计并用SPSS 17.0进行方差分析和显著性水平检验,利用MapGIS 6.7软件采用评价网格法进行数据的统计与分析。研究区每个网格控制面积为0.25 km2,共100个控制点(400个网格),总控制面积100 km2,对各控制点进行剔除异常值求平均值,之后进行各测试指标含量的分析,并利用Grapher 10.0绘制相关散点图。
2.4 土壤Se元素富集等级划分
依照《天然富硒土地划定与标识(试行)》(DD2019-10)①,结合青海省土壤Se含量背景值[9]和青藏高原地区土壤Se含量平均值[20],并参考《土地质量地球化学评价规范》(DZ/T 0295-2016),对土壤Se元素富集等级进行划分(表 1)。
表 1 土壤硒元素富集等级划分标准Table 1. Enrichment level of soil selenium等级 缺乏-边缘 适量 高 过剩 Se含量
/(mg·kg-1)Se≤0.15 0.15 < Se ≤0.30 0.30 < Se ≤3.0 Se>3.0 3. 结果与分析
3.1 土壤Se空间分布特征
土壤全Se含量可衡量土壤Se潜在供应能力和储量[21]。研究区土壤Se含量为0.08~0.69 mg/kg,平均值为0.25 mg/kg,略低于全国土壤Se平均含量(0.29 mg/kg)[22],高于青海省[9]和青藏高原的土壤Se平均含量(均为0.15 mg/kg)[20]。基于前期土壤Se元素富集等级评价结果[18](图 2),研究区土壤Se含量以足-高硒为主(占83.84%),其中足硒占52.53%、高硒占31.31%,硒缺乏-边缘土地占16.16%,无硒过剩区。
图 2 研究区地质图N1—新近系碎屑岩、泥质岩、碳酸盐岩;Et—古近系碎屑岩、泥质岩、碳酸盐岩夹石膏;E3—古近系碎屑岩、泥质岩、碳酸盐岩;E2—古近系碳酸盐岩、碎屑岩、泥质岩;K2—上白垩统碎屑岩、泥质岩、碳酸盐岩夹石膏;K1—下白垩统陆相火山岩泥质岩、碳酸盐岩;J2—中侏罗统陆相碎屑岩夹煤层、碳酸盐岩;T3—上三叠统陆相中酸性火山岩、海相碎屑岩、碳酸盐岩夹中基性火山岩及煤层;P1—下二叠统碎屑岩、碳酸盐岩、火山碎屑岩;C2—中石炭统碳酸盐岩、碎屑岩、火山碎屑岩;C1—下石炭统碳酸盐岩、碎屑岩、中基性火山岩及煤层Figure 2. Geological map of the study area区内高硒土壤主要分布于扎曲(Se含量0.12~0.36 mg/kg,平均值0.27 mg/kg,高硒土占37.21%)、香曲(Se含量0.08~0.69 mg/kg,平均值0.27 mg/kg,高硒土占34.62%)和牙不曲-强曲(高硒土占22.22%)。
其中,富硒土壤质地以红粘土为主,主要分布在扎曲的西岸(图 3),为主要的农/牧业活动区域。
研究区土壤pH(6.55~8.70)中位值为8.31,整体呈碱性,酸碱度适中。其中,强碱性土壤占16.16%,碱性土壤占74.84%,中-酸性土壤占9.00%。
研究区土壤有机质(12.1~98.6 g/kg)中位值为32.3 g/kg,高于青海省中位值29.10 g/kg[9]。区内土壤有机质含量总体较高,中等-丰富占83.51%,较缺乏-缺乏占16.49%,富硒区土壤有机质以较丰富-丰富为主[18]。
相对硒缺乏-边缘土壤,足-富硒土壤具有相对较高的有机质(平均值32.2 g/kg)、总铁(平均值30.7 g/kg)、Fe2O3(43.8 g/kg)、Al2O3(13.7 g/kg)、SO42-(平均值780 mg/kg)含量。
3.2 土壤Se含量的影响因素
3.2.1 成土母质
受成土母质和表生地球化学环境控制,天然成因的土壤Se元素分布存在较大的空间变异性[12]。
原生地质环境中的Se主要来自富硒沉积岩(如黑色岩系或含煤系地层)[23]和富硒基性火山岩[24]。富硒地质体的风化淋滤是土壤Se富集的重要原因[25]。结合研究区区域地质(图 2),可见足-富硒土壤的分布对成土母质具有较好的继承性,其分布整体与侵入岩,石炭系灰岩、砂质灰岩、砂岩,古近系红色泥岩等一致(图 3)。
3.2.2 土壤类型与质地
(1) 土壤类型
研究区内,不同类型的土壤Se含量特征具有一定的差异(表 2),富硒土占比依次为草甸土(24.24%)>栗钙土(6.06%)>灰褐土(1.01%)>高山草原土(0.00%)。
表 2 不同土壤类型Se含量统计值Table 2. Statistics of selenium content in different soil types统计特征值 栗钙土 草甸土 灰褐土 高山草原土 高山草甸土 山地草甸土 样本数/个 17 48 22 6 6 最大值/(mg·kg-1) 0.42 0.69 0.56 0.40 0.28 最小值/(mg·kg-1) 0.20 0.08 0.12 0.08 0.09 平均值/(mg·kg-1) 0.32 0.26 0.24 0.20 0.20 标准差 0.12 0.13 0.11 0.11 0.07 变异系数/% 42.95 49.59 45.01 54.27 37.42 偏度 1.33 1.16 1.68 1.34 -0.15 峰度 2.01 1.39 2.73 2.44 -0.75 该类土样中富硒土比值/% 35.29 37.50 27.27 16.67 0.00 总土样中富硒土比值/% 6.06 18.18 6.06 1.01 0.00 富硒土的土壤类型主要为草甸土(Se含量范围0.08~0.69 mg/kg,平均值为0.26 mg/kg)和栗钙土(Se含量范围0.20~0.42 mg/kg,平均值为0.32 mg/kg)。其中,以高山草甸土富硒占比最高(18.18%)且具有最高的土壤Se含量,栗钙土具有最高的土壤Se含量平均值(0.32 mg/kg)。从偏度上看,栗钙土、草甸土和灰褐土的土壤As含量均属于正偏离,其中,山地草甸土有较大的正偏离,其分布较正态分布向右偏离;高山草原土Se含量偏度较低,接近对称分布。Wilding[24]将变异系数(CV)分为高变异水平(CV>36%)、中等变异水平(16%<CV<36%)和低变异水平(CV < 16%)。研究区不同类型的土壤Se含量均属于高变异水平,其中灰褐土的变异水平最强,空间相关性最弱。
其中,草甸土的成土母质多为坡积或残坡积物,具有较高的有机质(平均含量33.7 mg/kg)及腐殖质(19.5 mg/kg)和较强的肥力,土壤较肥沃,草甸土的腐殖质组成中,活性腐殖质含量较低。山地草甸土有机质积累、分解和转化都强于高山草甸土。栗钙土(有机质平均含量35.5 mg/kg,腐殖质平均含量20.6 mg/kg)主要沿河流两侧的漫滩、阶地分布。土体具有较明显的腐殖质累积过程,属较肥沃的土壤。
(2) 土壤质地
研究区富硒土壤质地主要为研究区山区内广泛分布的红粘土(由砂泥岩经风化逐渐堆积形成)和有机质含量较高的黑粘土(图 4),土质密实。
3.2.3 土壤性质
(1) 土壤pH值
Se元素主要以硒酸盐、亚硒酸盐、元素Se、硒化合物等形式存在于土壤中[25]。其中,中-酸性土(4<pH≤7.5)中Se的主要形态为亚硒酸盐,在通气良好的碱性土壤(pH>7.5)中,难溶性的SeO32-被氧化为易溶的SeO42-,Se的主要形态为硒酸盐[26]。
土壤对阴离子的吸附量通常随土壤pH的增加而降低[27]。研究区足-富硒土壤的Se含量与土壤pH值呈较好的负相关关系(R2=0.2032,p < 0.1,n=80)(图 5-a),相对低硒土壤(pH平均值为8.26),高硒土壤具有较低的pH值(平均值为8.07)。这是由于碱性环境下Se的迁移淋滤作用较强,易使Se产生淋滤消耗,不利于土壤中Se的固定。迁移淋滤作用随着pH值增加一定程度上增强,使土壤Se含量降低。
(2) 有机质含量与类型
土壤养分地球化学评价结果显示,富硒区土壤有机质以较丰富-丰富为主,除个别点外,土壤Se含量与土壤有机质含量呈较好的正相关性(R2=0.1859,p < 0.05,n=80)(图 5-b),说明有机质是形成富硒土壤的有利因素。通常,土壤有机质对Se具有很强的吸附作用[28],并且在有机质分解过程中可能会促进Se的活化[29]。研究区足-富硒土壤有机质中,腐殖质约占60.0%,为主要的有机质组成。土壤有机质在腐殖化过程中可产生溶解性腐殖酸和细颗粒胶体[27],土壤中溶解性腐殖质由于具有多种有效官能团[30],可与Se以腐殖质结合的形式存在,一定程度上可以吸附/固定土壤中的Se,间接影响土壤中的Se含量[31]。而放牧干扰、开垦草地、草地自然退化均可不同程度使土壤表层土发生剥蚀,土壤固碳能力下降[32],有机质含量降低,进而影响土壤Se的固定。
(3) 氧化物矿物种类/含量
足-富硒土壤的Se含量与土壤Fe2O3含量(R2=0.1761,p>0.1,n=80)和Al2O3含量(R2=0.2115,p<0.1,n=80)呈较好的正相关性(图 5-c、d),说明铁铝氧化物对Se有较强的吸附力和亲和力。此外,土壤中铁铝氧化物对Se的吸附还受土壤pH和氧化还原电位的影响。还原环境易使Fe3+还原为Fe2+,其吸附Se的能力降低[33]。经盐基离子淋失后的土壤铁、铝元素相对富集,形成利于土壤Se富集的地球化学环境[34]。Se更容易在土壤壤质化程度较高、粒度较细的粘土中富集。红粘土中较高含量的铁、无定型铝、铁铝氧化物矿物对土壤Se有较强的吸附作用,其利于Se的富集;同时,红粘土对土壤溶解性有机碳具有较大的吸附量,较高的土壤有机质/有机碳有利于土壤Se的富集。黑粘土具有较高含量的有机质,其利于土壤中Se的吸附和固定。
综上说明,除成土母质和自然环境外,土壤理化性质是土壤Se富集的重要因素。
4. 结论
(1) 研究区土壤Se含量以足-高硒为主(占83.84%),其中足硒占52.53%、高硒占31.31%,硒缺乏-边缘土地占16.16%,无硒过剩区。
(2) 足-富硒土壤的分布对成土母质具有较好的继承性,其分布整体与侵入岩及石炭系灰岩、砂质灰岩、砂岩和古近系红色泥岩等一致。
(3) 富硒土的土壤类型主要为草甸土和栗钙土,主要的土壤质地为红粘土和黑粘土。
(4) 碱性环境下Se的迁移淋滤作用较强,不利于土壤中Se的固定;Se更容易在土壤壤质化程度较高、粒度较细、铁铝氧化物矿物含量较高的粘土中富集。
致谢: 中国地质科学院地质力学研究所孙玉军副研究员和徐昊硕士在野外补采样中给予了帮助,国土资源部古地磁与古构造重建重点实验室其他成员在样品测试和分析中给予了指导和帮助,在此一并致以诚挚的谢意。 -
图 1 青藏高原东南缘研究区构造地质简图(A, 据参考文献[44]修改)和保山地体北部及邻区地质简图(B)
(采样点位于保山地体北部保山盆地羊邑组中)
CDF—川滇断块;SMT—思茅地体;BST—保山地体;TCB—腾冲地块;LMSF—龙门山断裂;XSH-XJF—鲜水河小江断裂;RRF—哀牢山-红河断裂;DBPF—奠边府断裂;WCSZ—王朝韧性剪切带;MFTF—主前缘逆冲断裂带Figure 1. Schematic tectonic geological map of the southeastern edge of Tibetan Plateau (A) and tectonic map of the North Baoshan Terrane (B)
图 9 保山地体以南汀河断裂带为旋转边界的旋转量构造简图
SMT—思茅地体;BST—保山地体;TCB—腾冲地块;CDF—川滇断块;ARF—哀牢山-红河断裂;NTF—南汀河断裂;WDF—畹町断裂;GLGF—高黎贡断裂带;CSF—崇山断裂带;WCSZ—王朝韧性剪切带;XSH-XJF—鲜小河小江断裂
Figure 9. Generalized tectonic map illustrating the rotation of the Baoshan Terrane around the fitted Euler pole (red star) along the Nantinghe fault system
表 1 保山地体上新世羊邑组YYN剖面各采点磁化率各向异性(AMS)测试结果
Table 1 Measurement results of anistropy magnetic susceptibility (AMS) of YYN section, Pliocene Yangyi Formation in Baoshan Terrane
采点 坐标N/E 走向/倾角/º n Km×10-6SI L F Pj T K1 K2 K3 q K1D/I(º) K2D/I(º) K3D/I(º) YYN2 24°59′/99°14′ 147/32 10 140 1.004 1.013 1.018 0.564 1.006 1.003 0.991 0.22 322.6/0.9 232.6/2.8 69.8/87.1 YYN3 24°59′/99°14′ 135/16 7 119 1.002 1.024 1.029 0.816 1.009 1.007 0.984 0.08 342/2.8 252/1.3 136.6/86.9 YYN4 24°59′/99°14′ 346/4 6 100 1.002 1.026 1.032 0.826 1.009 1.006 0.985 0.13 139.3/4.1 49.2/2.6 287.5/85.1 YYN5 24°59′/99°14′ 18/11 6 96 1.006 1.026 1.034 0.627 1.01 1.008 0.983 0.08 280.5/2.8 190.4/1.6 71.4/86.8 YYN6 24°59′/99°14′ 8/3 6 138 1.006 1.037 1.047 0.768 1.014 1.01 0.976 0.11 84.8/10.2 354.4/1.9 253.9/79.6 YYN7 24°59′/99°14′ 25/4 6 111 1.008 1.016 1.025 0.331 1.01 1.002 0.988 0.44 275.2/0.9 185.1/6.5 13.3/83.4 YYN8 24°59′/99°14′ 25/4 6 125 1.011 1.014 1.026 0.094 1.008 1.004 0.988 0.22 92.2/9.8 183/4.9 299.2/79.1 YYN9 24°59′/99°14′ 25/4 6 129 1.01 1.01 1.02 0.028 1.009 1 0.99 0.62 102.4/10.5 193/3.5 301.1/78.9 YYN10 24°59′/99°14′ 37/30 6 114 1.007 1.019 1.028 0.462 1.009 1.004 0.986 0.24 114.9/0.2 204.9/5.8 22.7/84.2 YYN11 24°59′/99°14′ 206/25 6 218 1.007 1.012 1.02 0.216 1.009 1.002 0.989 0.42 106.9/2 16.6/8.5 209.8/81.3 YYN12 24°59′/99°14′ 206/25 6 183 1.006 1.018 1.026 0.504 1.01 1.004 0.986 0.29 114/0.8 204.1/6.5 16.9/83.4 YYN13 24°59′/99°14′ 206/25 6 311 1.004 1.019 1.025 0.607 1.008 1.005 0.987 0.15 109.2/4 200.1/12.4 1.8/77 YYN14 24°59′/99°14′ 206/25 5 172 1.002 1.021 1.026 0.792 1.008 1.006 0.986 0.1 114.2/5.1 204.8/6.7 346.9/81.5 YYN15 24°58′/99°16′ 22/27 6 126 1.003 1.021 1.026 0.747 1.008 1.005 0.987 0.15 280/10.4 11/5.6 128.8/78.2 YYN16 24°58′/99°16′ 22/27 6 121 1.004 1.019 1.025 0.523 1.007 1.004 0.99 0.19 330.9/4.8 240.6/3.7 112.8/83.9 YYN17 24°58′/99°16′ 22/27 6 103 1.005 1.015 1.021 0.384 1.005 1.003 0.992 0.17 333/20 241.4/4.6 139.1/69.4 YYN18 24°58′/99°16′ 22/27 6 98 1.006 1.016 1.023 0.422 1.007 1.002 0.991 0.37 318.4/8 50.3/13.3 198.3/74.4 YYN19 24°58′/99°16′ 22/27 6 148 1.006 1.011 1.018 0.241 1.003 1.001 0.996 0.33 293.9/22.4 27.5/8.7 137.3/65.8 YYN20 24°58′/99°16′ 22/27 6 108 1.004 1.008 1.012 0.252 1.005 1.001 0.994 0.44 300.4/14.9 31.7/4.8 139.1/74.3 YYN21 24°58′/99°16′ 4/17 6 108 1.002 1.022 1.027 0.759 1.008 1.007 0.985 0.04 300.8/5.2 210.4/4.5 79.9/83.1 YYN22 24°58′/99°16′ 4/17 10 159 1.002 1.023 1.028 0.832 1.008 1.007 0.985 0.04 306.1/3.9 215.8/3.6 83.3/84.7 YYN24 24°59′/99°13′ 近水平 7 222 1.006 1.026 1.034 0.641 1.011 1.007 0.982 0.15 160.1/4.7 68.7/16.7 265.3/72.7 YYN25 24°59′/99°13′ 240/19 6 147 1.004 1.015 1.021 0.558 1.007 1.004 0.989 0.18 130.3/1.1 40.2/2.7 242.1/87.1 YYN26 24°59′/99°13′ 240/19 6 155 1.005 1.021 1.028 0.652 1.007 1.006 0.987 0.05 114.7/1.7 24.5/9.2 215.1/80.6 YYN27 24°59′/99°13′ 24019 6 136 1.004 1.016 1.022 0.595 1.006 1.003 0.991 0.22 111.8/1.2 21.8/2.4 228/87.3 YYN28 24°59′/99°13′ 24019 6 140 1.002 1.015 1.019 0.698 1.006 1.004 0.99 0.13 321.4/2.4 51.8/7.6 214.2/82.1 YYN29 24°59′/99°13′ 24019 6 277 1.006 1.023 1.032 0.571 1.012 1.005 0.983 0.27 301.2/3.5 31.4/3.7 167.6/84.9 YYN30 24°59′/99°13′ 近水平 6 307 1.004 1.023 1.029 0.699 1.01 1.006 0.984 0.17 292.6/3.1 22.7/1.6 139.8/86.5 YYN-ALL 177 1.54E-04 1.005 1.019 1.026 0.551 1.007 1.005 0.988 0.11 117.8/0 27.8/1.2 208.6/88.8 注:n为样品数;Km是平均磁化率;磁线理L=K1/K2;磁面理F=K2/K3;形态参数T=(2η2-η1-η3)/(η1-η3);η1=InK1,η2=InK2,η3=InK3,ηm=(η1+η2+η3)/3;各向异性度p=exp{sqrt[2×((η1-ηm)2+(η2-ηm)2+(η3-ηm)2]};f=90-K3;q=(K1-K2)/[(K1+K2)/2-K3] 表 2 保山地体北部保山盆地上新世羊邑组YYN剖面特征剩磁分量
Table 2 High-temperature magnetic components of the Pliocene Yangyi Formation of section YYN in the central part of the Baoshan Basin in the north part of Baoshan Terrane
采点 坐标 地层产状 n/N 地层校正前 地层校正后 Kg/Ks α95g/α95s 虚地磁极VGP N/E 走向/倾角(º) 偏角(º) 倾角(º) 偏角(º) 倾角(º) 纬度(°N) 经度(°E) A95(º) YYN2 24°58′52″/99°14′12″ 147/32 9/ 32.4 12.9 24.3 41.2 13.6 14.5 67.8 187.6 13.8 YYN4 24°58′52″/99°14′12″ 85/16 10/ 14.2 28.8 14.4 37.5 59.4/69 6.4/6.0 76.2 203.1 5.4 YYN7 24°58′52″/99°14′12″ 25/4 8/ 18.2 36.1 22.1 36.2 23.6/23.0 11.6/11.8 69 198.2 10.5 YYN11 24°58′52″/99°14′12″ 37/10 11/ 32.2 43.8 41.8 43.8 22.5 11.2 52.4 179 11.1 YYN12 24°58′44″/99°14′07″ 206/25 8/ 219.9 -15.1 210.3 -20.3 29.1/31.4 10.4/10.0 57.8 210.6 7.6 YYN17 24°57′33″/99°15′41″ 22/27 8/ 197.7 -33.9 215.4 -31.6 20.5 12.6 56.1 195.7 10.6 YYN20 24°57′33″/99°15′41″ 22/27 7/ 183 -30.2 200.3 -34.9 19.9 14 70.4 202.2 12.2 YYN21 24°57′33″/99°15′41″ 22/27 8/ 174.2 -37.8 187.8 -38.7 32.8 9.8 82.2 211.4 9 YYN22 24°57′33″/99°15′41″ 4/17 9/ 175.2 -33.9 186.9 -34.8 91.7 5.4 81.4 230.2 4.7 YYN24 24°59′20″/99°13′27″ 近水平 9/ 188.6 -46.4 188.6 -46.4 43.3 7.9 81.8 167.9 8.1 YYN25 24°59′20″/99°13′27″ 240/19 12/ 227 -42.6 212.2 -35.9 17.4 10.7 59.9 192.4 9.5 YYN26 24°59′20″/99°13′27″ 240/19 7/ 202.9 -52.6 188.6 -39.2 67.9 7.4 81.6 207 6.8 YYN27 24°59′20″/99°13′27″ 240/19 11/ 217.2 -53.1 202.2 -40.2 23.9 9.5 69.6 190.5 8.9 YYN28 24°59′20″/99°13′27″ 240/19 10/ 216.4 -40.2 204.5 -30.7 19.5 11.2 65.6 204.8 9.3 YYN29 24°59′20″/99°13′27″ 240/19 8/ 207.1 -51.1 192.5 -38.7 15.6 14.5 78.1 202.1 13.3 YYN30 24°59′20″/99°13′27″ 240/19 10/ 22.2 49.3 9.5 35.9 79.8 5.4 79.9 217.5 4.8 YYN剖面高温剩磁分量平均方向 /16 21.6 39.1 20.2 37.1 21.9/59.7 8.1/4.8 71 197.6 5 注:褶皱检验:99%置信度下通过褶皱检验[71],Kc/Ks=2.72,F(30, 30) =2.38;通过褶皱检验[69],DC slope:0.94±0.273;倒转检验:95%置信度下通过C类检验,平均γ=3.9 < 标准γ=10.6;n和N分别是古地磁采点内采样数和用于统计的采点数;k是统计精确度指数;α95和A95是平均方向95%置信度区间 表 3 保山地体和腾冲地块白垩纪—新生代古地磁数据
Table 3 The Cretaceous and Cenozoic paleomagnetic data obtained from the Baoshan Terrane and the Tengchong Terrane
研究区 坐标(N/E) 地层时代 N/n 观测值 古纬度 虚地磁极VGP 相对于东亚稳定区 磁化类型 参考文献 偏角(°) 倾角(°) α95 观测值(°N) 期望值(°N) 纬度(°N) 经度(°E) A95 (°) k 旋转量(°) 纬度运移量(°) 参考极 BST (永德) 24.2°/99.0° 古新世 5 76.9 17.8 10.4 9.1±5.6 17.3±4.1 15.6 186.2 8.3 86.3 72.4±9.4 8.2±7.4 60Ma 原生分量 [44] TCB (片马) 25.9°/98.8° 约40Ma 5/ 89.8 35.1 11.8 19.7±7.8 18.3±4.2 8.5 171.3 10.3 87.2±11.8 1.1±8.9 40Ma 原生分量 [43] BST (芒市) 24.3°/98.4° 中新世 6/ 99.7 35.2 11.3 19.4±7.5 19.4±3.1 -0.5 166.8 12.2 97.6±13.3 0.0±10.1 20Ma 重磁化分量 [39] BST (昌宁) 24.4°/99.3° 中新世 22/ 81.7 35.1 3.8 19.4±2.5 19.5±3.1 15.1 174.6 3.8 66.3 79.6±5.2 0.2±3.9 20Ma 重磁化分量 [44] BST (芒市) 24.3°/98.4° 中新世 6/ 60.9 32 5.9 17.4±3.7 19.0±3.1 33.1 182.9 5.8 58.7±6.9 2.1 ±5.3 20Ma 重磁化分量 [43] BST (昌宁) 24.4°/99.3° 中新世 /11 55.8 47.1 9 28.3±7.5 19.5±3.1 40.3 172 8.9 53.6±10.6 -8.8±7.5 20Ma 重磁化分量 [44] BST (六库) 26.0°/ 98.8° 约30Ma 12/ 42.3 47 7.8 28.2±6.5 20.2±2.8 52.7 175.7 8.1 39.9±9.7 -8.0±6.9 30Ma [39] BST (保山) 25.0°/99.2° 中新世末6±0.2Ma 16/ 20.2 37.1 4.8 20.9±5.0 22.7±2.6 71 197.6 5.0 55.4 19.2±6.0 1.8±4.5 l0Ma 原生分量 本次研究 东亚磁极移曲线[7] 0Ma 纬度=89.0° 经度=76.6° k=200.7 A95=0.4° 10Ma 纬度=87.5° 经度=257.3° k=154.8 A95=2.6° 20Ma 纬度=84.7° 经度=255.9° k=112.5 A95=3.1° 30Ma 纬度=83.9° 经度=259.6° k=106.7 A95=2.8° 40Ma 纬度=81.9° 经度=260.8° k=94.8 A95=4.2° 60Ma 纬度=81.9° 经度=247.5° k=57.4 A95=4.1° 80Ma 纬度=79.5° 经度=216.9° k=42.2 A95=3.4° 注:N/n分别代表了用于古地磁结果统计的采点数和样品数;k是统计精确度指数;α95和A95是平均方向 95%置信度区间。旋转量: 正负值分别代表了顺时针旋转和逆时针旋转;纬向运移:正负值分别指示了南向纬向运移和北向纬向运移 -
Klootwijk C T, Gee J S, Peirce J W, et al. An early India-Asia contact:Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121[J]. Geology, 1992, 20(5):395-398. doi: 10.1130/0091-7613(1992)020<0395:AEIACP>2.3.CO;2
Najman Y, Appel E, Bown P, et al. Timing of India-Asia collision:Geological, biostratigraphic, and palaeomagnetic constraints[J]. Journal of Geophysical Research, 2010, 115(B12):1-70. doi: 10.1029/2010JB007673
Copley A, Avouac J, Royer J. India-Asia collision and the Cenozoic slowdown of the Indian plate:Implications for the forces driving plate motions[J]. Journal of Geophysical Research Atmospheres, 2010, 115(B3):181-192. doi: 10.1029/2009JB006634
Dupont-Nivet G, Lippert P C, Van Hinsbergen D J J, et al. Palaeolatitude and age of the Indo-Asia collision:palaeomagnetic constraints[J]. Geophysical Journal International, 2010, 182(3):1189-1198. doi: 10.1111/j.1365-246X.2010.04697.x
Van Hinsbergen D J J, Kapp P, Dupont-Nivet G, et al. Restoration of Cenozoic deformation in Asia and the size of Greater India[J]. Tectonics, 2011, 193(5):8-16. http://www.geo.uu.nl/~forth/publications/Hinsbergen_2011a.pdf
Sun Z, Pei J, Li H, et al. Palaeomagnetism of late Cretaceous sediments from southern Tibet:Evidence for the consistent palaeolatitudes of the southern margin of Eurasia prior to the collision with India[J]. Gondwana Research, 2012, 21(1):53-63. doi: 10.1016/j.gr.2011.08.003
Cogné J P, Besse J, Chen Y, et al. A new Late Cretaceous to Present APWP for Asia and its implications for paleomagnetic shallow inclinations in Central Asia and Cenozoic Eurasian plate deformation[J]. Geophysical Journal International, 2013, 192(3):1000-1024. doi: 10.1093/gji/ggs104
Yang T, Ma Y, Zhang S, et al. New insights into the India-Asia collision process from Cretaceous paleomagnetic and geochronologic results in the Lhasa terrane[J]. Gondwana Research, 2015, 28(2):625-641. doi: 10.1016/j.gr.2014.06.010
Ma Y, Yang T, Bian W, et al. Paleomagnetic and geochronologic results of latest Cretaceous lava flows from the Lhasa terrane and their tectonic implications[J]. Journal of Geophysical Research Solid Earth, 2017, 122(11):8786-8809. doi: 10.1002/jgrb.v122.11
Tapponnier P, Peltzer G, Dain A Y L, et al. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology, 1982, 10(10):611-616. https://www.researchgate.net/publication/239225686_Propagating_extrusion_tectonics_in_Asia_New_insights_from_simple_experiments_with_plasticine
Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(1/4):3-10. http://www.geo.tu-freiberg.de/tektono/downloadfiles/Leloup%20et%20al.,%20Ailao%20Shan,%20Yunnan,%20Tectonoph%20%20251,%203-84,%201995.pdf
Wang E. Late cenozoic Xianshuihe/Xiaojiang and Red River fault systems of southwestern Sichuan and central Yunnan, China[J]. Special Paper of the Geological Society of America, 1998, 327:1-108. https://www.researchgate.net/publication/279409427_Late_Cenozoic_Xianshuihe-Xiaojiang_Red_River_and_Dali_Fault_Systems_of_Southwestern_Sichuan_and_Central_Yunnan_China
Wang E, Burchfiel B C. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau[J]. Geological Society of America Bulletin, 2000, 112(3):413-423. doi: 10.1130/0016-7606(2000)112<413:LCTHDI>2.0.CO;2
Molnar P, Dayem K E. Major intracontinental strike-slip faults and contrasts in lithospheric strength[J]. Geosphere, 2010, 6(4):444-467. doi: 10.1130/GES00519.1
Funahara S, Nishiwaki N, Murata F, et al. Clockwise rotation of the Red River fault inferred from paleomagnetic study of Cretaceous rocks in the Shan-Thai-Malay block of Western Yunnan, China[J]. Earth & Planetary Science Letters, 1993, 117(1/2):29-42.
Chen H, Dobson J, Heller F, et al. Paleomagnetic evidence for clockwise rotation of the Simao region since the Cretaceous:A consequence of India-Asia collision[J]. Earth & Planetary Science Letters, 1995, 134(1/2):203-217.
Otofuji Y I, Liu Y, Yokoyam M, et al. Tectonic deformation of the southwestern part of the Yangtze craton inferred from paleomagnetism[J]. Earth & Planetary Science Letters, 1998, 156(1/2):47-60. https://www.deepdyve.com/lp/elsevier/tectonic-deformation-of-the-southwestern-part-of-the-yangtze-craton-MFwVXvc6ad
Yang Z, Sun Z, Ma X H, et al. Palaeomagnetic Study of the Early Tertiary on both Sides of the Red River Fault and Its Geological Implications[J]. Acta Geologica Sinica, 2001, 75:35-44. https://www.researchgate.net/publication/283915275_Palaeomagnetic_study_of_the_early_Tertiary_on_both_sides_of_the_red_river_fault_and_its_geological_implications
Sato K, Liu Y, Zhu Z, et al. Tertiary paleomagnetic data from northwestern Yunnan, China:further evidence for large clockwise rotation of the Indochina block and its tectonic implications[J]. Earth & Planetary Science Letters, 2001, 185(1/2):185-198. https://www.sciencedirect.com/science/article/pii/S0012821X00003770
Yoshioka S, Yu Y L, Sato K, et al. Paleomagnetic evidence for post-Cretaceous internal deformation of the Chuan Dian Fragment in the Yangtze block:a consequence of indentation of India into Asia[J]. Tectonophysics, 2003, 376(1):61-74. https://www.deepdyve.com/lp/elsevier/paleomagnetic-evidence-for-post-cretaceous-internal-deformation-of-the-Qsmxafe64E
Tamai M, Liu Y, Lu L Z, et al. Palaeomagnetic evidence for southward displacement of the Chuan Dian fragment of the Yangtze Block[J]. Geophysical Journal International, 2004, 158(1):297-309. doi: 10.1111/gji.2004.158.issue-1
Tanaka K, Mu C, Sato K, et al. Tectonic deformation around the eastern Himalayan syntaxis:Constraints from the Cretaceous paleomagnetic data of the Shan-Thai Block[J]. Geophysical Journal International, 2008, 175:713-728. doi: 10.1111/gji.2008.175.issue-2
Otofuji Y I, Yokoyama M, Kitada K, et al. Paleomagnetic versus GPS determined tectonic rotation around eastern Himalayan syntaxis in East Asia[J]. Journal of Asian Earth Sciences, 2010, 37(5/6):438-451. https://www.deepdyve.com/lp/elsevier/paleomagnetic-versus-gps-determined-tectonic-rotation-around-eastern-UdbaGQOHvG
Tong Y B, Yang Z, Zheng L D, et al. Internal crustal deformation in the northern part of Shan-Thai Block:New evidence from paleomagnetic results of Cretaceous and Paleogene redbeds[J]. Tectonophysics, 2013, 608(47):1138-1158. http://adsabs.harvard.edu/abs/2013Tectp.608.1138T
Tong Y B, Yang Z, Wang H, et al. The Cenozoic rotational extrusion of the Chuan Dian Fragment:New paleomagnetic results from Paleogene red-beds on the southeastern edge of the Tibetan Plateau[J]. Tectonophysics, 2015, 658:46-60. doi: 10.1016/j.tecto.2015.07.007
Wang H, Yang Z, Tong Y, et al. Palaeomagnetic results from Palaeogene red beds of the Chuan-Dian Fragment, southeastern margin of the Tibetan Plateau:implications for the displacement on the Xianshuihe-Xiaojiang fault systems[J]. International Geology Review, 2016, 58(11):1363-1381. doi: 10.1080/00206814.2016.1157710
Gao L, Yang Z, Tong Y, et al. Cenozoic clockwise rotation of the Chuan Dian Fragment, southeastern edge of the Tibetan Plateau:Evidence from a new paleomagnetic study[J]. Journal of Geody-namics, 2017, 112:46-57. doi: 10.1016/j.jog.2017.10.001
Shen Z K, Lü J, Wang M, et al. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. Journal of Geophysical Research Solid Earth, 2005, 110(B11409):1-17.
Gan W, Zhang P, Shen Z K, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research Solid Earth, 2007, 112(B8):582-596.
Molnar P, Tapponnier P. Cenozoic Tectonics of Asia:Effects of a Continental Collision:Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision.[J]. Science, 1975, 189(4201):419-426. doi: 10.1126/science.189.4201.419
England P, Houseman G. Finite strain calculations of continental deformation:2. Comparison with the India-Asia Collision Zone[J]. Journal of Geophysical Research, 1986, 91(91):3664-3676. https://www.researchgate.net/publication/248790767_Finite_strain_calculations_of_continental_deformation_2_Comparison_with_the_India-Asia_Collision_Zone
Peltzer G, Tapponnier P, Gaudemer Y, et al. Offsets of Late Quaternary morphology, rate of slip, and recurrence of large earthquakes on the Chang Ma Fault (Gansu, China)[J]. Journal of Geophysical Research Solid Earth, 1988, 93(B7):7793-7812. doi: 10.1029/JB093iB07p07793
Bird P. Lateral extrusion of lower crust from under high topography in the isostatic limit[J]. Journal of Geophysical Research Solid Earth, 1991, 96(B6):10275-10286. doi: 10.1029/91JB00370
Clark M K, Royden L H. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8):703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
Royden L H, Burchfiel B C, King R W, et al. Surface Deformation and Lower Crustal Flow in Eastern Tibet[J]. Science, 1997, 276(5313):788-790. doi: 10.1126/science.276.5313.788
ErchieWang, Burchfiel B C. Interpretation of Cenozoic Tectonics in the Right-Lateral Accommodation Zone Between the Ailao Shan Shear Zone and the Eastern Himalayan Syntaxis[J]. International Geology Review, 1997, 39(3):191-219. doi: 10.1080/00206819709465267
Wu Z H, Long C, Fan T, et al. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 2015, 34(1):1-31.
Huang K, Opdyke N D. Paleomagnetism of Cretaceous to lower Tertiary rocks from southwestern Sichuan:a revisit[J]. Earth & Planetary Science Letters, 1992, 112(1/4):29-40. https://www.researchgate.net/publication/248411400_Paleomagnetism_of_Cretaceous_to_Lower_Tertiary_rocks_from_Southwestern_Sichuan_a_revisit
Huang K, Opdyke N D. Paleomagnetic results from Cretaceous and Jurassic rocks of South and Southwest Yunnan:evidence for large clockwise rotations in the Indochina and Shan-Thai-Malay terranes[J].Earth & PlanetaryScienceLetters, 1993, 117(3/4):507-524. https://www.researchgate.net/publication/248411556_Paleomagnetic_results_from_Cretaceous_and_Jurassic_rocks_of_South_and_Southwest_Yunnan_evidence_for_large_clockwise_rotations_in_the_Indochina_and_Shan-Thai-Malay_terranes
Yang Z Y, Besse J, Sutheetorn V, et al. Lower-Middle Jurassic paleomagnetic data from the Mae Sot area (Thailand):Paleogeographic evolution and deformation history of Southeastern Asia[J]. Earth & Planetary Science Letters, 1995, 136(3):325-341. https://www.researchgate.net/publication/248411730_Lower-Middle_Jurassic_paleomagnetic_data_from_the_Mae_Sot_area_Thailand_Paleogeographic_evolution_and_deformation_history_of_Southeastern_Asia
Gao L, Yang Z, Tong Y, et al. New paleomagnetic studies of Cretaceous and Miocene rocks from Jinggu, western Yunnan, China:Evidence for internal deformation of the Lanping-Simao Terrane[J]. Journal of Geodynamics, 2015, 89:39-59. doi: 10.1016/j.jog.2015.06.004
Tsuchiyama Y, Zaman H, Sotham S, et al. Paleomagnetism of Late Jurassic to Early Cretaceous red beds from the Cardamom Mountains, southwestern Cambodia:Tectonic deformation of the Indochina Peninsula[J]. Earth & Planetary Science Letters, 2016, 434(7):274-288. https://www.researchgate.net/publication/287199545_Paleomagnetism_of_Late_Jurassic_to_Early_Cretaceous_red_beds_from_the_Cardamom_Mountains_southwestern_Cambodia_Tectonic_deformation_of_the_Indochina_Peninsula
Kornfeld D, Eckert S, Appel E, et al. Cenozoic clockwise rotation of the Tengchong block, southeastern Tibetan Plateau:A paleomagneticandgeochronologicstudy[J].Tectonophysics, 2014, 628:105-122. doi: 10.1016/j.tecto.2014.04.032
Tong Y, Yang Z, Jing X, et al. New insights into the Cenozoic lateral extrusion of crustal blocks on the southeastern edge of Tibetan Plateau:Evidence from paleomagnetic results from Paleogene sedimentary strata of the Baoshan Terrane[J]. Tectonics, 2016, 35(11):2494-2514. doi: 10.1002/2016TC004221
卢海建, 王二七, 李仕虎, 等.青藏高原东南缘构造旋转变形分析:以四川盐源盆地古地磁研究为例[J].中国地质, 2015(5):1188-1201. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201505002.htm Akciz S, Burchfiel B C, Crowley J L, et al. Geometry, kinematics, and regional significance of the Chong Shan shear zone, Eastern Himalayan Syntaxis, Yunnan, China[J]. Geosphere, 2008, 4(1):292. doi: 10.1130/GES00111.1
Xu Z, Ji S, Cai Z, et al. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya:Constraints from deformation, fabricsandgeochronology[J].GondwanaResearch, 2012, 21(1):19-36. https://www.deepdyve.com/lp/elsevier/kinematics-and-dynamics-of-the-namche-barwa-syntaxis-eastern-himalaya-Lgjea9bBbT
Wang Y, Fan W, Zhang Y, et al. Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China:Implications for early Oligocene tectonic extrusion of SE Asia[J]. Tectonophysics, 2006, 418(3/4):235-254.
Lin T H, Lo C H, Chung S L, et al. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones:Implications for crustal deformation around the Eastern Himalayan Syntaxis[J]. Journal of Asian Earth Sciences, 2009, 34(5):674-685. doi: 10.1016/j.jseaes.2008.10.009
Wopfner H. Gondwana origin of the Baoshan and Tengchong terranes of west Yunnan[J]. Geological Society of London, 1996, 106(1):539-547. doi: 10.1144/GSL.SP.1996.106.01.34
戴苏兰, 赵泽江.云南保山盆地的形成与演化[J].矿物岩石, 1998, (s1):116-123. http://mall.cnki.net/magazine/Article/SYSD199802002.htm 张远志.云南省岩石地层[M].武汉:中国地质大学出版社, 1996. Thebault E, Finlay C, Group T I W. The International Geomagnetic Reference Field:the twelfth generatio[J]. Geophysical Journal International, 2010, 183(3):1216-1230. doi: 10.1111/j.1365-246X.2010.04804.x
Lowrie W. Identification of ferromagnetic minerals in a rock by co-ercivity and unblocking temperature properties[J]. Geophysical Research Letters, 1990, 17(2):159-162. doi: 10.1029/GL017i002p00159
Dunlop D J, Özdemir Ö. Rock Magnetism:Fundamentals and Frontiers[M]. Cambridge University Press, 1997.
Maher B A, Thompson R. Quaternary Climates, Environments and Magnetism[M]. Cambridge Univ. Press, 1999.
Hüsing S K, Dekkers M J, Franke C, et al. The Tortonian reference section at Monte dei Corvi (Italy):evidence for early remanence acquisition in greigite-bearing sediments[J]. Geophysical Journal International, 2009, 179(1):125-143. doi: 10.1111/gji.2009.179.issue-1
Passier H F, De Lange G J, Dekkers M J. Magnetic properties and geochemistry of the active oxidation front and the youngest sapropel in the eastern Mediterranean Sea[J]. Geophysical Journal International, 2001, 145(3):604-614. doi: 10.1046/j.0956-540x.2001.01394.x
Roberts A P, Chang L, Rowan C J, et al. Magnetic properties of sedimentary greigite (Fe3S4):An update[J]. Reviews of Geophysics, 2011, 49(1):RG1002(1-46). http://www.academia.edu/2539348/MAGNETIC_PROPERTIES_OF_SEDIMENTARY_GREIGITE_Fe3S4_AN_UPDATE
Duan Z, Liu Q, Gai C, et al. Magnetostratigraphic and environmental implications of greigite (Fe3S4) formation from Hole U1433A of the IODP Expedition 349, South China Sea[J]. Marine Geology, 2017, 394:82-97. doi: 10.1016/j.margeo.2017.02.008
Kruiver P P, Dekkers M J, Heslop D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation[J]. Earth & Planetary Science Letters, 2001, 189(3/4):269-276. https://www.deepdyve.com/lp/elsevier/quantification-of-magnetic-coercivity-components-by-the-analysis-of-T6wAQPEMFs
Heslop D, Dillon M. Unmixing magnetic remanence curves without a priori knowledge[J]. Geophysical Journal of the Royal Astronomical Society, 2007, 170(2):556-566. doi: 10.1111/gji.2007.170.issue-2
Tarling D H, Hrouda F. The magnetic anisotropy of rocks[M]. Chapman and Hall, London, 1993.
罗良, 贾东, 陈竹新, 等.川西北磁组构演化及其揭示的应变特征[J].地质通报, 2006, 25(11):1342-1348. doi: 10.3969/j.issn.1671-2552.2006.11.015 Luo L, Jia D, Li H, et al. Magnetic fabric investigation in the northwestern Sichuan Basin and its regional inference[J]. Physics of the Earth & Planetary Interiors, 2009, 173(1/2):103-114. https://www.doc88.com/p-6721222546522.html
Zijderveld A C. Demagnetization of rocks: Analysis of results[C]//Collinson D W, Creer K M, Runcorn S K. Methods in Paleomagnetism, Methods in Paleomagnetism. Elsevier, Amsterdam, 1967: 254-286.
Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3):699-718. doi: 10.1111/gji.1980.62.issue-3
Fisher R. Dispersion on a Sphere[J]. Proceedings of the Royal Society of London, 1953, 217(1130):295-305. doi: 10.1098/rspa.1953.0064
Enkin R J. A computer program package for analysis and presentation of paleomagnetic data[J]. Pacific Geoscience Centre, Geological Survey of Canada, 1994:1-16. doi: 10.2478/s11600-006-0016-9
Cogné J P. PaleoMac:A MacintoshTM application for treating paleomagnetic data and making plate reconstructions[J]. Geochemistry Geophysics Geosystems, 2003, 4(1):233-236. https://www.researchgate.net/publication/228535927_PaleoMac_A_MacintoshTM_application_for_treating_paleomagnetic_data_and_making_plate_reconstructions
Mcelhinny M W. Statistical Significance of the Fold Test in Palaeo-magnetism[J]. Geophysical Journal of the Royal Astronomical Society, 1964, 8(3):338-340.
Enkin R J. The direction-correction tilt test:an all-purpose tilt/fold test for paleomagnetic studies[J]. Earth & Planetary Science Letters, 2003, 212(1/2):151-166. https://www.deepdyve.com/lp/elsevier/the-direction-correction-tilt-test-an-all-purpose-tilt-fold-test-for-fW5BxTtg0A
Mcfadden P L, Mcelhinny M W. Classification of the reversal test in palaeomagnetism[J]. Geophysical Journal International, 1990, 103(3):725-729. doi: 10.1111/gji.1990.103.issue-3
汪彦, 彭军, 李凯军, 等.高分辨率层序地层学在保山盆地永铸街凸起构造-沉积演化中的应用[J].天然气地球科学, 2005, 16(6):741-746. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx200506011 Kornfeld D, Eckert S, Appel E, et al. Clockwise rotation of the Baoshan Block due to southeastward tectonic escape of Tibetan crust since the Oligocene[J]. Geophysical Journal International, 2014, 197(1):149-163. doi: 10.1093/gji/ggu009
Spurlin M S, Yin A, Horton B K, et al. Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, eastcentral Tibet[J]. Geological Society of America Bulletin, 2005, 117(9/10):1293-1317. http://www.researchgate.net/publication/235980451_Structural_evolution_of_the_Yushu-Nangqian_region_and_its_relationship_to_syn-collisional_igneous_activity_east-central_Tibet
Aikman A B, Harrison T M, Lin D. Evidence for Early (>44Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet[J]. Earth & Planetary Science Letters, 2008, 274(1/2):14-23.
Tong Y, Yang Z, Mao C, et al. Paleomagnetism of Eocene redbeds in the eastern part of the Qiangtang Terrane and its implications for uplift and southward crustal extrusion in the southeastern edge of the Tibetan Plateau[J]. Earth & Planetary Science Letters, 2017, 475:1-14
Tang M, Jing L Z, Hoke G D, et al. Paleoelevation reconstruction of the Paleocene-Eocene Gonjo basin, SE-central Tibet[J]. Tectonophysics, 2017, (712/713):170-181. http://www.sciencedirect.com/science/article/pii/S0040195117302019
Lan J B, Xu Y G, Yang Q J, et al.~40Ma OIB-type mafic magmatism in the Gaoligong belt:results of break-off between subducting Tethyan slab and Indian plate?[J]. Acta Petrologica Sinica, 2007, 23(6):1334-1346. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200706009.htm
Yang Z, Hou Z, Yang Z, et al. Genesis of porphyries and tectonic controls on the Narigongma porphyry Mo(-Cu) deposit, southern Qinghai[J]. Acta Petrologica Sinica, 2008, 24(3):489-502. https://www.researchgate.net/publication/257941275_Genesis_of_porphyries_and_tectonic_controls_on_the_Narigongma_porphyry_Mo-Cu_deposit_Southern_Qinghai
Wang Q, Wyman D A, Li Z X, et al. Eocene north-south trending dikes in central Tibet:New constraints on the timing of east-west extension with implications for early plateau uplift?[J]. Earth & Planetary Science Letters, 2010, 298(1):205-216.
Sato K, Liu Y, Wang Y, et al. Paleomagnetic study of Cretaceous rocks from Pu'er, western Yunnan, China:Evidence of internal deformation of the Indochina block[J]. Earth & Planetary Science Letters, 2007, 258(1/2):1-15. http://www.sciencedirect.com/science/article/pii/S0012821X07000854
Li S H, Advokaat E L, Hinsbergen D J J V, et al. Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of Indochina and South China:Review and updated kinematic reconstruction[J]. Earth-Science Reviews, 2017, 171:58-77. doi: 10.1016/j.earscirev.2017.05.007
仝亚博, 杨振宇, 王恒, 等.中国西南思茅地体中部白垩纪古地磁结果及陆内地壳变形特征[J].地球物理学报, 2014, 57(1):179-198. doi: 10.6038/cjg20140116 徐锡伟, 张培震, 闻学泽, 等.川西及其邻近地区活动构造基本特征与强震复发模型[J].地震地质, 2005, 27(3):446-461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200503010 Socquet A, Pubellier M. Cenozoic deformation in western Yunnan (China-Myanmar border)[J]. Journal of Asian Earth Sciences, 2005, 24(4):495-515. doi: 10.1016/j.jseaes.2004.03.006
杨振宇, 王树兵, 仝亚博, 等. 青藏高原东南缘晚新生代年代地层及旋转变形过程的古地磁学限定(地质调查项目(12120114002301)成果报告). 2017. -
期刊类型引用(15)
1. 杨晋炜,刘强,任衍斌,丁小琴,杨贵芳,张松伟,胡利,张頔. 江苏海安里下河地区富硒土壤分布特征及成因. 地质通报. 2025(01): 173-184 . 本站查看
2. 黄栩彬,潘自平,邵茂艳,陈婷. 仁怀市茅坝镇高粱基地土壤硒地球化学分布特征及赋存形态. 湖北农业科学. 2024(02): 50-54+66 . 百度学术
3. 张群,冯辉,孙朝,李启云,姜天琪,贾磊. 北京生态涵养区土壤硒含量背景值研究. 城市地质. 2024(04): 475-482 . 百度学术
4. 王莹,马彦斌,王泽晶. 基于有效硒的富硒土壤阈值及有效硒的影响因素. 环境科学. 2023(01): 395-404 . 百度学术
5. 姬晓燕,夏炎. 地质工作与乡村振兴深度融合发展路径探讨. 中国矿业. 2023(02): 31-37 . 百度学术
6. 付巧玲,邱顺才. 论土壤硒驱动机制——以河南省崤山地区为例. 地质与勘探. 2023(03): 580-590 . 百度学术
7. 黄金兰,蒋代华,王明释,黄雪娇,邓华为,黄智刚,邓羽松. 广西富硒土壤中氧化铁对Se(Ⅳ)吸附解吸的影响机制. 土壤学报. 2023(02): 479-490 . 百度学术
8. 廖启林,金洋,崔晓丹,黄顺生,任静华,范健,杜维真,刘玮晶,徐宏婷,汪子意. 江苏富硒土壤成因类型及其元素相关性分析. 地质学刊. 2023(04): 390-401 . 百度学术
9. 梁红霞,侯克斌,陈富荣,吴正方. 安徽池州地区富硒土壤地球化学特征及成因分析. 资源环境与工程. 2022(02): 154-162 . 百度学术
10. 次仁旺堆,多吉卫色,索朗次仁,尼玛次仁,边巴次仁,平措朗杰. 西藏山南市乃东区土壤硒分布特征及影响因素. 岩矿测试. 2022(03): 427-436 . 百度学术
11. 刘阳,张海瑞,孙增兵,姜冰,王松涛. 山东省青州市西南部山区土壤硒元素特征. 中国农学通报. 2022(21): 70-75 . 百度学术
12. 王莹,刘海燕,王泽晶,张晓东,王登红. 宁夏石嘴山市农用地土壤硒的富集因素. 环境科学. 2022(08): 4179-4189 . 百度学术
13. 杨泽,刘国栋,戴慧敏,张一鹤,肖红叶,阴雨超. 黑龙江兴凯湖平原土壤硒地球化学特征及富硒土地开发潜力. 地质通报. 2021(10): 1773-1782 . 本站查看
14. 洪万华,苏特,涂飞飞,蒋天锐,张德实,余万泽. 基于土地质量地球化学方法的硒元素分布规律和影响因素研究——以铜仁地区为例. 金属矿山. 2021(12): 160-168 . 百度学术
15. 成晓梦,孙彬彬,贺灵,吴超,赵辰,曾道明. 四川省沐川县西部地区土壤硒含量特征及影响因素. 岩矿测试. 2021(06): 808-819 . 百度学术
其他类型引用(4)