LA-ICP-MS zircon U-Pb dating of the porphyaceous syenogranite in Niuxinshan along the central segment of North Qilian orogenic belt and its geological significance
-
摘要:
青海省祁连县西出露一个似斑状正长花岗岩体,运用LA-ICP-MS方法,对似斑状正长花岗岩中的锆石进行U-Pb同位素分析。测年结果显示,似斑状正长花岗岩的形成年龄为166.6±2.4Ma,表明其形成于燕山期中侏罗世,继承锆石显示前寒武纪源区的时代信息。岩石地球化学特征表明,似斑状正长花岗岩具有高硅、富碱特点,属于过铝质高钾钙碱性岩,具弱负Eu异常,富集Rb、Th、K,亏损Ba、Nb、P、Ti,Rb/Sr值平均为1.86,反映出壳源特点,为S型花岗岩。
-
关键词:
- 北祁连造山带 /
- 花岗岩 /
- 地球化学特征 /
- LA-ICP-MS锆石U-Pb测年
Abstract:The porphyaceous syenogranite pluton is exposed in the west of Qilian Country, Qinghai Province. The authors conduct-ed LA-ICP-MS zircon U-Pb dating of the porphyaceous syenogranite and the result shows that the age is 166.6±2.4Ma, suggesting the Middle Jurassic of Yanshanian period. Several inheritable magmatic zircons yielded the age information of the Precambrian peri-od. Geochemical data show that the porphyaceous syenogranite is silica-enriched in composition with high content of alkali, and hence it is a peraluminous granite and belongs to the high-K calc-alkaline series. It is characterized by enrichment of Rb, Th, K, de-pletion of Ba, Nb, P, Ti, and weak negative anomaly of Eu, with the average Rb/Sr ratio being 1.86, which reflects the characteris-tics of the crust source and indicates S type granite.
-
致谢: 感谢甘肃四堪院张野工程师及中国地质大学(北京)博士生邵华胜对野外工作的帮助,审稿专家对文章提出了诸多宝贵意见,在此表示感谢。
-
表 1 LA-ICP-MS锆石U-Th-Pb定年结果
Table 1 Results of zircon LA-ICP-MS U-Th-Pb dating
样点编号 含量/10-6 同位素比值 年龄/Ma 238U 232Th 206Pb 207Pb 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 232Th/238U 208Pb/232Th 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 1 300.53 135.79 173.85 13.22 0.0688 0.0017 1.2402 0.0296 0.1308 0.0015 0.0449 0.0008 0.4518 892 31 819 13 792 8 887 15 2 384.63 280.91 44.58 2.5 0.0508 0.0027 0.1837 0.0094 0.0262 0.0004 0.0088 0.0002 0.7303 231 92 171 8 167 2 178 4 3 228.4 75.93 131.38 9.51 0.0655 0.0023 1.1779 0.0398 0.1304 0.0017 0.0365 0.0011 0.3324 791 49 790 19 790 10 725 21 4 697.09 29.79 765.67 77.78 0.0921 0.0023 3.1631 0.0761 0.2492 0.0030 0.0616 0.0043 0.0427 1469 28 1448 19 1434 15 1209 81 5 387.47 122.34 219.75 15.72 0.0649 0.0018 1.1518 0.0307 0.1288 0.0015 0.0403 0.0009 0.3157 770 37 778 14 781 8 798 17 6 430.83 265.38 49.21 2.91 0.0536 0.0027 0.1920 0.0096 0.0260 0.0004 0.0084 0.0002 0.6160 356 86 178 8 165 2 169 4 7 227.47 166.8 26.47 1.49 0.0513 0.0036 0.1874 0.0129 0.0265 0.0005 0.0081 0.0003 0.7333 253 125 174 11 169 3 162 5 8 484.55 287.34 56.76 2.99 0.0480 0.0024 0.1767 0.0087 0.0267 0.0004 0.0087 0.0002 0.5930 97 84 165 7 170 2 175 4 9 461.8 373.97 53.92 2.97 0.0501 0.0031 0.1843 0.0111 0.0267 0.0004 0.0087 0.0002 0.8098 201 108 172 10 170 3 174 5 10 504.2 279.14 58.35 4.55 0.0710 0.0031 0.2590 0.0109 0.0265 0.0004 0.0113 0.0003 0.5536 8 139 154 9 163 2 164 5 11 349.02 223.98 39.74 2.47 0.0565 0.0036 0.2030 0.0125 0.0261 0.0004 0.0092 0.0003 0.6417 45 168 156 11 164 3 165 4 13 371.47 237.93 42.3 2.38 0.0515 0.0032 0.1861 0.0111 0.0262 0.0004 0.0095 0.0003 0.6405 264 108 173 10 167 3 191 5 14 359.5 245.05 41.09 2.29 0.0509 0.0045 0.1846 0.0158 0.0263 0.0006 0.0084 0.0004 0.6816 234 155 172 14 168 3 170 7 15 258.16 100.14 145.86 10.84 0.0680 0.0023 1.2214 0.0391 0.1303 0.0016 0.0440 0.0011 0.3879 868 46 810 18 789 9 870 21 16 320.47 180.03 36.47 2.12 0.0533 0.0035 0.1930 0.0123 0.0263 0.0005 0.0101 0.0003 0.5618 342 114 179 11 167 3 204 7 17 319.24 98.01 35.86 2.07 0.0528 0.0044 0.1891 0.0152 0.0260 0.0005 0.0098 0.0005 0.3070 322 146 176 13 165 3 196 11 19 149.97 65.74 85.13 6.05 0.0653 0.0025 1.1845 0.0446 0.1316 0.0018 0.0386 0.0011 0.4384 783 56 793 21 797 10 766 22 20 216.3 66.39 121.36 9.05 0.0685 0.0041 1.2294 0.0721 0.1302 0.0024 0.0530 0.0024 0.3069 883 91 814 33 789 14 1044 45 23 304.44 87.81 362.98 39.51 0.1002 0.0033 3.8348 0.1233 0.2776 0.0040 0.0915 0.0031 0.2884 1628 39 1600 26 1579 20 1770 58 24 756.36 392.66 423.72 32.34 0.0703 0.0017 1.2655 0.0300 0.1306 0.0014 0.0508 0.0008 0.5191 937 31 830 13 791 8 1001 16 表 2 花岗岩主量、微量和稀土元素分析结果
Table 2 Major, trace and rare earth elements compositions of the granites
样品号 BG01-1 BG01-2 BG01-3 BG01-4 BG01-5 BG01-6 BG01-7 BG01-8 SiO2 74.42 74.15 74.22 72.42 74.13 75.98 73.93 74.85 TiO2 0.07 0.12 0.07 0.10 0.06 0.08 0.04 0.07 Al2O3 13.95 13.87 14.24 14.23 14.13 13.47 14.08 13.77 Fe2O3 0.20 0.19 0.19 0.32 0.21 0.25 0.23 0.19 FeO 0.40 0.64 0.31 0.56 0.31 0.39 0.48 0.44 MnO 0.01 0.02 0.01 0.02 0.02 0.02 0.05 0.01 MgO 0.36 0.35 0.27 0.61 0.23 0.39 0.27 0.33 CaO 1.34 0.91 1.28 1.16 1.17 1.27 1.60 1.29 Na2O 3.79 4.58 3.90 3.64 4.06 4.78 3.77 4.20 K2O 4.86 4.39 4.93 5.77 4.92 2.73 4.76 4.11 P2O5 0.06 0.05 0.06 0.07 0.05 0.05 0.07 0.05 H2O+ 0.14 0.26 0.20 0.18 0.10 0.18 0.14 0.10 烧失量 0.50 0.68 0.45 1.07 0.66 0.55 0.68 0.65 总计 100.11 100.21 100.14 100.15 100.05 100.14 100.10 100.06 全碱 8.65 8.97 8.83 9.41 8.98 7.51 8.53 8.31 Mg# 0.53 0.44 0.50 0.56 0.45 0.53 0.41 0.49 FeO* 0.58 0.82 0.48 0.86 0.50 0.62 0.69 0.62 Fe* 0.47 0.56 0.50 0.44 0.55 0.47 0.59 0.51 MALI 7.35 8.12 7.59 8.34 7.87 6.28 6.98 7.07 A/NK 1.21 1.13 1.21 1.16 1.18 1.24 1.24 1.21 A/CNK 1.00 0.99 1.01 0.99 1.00 1.03 0.99 1.00 Cu 4.73 7.05 5.74 6.07 6.03 5.20 5.65 4.13 Pb 30.50 22.50 28.50 36.30 30.40 20.00 30.10 27.50 Zn 6.23 6.45 5.18 10.30 4.99 6.99 < 4.4 7.86 Cr 27.80 9.49 8.01 17.30 10.80 18.40 22.20 13.90 Ni 5.17 3.68 3.65 9.97 3.11 5.30 3.32 4.21 Co 1.65 1.72 1.17 2.73 0.98 1.59 1.11 1.50 Li 4.88 5.26 4.54 6.45 4.24 5.91 4.48 5.76 Rb 181.00 175.00 171.00 215.00 185.00 104.00 170.00 152.00 Cs 5.22 3.35 4.68 6.00 5.33 3.38 5.76 4.71 Sr 96.60 90.20 86.20 94.40 87.70 93.30 86.50 94.80 Ba 267.00 268.00 157.00 207.00 210.00 163.00 160.00 208.00 V 13.30 13.00 12.60 15.80 10.40 14.80 10.30 13.20 Nb 8.55 7.73 7.80 9.04 6.83 6.60 5.59 7.69 Ta 1.40 0.94 1.18 1.43 1.03 1.10 1.07 1.23 Zr 39.10 27.10 37.30 62.20 52.70 32.10 63.00 42.90 Hf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Be 6.37 3.64 6.15 4.99 7.02 6.98 7.93 6.98 Ga 15.90 15.80 17.30 16.00 16.30 14.90 18.00 15.80 Ge 1.93 1.23 2.02 1.96 1.93 1.27 2.33 1.71 U 3.73 2.08 2.72 3.75 4.09 2.58 4.80 3.89 Th 2.91 3.36 2.81 3.06 2.78 2.24 5.38 2.43 La 9.20 9.67 6.97 8.44 7.88 7.53 11.40 7.89 Ce 18.50 20.60 14.00 16.50 16.10 15.00 23.30 16.00 Pr 2.46 2.66 1.81 2.14 2.09 1.92 3.12 2.07 Nd 9.32 9.63 6.71 8.09 7.84 7.05 11.60 7.59 Sm 2.78 2.57 2.01 2.54 2.36 2.08 3.40 2.34 Eu 0.75 0.72 0.53 0.66 0.74 0.66 0.57 0.73 Gd 3.67 3.02 2.48 3.76 3.03 2.84 4.04 3.23 Tb 0.93 0.68 0.62 1.07 0.78 0.73 1.01 0.85 Dy 6.48 4.43 4.18 7.40 5.59 5.08 7.04 6.48 Ho 1.37 0.92 0.86 1.66 1.14 1.07 1.54 1.30 Er 3.70 2.41 2.39 4.54 3.21 2.92 4.48 3.49 Tm 0.57 0.38 0.39 0.71 0.51 0.47 0.79 0.56 Yb 3.42 2.28 2.45 4.44 3.07 2.71 5.08 3.34 Lu 0.49 0.31 0.35 0.64 0.45 0.39 0.77 0.49 Y 38.70 25.30 24.70 50.50 33.40 30.80 43.80 36.40 ∑REE 63.64 60.28 45.75 62.59 54.79 50.45 78.14 56.36 LREE/HREE 2.08 3.18 2.33 1.58 2.08 2.11 2.16 1.86 (La/Yb)N 1.83 2.88 1.93 1.29 1.74 1.89 1.52 1.60 (La/Sm)N 2.07 2.35 2.17 2.08 2.09 2.26 2.09 2.11 (Gd/Yb)N 0.87 1.07 0.82 0.69 0.80 0.85 0.64 0.78 δEu 0.72 0.79 0.72 0.65 0.84 0.83 0.47 0.81 Nb/La 0.93 0.80 1.12 1.07 0.87 0.88 0.49 0.97 Hf/Ta 0.71 1.06 0.85 0.70 0.97 0.91 0.93 0.81 Zr/Nb 4.57 3.51 4.78 6.88 7.72 4.86 11.27 5.58 Ta/Yb 0.41 0.41 0.48 0.32 0.34 0.41 0.21 0.37 Th/Ta 2.08 3.57 2.38 2.14 2.70 2.04 5.03 1.98 La/Ta 6.57 10.29 5.91 5.90 7.65 6.85 10.65 6.41 注:主量元素含量单位为%,微量和稀土元素含量为10-6 -
赵辛敏, 张作衡, 刘敏, 等.北祁连西段小柳沟矿区花岗质岩石锆石U-Pb年代学、地球化学及成因研究[J].岩石学报, 2014, 30(1):16-34. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20140102&journal_id=ysxb&year_id=2014 Wu H Q, Feng Y M, Song S G. Metamorphism and deformation of blueschist belts and their tectonic implications, north Qilian Moun-tains, China[J]. JournalofMetamorphicGeology, 1993, 11(4):523-536. https://www.researchgate.net/publication/227704292_Late_Cretaceous_blueschist_facies_metamorphism_in_southern_Thrace_Turkey_and_its_geodynamic_implications
冯益民, 何世平.祁连山大地构造与造山作用[M].北京:地质出版社, 1996:1-135. 左国朝, 吴汉泉.北祁连中段早古生代双向俯冲-碰撞造山模式剖析[J].地球科学进展, 1997, 12(4):315-323. doi: 10.11867/j.issn.1001-8166.1997.04.0315 葛肖虹, 刘俊来.北祁连造山带的形成与背景[J].地学前缘, 1999, 6(4):223-230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy199904004 张旗, 王焰, 钱青.北祁连早古生代洋盆是裂陷槽还是大洋盆——与葛肖虹讨论[J].地质科学, 2000, 35(1):121-128. https://www.wenkuxiazai.com/doc/3fd5b366700abb68a882fb77-3.html 杜远生, 张哲, 周道华, 等.北祁连-河西走廊志留纪和泥盆纪古地理及其同造山过程的沉积响应[J].古地理学报, 2002, 4(4):1-8. http://edu.wanfangdata.com.cn/Periodical/Detail/gdlxb200204001 杜远生, 朱杰, 韩欣, 等.从弧后盆地到前陆盆地-北祁连造山带奥陶纪-泥盆纪的沉积盆地和构造演化[J].地质通报, 2004, 23(9/10):911-917. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=200409163&flag=1 Xia L Q, Xia Z C, Xu X. Magmagenesis in the Ordovician Backarc Basins of the North Qilian Mountains, China[J]. GSA Bulletin, 2003, 115(12):1510-1522. doi: 10.1130/B25269.1
Zhang J X, Meng F C, Wan Y S. A cold early Palaeozoic subduction zone in the North Qilian Mountains, NW China:Petrological and U-Pb geochronological constraints[J]. Journal Metamorphic Geology, 2007, 25(3):285-304. doi: 10.1111/jmg.2007.25.issue-3
Song S G, Zhang L F, Niu Y L, et al. Zircon U-Pb SHRIMP ages of eclogites from the North Qilian Mountains in NW China and their tectonic implication[J]. Chinese Science Bulletin, 2004, 49(8):848-852. doi: 10.1007/BF02889759
Song S G, Zhang L F, Niu Y L, et al. Eclogite and carpholitebearing metasedimentary rocks in the North Qilian suture zone, NW China:Implications for Early Palaeozoic cold oceanic subduction and water transport into mantle[J]. Journal of Metamorphic Geology, 2007, 25(5):547-563. doi: 10.1111/jmg.2007.25.issue-5
Song S G, Niu Y, Zhang L F, et al. Tectonic evolution of Early Paleozoic HP metamorphic rocks in the North Qilian Mountains, NW China:New perspectives[J]. Journal of Asian Earth Sciences, 2009, 35(3/4):334-353. https://www.sciencedirect.com/science/article/pii/S136791200800182X
Song S G, Niu Y L, Su L, et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 23:1378-1401. doi: 10.1016/j.gr.2012.02.004
Song S G, Niu Y, Su Li, et al. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling:The example of the North Qaidam UHPM belt, NW China[J]. Earth-Science Reviews, 2014, 129:59-84. doi: 10.1016/j.earscirev.2013.11.010
Yang J H, Du Y S, Cawood P A, et al. Silurian collisional suturing onto the southern margin of the North China Craton:Detrital zircon geochronology constraints from the Qilian orogen[J]. Sedimen-tary Geology, 2009, 220(1/2):95-104.
Xu Y J, Du Y S, Cawood P A, et al. Detrital zircon record of conti-nental collision:Assembly of the Qilian Orogen, China[J]. Sedimentary Geology, 2010, 230(1/2):35-45. https://www.sciencedirect.com/science/article/pii/S0037073810001636
徐亚军, 杜远生, 杨江海.北祁连造山带晚奥陶世-泥盆纪构造演化:碎屑锆石年代学证据[J].地球科学, 2013, 38(5):934-946. http://www.earth-science.net/PDF/20131224103440.pdf 毛景文, 张作衡, 简平, 等.北祁连西段花岗质岩体的锆石U-Pb年龄报道[J].地质论评, 2000, 46(6):616-620. http://www.oalib.com/paper/4887062 吴才来, 姚尚志, 杨经绥, 等.北祁连洋早古生代双向俯冲的花岗岩证据[J].中国地质, 2006, 33(6):1197-1208. http://www.cqvip.com/QK/90050X/200606/23559664.html 贾群子, 杨忠堂, 肖朝阳, 等.祁连山铜金钨铅锌矿床成矿规律和成矿预测[M].北京:地质出版社, 2007:1-313. 张兰英, 曲晓明, 辛洪波.镜铁山桦树沟铁铜矿区中酸性岩脉地球化学特征、锆石U-Pb LA-ICP-MS年龄及其地质意义[J].地质论评, 2008, 54(2):253-262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200802013 张德全, 孙桂英, 徐洪林.祁连山金佛寺岩体的岩石学和同位素年代学研究[J].地球学报, 1995, 16(4):375-385. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB504.003.htm 刘晓煌, 邓军, 孙柏年, 等.北祁连西段金佛寺岩体的成岩成矿作用研究[M].北京:地质出版社, 2009:1-128. Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced meltperidotite interactions in the TransNorth China Orogen:U-Pb dating, Hf isotopes and trace elements in zirconsfrommantlexenoliths[J]. JournalofPetrology, 2009, 51:537-571. http://www.oalib.com/references/15778808
Ludwig K R. User's manual for Isoplot/Ex, version 3. 00. A Geo-chronological Toolkit for Microsoft Excel[M]. Berkeley Geochro-nology Center Special Publication, 2003, 4: 1-70.
Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb ziron geochronology[J]. Chemical Geology, 2004, 211:47-69. doi: 10.1016/j.chemgeo.2004.06.017
Gehrels G, Johnsson M J, Howwell D G. Detrital zircon geochronology of the Adams Argillite and Nation River Formation, EastCentral Alaska, U. S. A[J]. Sedi. Re., 1999, 69:135-144. doi: 10.2110/jsr.69.135
Sircombe K N. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia[J]. Sedi. Geol., 1999, 124:47-67. doi: 10.1016/S0037-0738(98)00120-1
Nelson J, Gehrels G. Detrital zircon geochronology and prove-nance of the southeastern Yukon-Tanana Terran[J]. Cana. J. Ear. Sci., 2007, 44:297-316. doi: 10.1139/e06-105
Kalsbeek F, Frei D, Affaton P. Constraints on provenance, stratigraphic correlation and structural context of the Volta basin, Ghana, from detrital zircon geochronology:an Amazonian connection[J]. Sedi. Geol., 2008, 212:86-95. doi: 10.1016/j.sedgeo.2008.10.005
Naipauer M, Vujovich G I, Cingolani C A, et al. Detrital zircon analysis from the Neoproterozoic-Cambrian sedimentary cover (Cuyania terrane), Sierra de Pie De Palo, Argentina:evidence of a rift and passive margin system[J]. J. South Amer. Ear. Sci., 2010, 29:306-326. doi: 10.1016/j.jsames.2009.10.001
Peccerillo R, Taylor S R. Geochemistry of Eocene calakaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contrib. Mineral. Petrol., 1976, 58(1):63-81. doi: 10.1007/BF00384745
Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4):247-263. doi: 10.1016/0024-4937(89)90028-5
Forst B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033
Forst B R, Forst C D. A geochemical classification for feldspathic igneous rocks[J]. Journal of Petrology, 2008, 49:1955-1969. doi: 10.1093/petrology/egn054
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and pro-cess[C]//Saunders A D, Norry M J. Magmatism in the Ocean Ba-sins. Spc. Publ. Geol. Soc. Lond, 1989, 42: 313-345.
Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):241-265. doi: 10.1029/95RG00262
吴锁平, 王梅英, 戚开静. A型花岗岩研究现状及其述评[J].岩石矿物学杂志, 2007, 1(26):58-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggxjsqy200708079