Zircon U-Pb age, geochemical characteristics and geo-logical significance of granitoids in the Maozangsi deposit, Northern Qilian Mountain
-
摘要:
甘肃毛藏寺铜钼矿是与花岗质岩石有关的斑岩型矿床,矿区内花岗质岩石类型主要为似斑状二长花岗岩和花岗闪长岩。对矿区岩体进行年龄、地球化学研究,以约束其形成时代,并探讨岩石成因及其与成矿的关系。LA-ICP-MS锆石UPb测年分别获得似斑状二长花岗岩与花岗闪长岩谐和年龄为455.8±3.1Ma和425.0±2.8Ma,属于晚奥陶世和晚志留世岩浆活动的产物。地球化学数据显示,似斑状二长花岗岩属于过铝质钙碱性岩浆系列,花岗闪长岩属于准铝质高钾钙碱性岩浆系列,二者均富集大离子亲石元素,亏损高场强元素,稀土元素配分曲线呈右倾型,轻、重稀土元素分馏明显。似斑状二长花岗岩具有弱正Eu异常(δEu=1.18~1.24),显示埃达克岩的地球化学特征,形成于北祁连洋俯冲消减阶段,由俯冲洋壳(含海洋沉积物)部分熔融形成,源区主要残留物为石榴子石。花岗闪长岩显示弱负Eu异常,形成于碰撞后伸展环境,是洋壳板片断离后软流圈上涌诱发的下地壳玄武质岩石部分熔融的产物。似斑状二长花岗岩符合成矿期埃达克岩特征,具有较好的成矿条件。结合前人资料,在北祁连东段寻找和勘查与埃达克岩有关的铜-钼-金矿可能是一个新的方向。
-
关键词:
- 花岗质岩石 /
- 地球化学 /
- LA-ICP-MS锆石U-Pb年龄 /
- 毛藏寺铜钼矿 /
- 北祁连
Abstract:The Maozangsi Cu-Mo deposit in Gansu is a porphyry type deposit related to granitoids. Maozangsi granitoids are com-posed of porphyritoid monzogranite and granodiorite. In this paper, zircon U-Pb dating and geochemical study of the Maozangsi granitoids were conducted to constrain its geochronology and discuss petrogenesis and its relationship with mineralization. Zircon LA-ICP-MS dating yielded concordant ages of 455.8±3.1Ma and 425.0±2.8Ma respectively, indicating that the two plutons were formed in Late Ordovician and late Silurian respectively. Geochemical data show that porphyritoid monzogranite is a peraluminous granite and belongs to the calc-alkaline series, whereas granodiorite is a aluminous granite and belongs to the high-K calc-alkaline series. They are characterized by enrichment of LILEs and depletion of HFSEs, with REE patterns exhibiting the right-deviation type and strong fractionation with LREE enrichment. The porphyritoid monzogranite show weak positive Eu anomalies (δEu=1.18~1.24) and geochemical affinity to adakite, probably resulting from the slab melting (including marine sediments) of the subduction of North Qilian Ocean with the residual minerals of garnet in the source. The granodiorite shows weak negative Eu anomalies and was generated in a post-collisional extension setting and derived from partial melting of basaltic rocks in the lower crust induced by asthe-nosphere after the breakup of previously subducted North Qilian oceanic slab. The features of porphyritoid monzogranite are in ac-cordance with the characteristics of ore-forming period adakitic rocks and thus suggest good mineralization conditions. In combina-tion with data obtained from previous studies, the authors hold that it is possible to find Cu-Mo-Au deposits related to adakites in the eastern section of the Northern Qilian Mountain.
-
Keywords:
- granitoids /
- geochemistry /
- LA-ICP-MS zircon U-Pb age /
- Maozangsi Cu-Mo deposit /
- Northern Qilian
-
致谢: 衷心感谢中国地质调查局西安地质调查中心杨合群研究员在成文过程中给予的帮助和指导。
-
图 1 北祁连山地质简图[18]
1—中新生界;2—晚古生代沉积岩系;3—寒武纪复理石建造;4—奥陶纪火山岩系;5—中寒武世-早奥陶世火山岩系;6—前寒武系;7—前加里东期花岗岩类;8—加里东期花岗岩类;9—加里东期后花岗岩类
Figure 1. Geological sketch map of Northern Qilian Mountain
图 5 毛藏寺矿区花岗质岩石微量元素原始地幔标准化蛛网图(a)及稀土元素球粒陨石标准化配分曲线(b)(标准值据参考文献[22])
Figure 5. Primitive mantle-normalized trace element patterns (a) and chondrite-normalized REE patterns (b) of granitoids from the Maozangsi deposit
图 7 毛藏寺矿区埃达克岩地球化学特征图解(底图据参考文献[38])
Figure 7. Geochemical characteristics of adakites in the Maozangsi deposit
图 9 毛藏寺矿区花岗质岩石(Y+Nb)-Rb图解(据参考文献[44])
ORG—洋中脊花岗岩;VAG—火山弧花岗岩;WPG—板内花岗岩;Syn-COLG—同碰撞花岗岩;Post-COLG—后碰撞花岗岩
Figure 9. (Y+Nb)-Rb diagram for the granites in the Maozangsi deposit
表 1 毛藏寺矿区花岗质岩石LA-ICP-MS锆石U-Th-Pb分析结果
Table 1 LA-ICP-MS zircon U-Th-Pb isotopic data of Maozangsi granitoids
测试点 Pb Th U Th/
U207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U /lO-6 比值 lσ 比值 lσ 比值 lσ 年龄/
Malσ 年龄/
Malσ 年龄/
Malσ MZS1,二长花岗岩,16个测点(不包括3、8、19、20测点) MZS1-01 292 800 861 0.93 0.0522 0.0025 0.5515 0.0257 0.0766 0.0014 295.3 105.7 446.0 16.8 475.7 8.4 MZS1-02 217 430 671 0.64 0.0664 0.0033 0.6687 0.0322 0.0730 0.0015 819.0 101.1 519.9 19.6 454.4 9.0 MZS1-04 783 2934 2413 1.22 0.0555 0.0018 0.5606 0.0179 0.0732 0.0012 432.8 71.1 451.9 11.7 455.6 6.9 MZS1-05 1032 1169 3171 0.37 0.0541 0.0014 0.5485 0.0140 0.0735 0.0010 376.1 56.8 444.0 9.2 457.2 6.3 MZS1-06 602 1051 1765 0.60 0.0551 0.0018 0.5852 0.0189 0.0770 0.0012 416.8 71.4 467.8 12.1 478.2 7.2 MZS1-07 883 2150 2569 0.84 0.0592 0.0016 0.6331 0.0167 0.0776 0.0011 572.7 57.1 498.0 10.4 477.9 6.8 MZS1-09 466 1007 1434 0.70 0.0599 0.0017 0.6067 0.0174 0.0734 0.0011 601.2 61.7 481.5 11.0 456.7 6.6 MZS1-10 766 2017 2351 0.86 0.0554 0.0011 0.5619 0.0116 0.0736 0.0010 427.1 44.4 452.8 7.6 457.8 5.8 MZS1-11 1328 2711 4087 0.66 0.0559 0.0009 0.5662 0.0095 0.0735 0.0009 447.2 34.9 455.5 6.2 457.1 5.6 MZS1-12 474 863 1479 0.58 0.0591 0.0014 0.5909 0.0137 0.0725 0.0010 570.7 49.5 471.4 8.7 451.3 6.0 MZS1-13 1233 2057 3849 0.53 0.0563 0.0009 0.5630 0.0094 0.0725 0.0009 465.2 35.1 453.5 6.1 451.0 5.5 MZS1-14 660 2418 2064 1.17 0.0578 0.0018 0.5759 0.0171 0.0723 0.0011 520.9 65.2 461.8 11.0 450.0 6.6 MZS1-15 530 1055 1622 0.65 0.0559 0.0019 0.5700 0.0188 0.0740 0.0012 447.4 73.2 458.0 12.1 460.1 7.0 MZS1-16 769 1269 2354 0.54 0.0682 0.0024 0.6949 0.0240 0.0739 0.0013 875.0 72.3 535.8 14.4 459.5 7.7 MZS1-17 744 1732 2288 0.76 0.0527 0.0014 0.5347 0.0136 0.0736 0.0010 315.6 57.0 434.9 9.0 457.8 6.2 MZS1-18 567 2138 1750 1.22 0.0551 0.0017 0.5571 0.0169 0.0734 0.0011 415.2 67.1 449.7 11.0 456.4 6.7 MZS2,花岗闪长岩,18个测点(不包括11、15测点) MZS2-01 507 1584 1677 0.94 0.0569 0.0013 0.5373 0.0126 0.0685 0.0009 487.4 50.8 436.6 8.3 426.9 5.6 MZS2-02 524 2087 1735 1.20 0.0549 0.0014 0.5180 0.0132 0.0684 0.0010 408.0 55.5 423.8 8.8 426.7 5.8 MZS2-03 476 1550 1574 0.98 0.0532 0.0014 0.5030 0.0129 0.0685 0.0010 338.5 57.3 413.7 8.7 427.3 5.7 MZS2-04 425 1681 1406 1.20 0.0564 0.0016 0.5324 0.0149 0.0685 0.0010 466.3 61.6 433.4 9.9 427.1 5.9 MZS2-05 266 864 891 0.97 0.0547 0.0023 0.5113 0.0215 0.0678 0.0011 400.1 93.4 419.3 14.4 422.7 6.8 MZS2-06 409 1192 1358 0.88 0.0576 0.0016 0.5416 0.0146 0.0682 0.0010 513.4 59.1 439.5 9.6 425.4 5.9 MZS2-07 403 838 1340 0.63 0.0513 0.0019 0.4823 0.0175 0.0682 0.0011 253.6 83.1 399.6 12.0 425.3 6.6 MZS2-08 372 1195 1249 0.96 0.0553 0.0019 0.5157 0.0170 0.0676 0.0010 424.6 72.8 422.3 11.4 421.8 6.2 MZS2-09 382 1183 1287 0.92 0.0636 0.0017 0.5906 0.0154 0.0674 0.0010 727.6 54.8 471.3 9.8 420.3 5.8 MZS2-10 632 2344 2112 1.11 0.0607 0.0012 0.5677 0.0116 0.0679 0.0009 627.7 42.7 456.6 7.5 423.3 5.4 MZS2-12 274 906 923 0.98 0.0603 0.0018 0.5608 0.0166 0.0675 0.0010 614.1 63.4 452.0 10.8 420.8 6.0 MZS2-13 402 1354 1346 1.01 0.0566 0.0015 0.5297 0.0138 0.0678 0.0009 476.5 57.0 431.6 9.2 423.1 5.7 MZS2-14 492 1622 1643 0.99 0.0544 0.0013 0.5107 0.0125 0.0680 0.0009 389.2 54.0 418.9 8.4 424.3 5.6 MZS2-16 194 582 643 0.90 0.0685 0.0028 0.6457 0.0260 0.0684 0.0012 883.8 83.5 505.8 16.0 426.3 7.3 MZS2-17 499 1525 1649 0.92 0.0568 0.0013 0.5388 0.0122 0.0688 0.0009 483.2 49.1 437.6 8.0 428.9 5.6 MZS2-18 414 1238 1379 0.90 0.0660 0.0018 0.6212 0.0164 0.0683 0.0010 806.3 55.0 490.6 10.3 425.7 6.0 MZS2-19 434 1377 1446 0.95 0.0533 0.0014 0.5010 0.0132 0.0682 0.0009 341.2 58.9 412.4 8.9 425.2 5.6 MZS2-20 450 2068 1491 1.39 0.0541 0.0014 0.5111 0.0129 0.0686 0.0009 373.6 55.6 419.2 8.7 427.5 5.7 表 2 毛藏寺矿区花岗质岩石的主量、微量和稀土元素分析结果
Table 2 Major, trace and rare earth element data of the granitoids from the Maozangsi deposit
样品号 MZ-7 MZ-8 MZ-9 MZ-10 MZ-11 MZ-12 MZ-18 MZ-19 MZ-20 MZ-21 MZ-22 岩性 似斑状二长花岗岩 花岗闪长岩 SiO2 70.67 71.04 70.76 70.94 71.07 70.26 63.02 63.36 63.16 63.12 62.99 Al2O3 15.14 15.01 15.17 15.15 15.09 15.18 15.57 15.63 15.74 15.69 15.55 Fe2O3 0.52 0.47 0.68 0.86 0.51 1.00 1.34 1.22 1.35 1.32 1.38 FeO 1.18 1.15 0.87 0.82 1.25 0.91 3.28 3.22 3.17 3.22 3.25 CaO 1.59 1.56 1.91 1.97 1.50 2.12 4.08 4.04 4.01 4.13 4.06 MgO 0.94 0.86 0.74 0.75 0.81 0.73 3.31 3.18 3.26 3.23 3.47 K2O 2.67 2.72 2.43 2.47 2.66 2.46 2.89 2.97 2.96 2.97 2.89 Na2O 4.97 4.86 4.78 4.43 4.8 4.39 3.72 3.77 3.75 3.78 3.71 TiO2 0.24 0.24 0.24 0.24 0.24 0.25 0.75 0.74 0.74 0.75 0.76 P2O5 0.10 0.11 0.10 0.10 0.10 0.10 0.24 0.24 0.24 0.24 0.25 MnO 0.06 0.06 0.05 0.05 0.06 0.06 0.08 0.08 0.08 0.08 0.08 烧失量 1.86 1.87 2.20 2.18 1.83 2.48 1.60 1.47 1.45 1.39 1.51 总计 99.94 99.95 99.93 99.96 99.92 99.94 99.88 99.92 99.91 99.92 99.90 K2O+Na2O 7.64 7.58 7.21 6.90 7.46 6.85 6.61 6.74 6.71 6.75 6.60 K2O/Na2O 0.54 0.56 0.51 0.56 0.55 0.56 0.78 0.79 0.79 0.79 0.78 Mg# 0.51 0.50 0.47 0.46 0.46 0.42 0.57 0.57 0.57 0.57 0.58 A/CNK 1.08 1.09 1.09 1.12 1.12 1.10 0.93 0.93 0.94 0.92 0.93 DI 88.11 88.35 87.46 86.93 88.39 86.07 69.51 70.28 69.91 69.89 69.25 Cu 65.7 90.5 159 38.7 104 16.6 67.9 46.1 60.5 43.9 56.8 Pb 35.1 29.0 19.8 19.7 22.1 20.1 19.1 18.0 18.9 20.1 18.0 Zn 82.7 63.4 50.4 49.5 57.8 50.1 85.4 71.8 78.7 72.2 81.1 Cr 18.7 13.1 11.8 10.0 10.8 9.82 75.6 71.5 74.0 76.2 85.5 Ni 14.2 6.26 5.62 5.41 5.82 6.65 47.0 43.2 46.6 46.8 56.6 Co 3.54 3.36 3.04 3.43 3.12 4.13 15.5 14.8 15.4 15.9 16.3 Li 15.9 16.1 10.1 10.2 10.7 11.0 22.3 20.8 21.2 20.2 22.5 Rb 62.8 72.6 88.4 71.3 71.3 80.7 108 65.6 68.8 75.6 85.5 Cs 3.67 4.56 3.36 3.98 4.21 4.17 4.81 4.19 4.43 4.39 4.57 W 23.6 14.6 60.1 55.8 11.7 40.9 14.0 7.58 9.43 3.27 10.8 Mo 0.27 0.30 0.51 0.52 0.55 0.61 1.31 1.12 1.11 0.94 1.22 Bi 0.22 0.12 0.14 0.12 0.30 0.20 0.38 0.58 0.9 0.42 0.31 Sr 520 582 396 457 526 556 691 615 613 674 704 Ba 1540 1300 1170 1100 1180 996 1100 1010 998 1070 978 V 24.2 24.0 24.1 23.2 25.1 24.9 109 104 107 108 111 Sc 11.8 11.8 10.2 9.26 10.0 10.4 17.1 15.6 15.1 13.8 14.9 Nb 4.49 4.22 4.30 5.06 3.98 4.75 12.1 10.9 10.9 11.6 11.6 Ta 0.36 0.34 0.39 0.41 0.35 0.40 0.88 0.81 0.81 0.88 0.84 Zr 116 119 112 108 114 112 212 233 233 228 246 Hf 3.34 3.35 3.22 3.05 3.26 3.17 5.78 6.22 6.13 6.14 6.46 Be 2.24 2.21 2.56 2.14 2.08 2.14 2.16 1.86 1.92 1.74 2.06 Ga 15.7 16.4 15.7 15.6 15.4 16.1 16.5 16.1 16.4 17.1 16.6 U 1.16 1.19 1.48 1.15 1.21 1.47 2.68 2.50 2.47 2.73 2.74 Th 7.26 6.96 6.35 5.64 6.26 6.17 22.6 20.7 19.6 17.7 19.1 La 22.4 24.4 21.9 17.4 22.3 19.0 69.6 53.7 54.6 54.5 57.8 Ce 42.2 41.4 41.8 33.1 42.3 39.2 142 109 104 119 124 Pr 4.12 4.31 4.03 3.32 4.15 3.89 16.0 12.9 13.1 13.8 14.3 Nd 13.5 14.8 12.8 10.6 13.2 12.5 55.2 47.2 47.2 51.2 51.2 Sm 2.54 2.51 2.37 1.89 2.35 2.10 9.96 8.84 8.86 9.56 9.51 Eu 0.95 0.90 0.80 0.71 0.85 0.74 2.44 2.24 2.25 2.34 2.34 Gd 2.05 2.00 1.83 1.52 1.84 1.62 8.24 7.07 7.20 7.42 7.49 Tb 0.28 0.28 0.25 0.21 0.25 0.24 1.14 0.98 0.99 0.98 1.07 Dy 1.32 1.28 1.20 1.02 1.22 1.12 5.39 4.86 4.84 5.01 5.15 Ho 0.24 0.24 0.22 0.18 0.23 0.21 1.00 0.87 0.88 0.92 0.91 Er 0.65 0.62 0.55 0.47 0.62 0.56 2.70 2.44 2.42 2.47 2.46 Tm 0.10 0.09 0.08 0.07 0.09 0.08 0.40 0.37 0.35 0.36 0.35 Yb 0.60 0.54 0.52 0.44 0.56 0.51 2.46 2.28 2.22 2.13 2.27 Lu 0.09 0.08 0.08 0.07 0.09 0.08 0.36 0.35 0.34 0.34 0.34 Y 6.71 5.95 5.54 4.78 5.74 5.51 24.6 21.9 22.3 21.7 22.6 ΣREE 91.0 93.5 88.4 71.0 90.1 81.9 317 253 249 270 279 LREE/HREE 16.1 17.2 17.7 16.8 17.4 17.5 13.6 12.2 12.0 12.8 12.9 (La/Yb)N 26.8 32.4 30.2 28.4 28.6 26.7 20.3 16.9 17.6 18.4 18.3 δEu 1.23 1.19 1.13 1.24 1.21 1.18 0.80 0.84 0.83 0.82 0.82 Sr/Y 77.5 97.8 71.5 95.6 91.6 101 28.1 28.1 27.5 31.1 31.2 La/Yb 37.3 45.2 42.1 39.6 39.8 37.3 28.3 23.6 24.6 25.6 25.5 Y/Yb 11.2 11.0 10.7 10.9 10.3 10.8 10.0 9.61 10.1 10.2 9.96 (Ho/Yb)N 3.48 3.87 3.69 3.56 3.58 3.59 3.54 3.32 3.45 3.76 3.49 Sm/Yb 4.23 4.65 4.56 4.30 4.20 4.12 4.05 3.88 3.99 4.49 4.19 注:Mg#=100×Mg2+/(Mg2++Fe3+);主量元素含量单位为%,微量和稀土元素含量为10-6 -
吴才来, 姚尚志, 杨经绥, 等.北祁连洋早古生代双向俯冲的花岗岩证据[J].中国地质, 2006, 33(6): 1197-1208. http://www.cqvip.com/QK/90050X/200606/23559664.html 吴才来, 徐学义, 高前明, 等.北祁连早古生代花岗质岩浆作用及构造演化[J].岩石学报, 2010, 26(4): 1027-1044. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20100403 王金荣, 郭原生, 付善明, 等.甘肃黑石山早古生代埃达克质岩的发现及其构造动力学意义[J].岩石学报, 2005, 21(3): 977-985. http://d.wanfangdata.com.cn/Periodical_ysxb98200503035.aspx 王金荣, 吴春俊, 蔡郑红.北祁连山东段银硐梁早古生代高镁埃达克岩:地球动力学及成矿意义[J].岩石学报, 2006, 22(11): 2655- 2664. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=2006011285&year_id=2006&quarter_id=11&falg=1 王金荣, 吴继承, 贾志磊.北祁连山东段苏家山高Mg埃达克岩地球动力学意义[J].兰州大学学报:自然科学版, 2009, 44(3): 16-24. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200803006.htm Tseng C, Yang H, Yang H. Continuity of the North Qilian and North Qinling orogenic belts, Central Orogenic System of China: Evidence from newly discovered Paleozoic adakitic rocks[J]. Gondwana Research, 2009, (16): 285-293. http://ntur.lib.ntu.edu.tw/bitstream/246246/172399/1/30.pdf
熊子良, 张宏飞, 张杰.北祁连东段冷龙岭地区毛藏寺岩体和黄羊河岩体的岩石成因及其构造意义[J].地学前缘, 2012, 19(3): 214-227. http://www.cqvip.com/QK/98600X/201203/42487012.html Sillitoe R. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology, 1972, 67: 184-197. doi: 10.2113/gsecongeo.67.2.184
Burnham C W. Magmas and hydrothermal fluids[C]//Barnes H L. Geochemistry of Hydrothermal Ore Deposits, 2nd edition. John Wiley and Sons, New York, 1979: 71-13.
Tatsumi Y. Formation of the volcanic front in subduction zones[J]. Geophysical Research Letters, 1986, 17: 717-720. doi: 10.1029/GL013i008p00717/full
Peacock S M. Large-scale hydration of the lithosphere above subducting slabs[J]. Chemical Geology, 1993, 108: 49-59. doi: 10.1016/0009-2541(93)90317-C
Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation[J]. Earth and Planetary Science Letters, 1998, 163: 361-379. doi: 10.1016/S0012-821X(98)00142-3
Grove T L, Chatterjee N, Parman S W, et al. The influence of H2O on mantle wedge melting[J]. Earth and Planetary Science Letters, 2006, 249: 74-89. doi: 10.1016/j.epsl.2006.06.043
Grove T L, Till C B, Krawczynski M J. The role of H2O in subduction zone magmatism[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 413-439. doi: 10.1146/annurev-earth-042711-105310
侯增谦, 莫宣学, 高永丰, 等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例[J].矿床地质, 2003, 22(1): 1-12. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kcdz200301001 冯益民, 何世平.祁连山大地构造与造山作用[M].北京:地质出版社, 1996: 1-135. 夏林圻, 李向民, 余吉远, 等.祁连山新元古代中—晚期至早古生代火山作用与构造演化[J].中国地质, 2016, 43(4): 1087-1138. http://www.cqvip.com/QK/90050X/201604/669848882.html 李文渊, 郭周平, 王伟.北祁连山加里东期聚敛作用的构造转换及其成矿响应[J].地质论评, 2005, 51(2): 120-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200502002 Hoskin P W O, Black L P. Metamorphic zircon formation by solidstate recrystallization of protolith igneous zircon[J]. J. Metamorph. Geol., 2000, 18: 423- 439. doi: 10.1046/j.1525-1314.2000.00266.x/full
Rickwood PC. Boundary lines within petrologic diagrams which use oxides major and minor elements[J]. Lithos, 1999, 22: 247-263. https://www.sciencedirect.com/science/article/pii/0024493789900285
Preccerillo R, Taylor S R. Geochemistry of Eocene calakaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contrib. Mineral. Petrol., 1976, 58: 63-81. doi: 10.1007/BF00384745
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and process[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins[J]. Spc. Publ. Geol. Soc. Lond., 1989, 42: 313 -345.
Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0
Oyarzun R, Marquez A, Lillo J, et al. Giant versus small porphy copper deposits of Cenozoic age in northern Chile: Adakite versus normal calcKalkaline magmatism[J]. Mineralium Deposita, 2001, 36: 794. doi: 10.1007/s001260100205
Mungall J E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits[J]. Geology, 2002, 30(10): 915- 918. doi: 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
Atherton M P, Petford N. Generation of sodium- rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362: 144-146. doi: 10.1038/362144a0
张旗, 王焰, 钱青, 等.中国东部中生代埃达克岩的特征及其构造-成矿意义[J].岩石学报, 2001, 17(2): 236-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200102008 王强, 赵振华, 熊小林, 等.底侵玄武质下地壳的熔融:来自沙溪adakite质富钠石英闪长玢岩的证据[J].地球化学, 2001, 30(4): 353-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200104008 Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth Science Reviews, 2005, 68(3/4): 173-196. http://www.sciencedirect.com/science/article/pii/S001282520400042X
Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust?[J]. Geology, 2002, 30(12): 1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432: 892-897. doi: 10.1038/nature03162
Wang Q, Xu J F, Jian P, et al. Petrogenesis of adakitic porphyriesin an extensional tectonic setting, dexing, South China: Implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47(1): 119-144. doi: 10.1093/petrology/egi070
Shirey S B, Hanson G N. Mantle- derived Archaean monozodiorites and trachyandesites[J]. Nature, 1984, 310(5974): 222-224 doi: 10.1038/310222a0
Stern R A, Hanson G N. Archean high-Mg granodiorite: A derivative of light rare earth element-enriched monozodiorite of mantle origin[J]. Journal of Petrology, 1991, 32(1): 201-238. doi: 10.1093/petrology/32.1.201
Hirose K. Melting experiments on lherzolite KLB-1under hydrous conditions and generation of high-magnesian andesitic melts[J]. Geology, 1997, 25(1): 42-44. doi: 10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2
Kay R W, Kay S M. Delamination and delamination magmatism[J]. Tectonophysics, 1993, 19: 177-189.
Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8Ga[J]. Chem. Geol., 1999, 160: 335-356. doi: 10.1016/S0009-2541(99)00106-0
Martin H, Smithies R, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite(TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79 (1): 1-24. http://www.sciencedirect.com/science/article/pii/S002449370400266X
Hawkesworth C, Turner S, Peate D, et al. Elemental U and Th variations in island arc rocks: Implications for U-series isotopes[J]. Chem. Geol., 1997, 139: 207-221. doi: 10.1016/S0009-2541(97)00036-3
Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chem. Geol., 1998, 145: 325-394. doi: 10.1016/S0009-2541(97)00150-2
Green T H. Experimental studies of trace-element portioning applicable to igneous petrogenesisi- Sedona 16 years later[J]. Chem. Geol., 1994, 117: 1-36. doi: 10.1016/0009-2541(94)90119-8
Foley S F, Jackson S E, Fryer B J, et al. Trace element artition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LA-ICP-MS[J]. Geochim. Cosmochim. Acta, 1996, 60: 629-638. doi: 10.1016/0016-7037(95)00422-X
Pitcher W S. The nature and origin of granite(2nd edition)[M]. Chapman and Hall, Landon, 1997.
Pearce J A. Sources and setting of granitic rocks[J]. Episodes, 1996, 19: 120-125. http://www.scienceopen.com/review?vid=a5c39830-2627-4f35-9821-ecf7382f7f4b
Kay S M, Mpodozis C. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust[J]. GSA Today, 2001, 11(3): 4-9. doi: 10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2