Age and geochemistry of Aksay ophiolite in East Altun Mountains
-
摘要:
北阿尔金蛇绿岩带是分布在阿尔金山北缘的一条蛇绿混杂岩带,超基性蛇纹岩岩块、基性岩墙、辉长岩块及基性熔岩组合是该带东段阿克塞蛇绿岩的典型组合形式。地球化学研究结果显示,阿克塞蛇绿岩超基性蛇纹岩以富MgO、贫Al2O3、P2O5、CaO和K2O为特征,球粒陨石标准化稀土元素配分曲线表现较平缓,比值接近于1;基性熔岩类中TiO2为0.86%~1.80%,Al2O3为12.00%~14.85%,CaO介于4.89%~19.23%之间,球粒陨石标准化稀土元素配分型式表现为右倾;基性岩墙中TiO2介于1.08%~2.44%之间,Al2O3含量为11.07%~13.26%,Na2O(1.20%~2.28%)>K2O(0.80%~1.38%),稀土元素总量介于48.65×10-6~124.04×10-6之间,平均92.95×10-6;轻、重稀土元素比值介于2.22~4.45之间,总体表现为大洋中脊环境,LA-ICP-MS锆石U-Pb年龄显示,阿克塞蛇绿岩形成于514.6±8.8Ma,为寒武纪,表明在早古生代北阿尔金洋已完全打开,并连通了红柳沟—阿克塞。
Abstract:North Altun ophiolite belt is an ophiolite melange zone located on the northern margin of the Altun Mountains. Rock associations of ultrabasic rock blocks, basic dyke swarms, gabbro rock blocks and basic lava composite the representative ophiolite suite located in Aksay of the East Altun Mountains. Geochemical studies of the Aksay ophiolite show that the ultrabasic serpentinite is high in MgO and poor in Al2O3, P2O5, CaO, K2O, the chondrite-normalized REE patterns are relatively flat, and the ratio of sample to chondrite is close to 1. Basic lava rock is recognized by content of TiO2, Al2O3, CaO, with the chondrite-normalized REE patterns being relatively right-inclined. Basic dyke swarms are recognized by content of TiO2, Al2O3, with the features of Na2O higher than K2O, ∑ REE, and ∑ LREE/∑ HREE(2.22~4.45). Geochemical studies indicate that the Aksay ophiolite was formed in a Mid-Ocean Ridges (MOR) environment and was reformed by subsequent Suprs-Subduction Zone (SSZ). Geochronologic studies of zircon U-Pb show that the Aksay ophiolite was generated at 514.6±8.8Ma of Cambrian period.
-
Keywords:
- ophiolite /
- East Altun Mountains /
- geochemistry /
- zircon U-Pb geochronology
-
-
图 3 超基性岩球粒陨石标准化稀土元素配分型式(标准化数据据参考文献[22])
Figure 3. Chondrite-normalized REE patterns of ultrabasic rock from Aksay ophiolite
表 1 阿克塞蛇绿岩主量、微量和稀土元素分析结果
Table 1 Composition of major, trace and rare earth elements of Aksay ophiolite
样品岩性 枕状熔岩 玄武质熔岩 辉长岩 蛇纹岩 基性岩墙 样品号 624Y
Q1624YQ
2624Y
Q3624Y
Q4QSY
Q30828Y
Q8817Y
Q1817Y
Q3707H10 XEBY
Q1XEBY
Q2XEBY
Q3XEBY
Q4XEBY
Q5Na2O 1.75 4.53 3.53 3.25 4.02 2.84 0.33 0.01 0.04 1.20 1.67 2.16 1.65 2.28 MgO 6.52 4.21 5.26 7.17 4.71 6.15 7.99 39.41 33.62 4.58 5.98 6.26 4.78 5.72 Al2O3 10.98 14.85 12.00 14.75 14.65 15.46 13.49 1.55 1.73 11.07 11.72 12.58 12.36 13.26 SiO2 45.49 46.67 46.11 47.15 49.03 46.91 45.41 38.77 39.96 45.55 45.29 46.50 47.01 49.84 P2O5 0.11 0.23 0.20 0.25 0.31 0.10 0.13 0.01 0.01 0.23 0.15 0.09 0.17 0.15 K2O 0.31 0.32 0.71 1.12 0.37 1.21 0.10 0.02 0.08 1.38 0.88 0.80 0.93 0.88 CaO 19.23 4.89 10.21 7.71 8.53 9.04 13.92 0.26 0.85 6.53 5.06 10.37 6.78 7.51 TiO2 0.86 1.80 1.29 1.49 2.00 1.04 1.27 0.03 0.06 2.31 1.84 1.08 2.44 1.89 MnO2 0.14 0.22 0.19 0.18 0.12 0.14 0.48 0.10 0.12 0.22 0.19 0.19 0.23 0.20 Fe2O3 4.14 4.60 7.49 2.89 3.31 5.71 11.62 7.22 5.23 5.31 4.11 3.51 4.88 4.13 FeO 5.35 10.80 5.00 9.20 5.10 3.17 9.51 1.54 1.86 10.70 9.50 7.90 10.80 9.45 H2O+ 3.97 4.54 3.21 3.90 3.41 2.70 2.75 3.42 11.70 4.14 4.16 3.31 3.67 3.31 烧失量 0.82 2.01 3.59 0.61 4.13 5.24 2.87 12.25 13.06 11.55 12.37 7.49 6.58 3.44 La 9.46 23.06 17.51 17.88 26.72 4.22 5.92 0.31 0.86 17.54 14.38 6.23 21.57 17.30 Ce 18.27 41.37 31.33 34.93 52.43 8.88 20.60 22.30 1.57 36.84 30.04 14.00 42.85 35.82 Pr 2.18 4.97 3.94 4.54 6.55 1.58 2.11 0.31 0.19 4.91 3.85 1.83 5.35 4.17 Nd 8.05 17.97 14.49 17.07 23.85 7.98 10.70 0.17 0.74 19.12 14.57 7.89 20.17 15.81 Sm 2.11 4.46 3.56 4.33 5.45 2.58 3.31 0.10 0.16 5.57 3.79 2.64 5.60 4.01 Eu 0.81 1.50 1.25 1.56 1.83 0.94 1.06 0.10 0.05 1.63 1.30 0.95 1.62 1.39 Gd 2.41 4.69 3.74 4.84 4.86 3.47 3.72 0.36 0.16 6.16 4.17 3.38 6.34 4.39 Tb 0.43 0.81 0.63 0.86 0.82 0.65 0.76 0.10 0.03 1.12 0.75 0.65 1.19 0.80 Dy 2.56 4.63 3.55 5.02 4.44 4.44 5.03 0.10 0.22 6.84 4.54 4.19 7.37 4.77 Ho 0.55 0.95 0.70 1.04 0.88 0.96 1.04 0.10 0.05 1.46 0.98 0.91 1.61 1.04 Er 1.56 2.47 1.70 2.81 2.21 2.66 3.05 0.10 0.16 4.24 2.82 2.65 4.61 2.93 Tm 0.23 0.36 0.23 0.40 0.31 0.39 0.55 0.10 0.03 0.65 0.42 0.39 0.68 0.43 Yb 1.60 2.26 1.43 2.63 1.90 2.39 3.20 0.10 0.20 4.37 2.75 2.56 4.44 2.86 Lu 0.27 0.34 0.20 0.39 0.28 0.33 0.48 0.10 0.03 0.66 0.42 0.38 0.64 0.43 Y 13.21 21.76 13.81 24.18 19.93 22.70 26.00 0.70 10.40 31.80 22.60 21.37 37.97 24.15 Zr 69.30 101.40 78.50 96.80 171.00 63.50 71.30 10.00 13.00 142.60 98.70 61.40 129.10 100.50 Nb 9.94 20.63 18.55 17.47 21.00 6.70 4.17 3.00 0.45 10.13 8.12 6.08 9.83 11.12 Hf 2.20 2.50 2.00 2.40 4.60 2.00 2.85 3.89 0.20 3.10 2.40 1.70 2.80 2.70 Ta 0.80 1.49 1.33 1.37 1.39 0.73 0.31 0.10 0.04 0.95 0.76 0.61 0.88 1.09 Ba 63.56 191.10 401.00 932.90 791.60 115.80 358.30 453.30 21.00 203.10 151.00 131.70 188.5 163.70 NiO 291.50 297.20 280.20 95.48 100.60 127.00 25.00 2038.20 1731.0 72.20 66.48 81.00 63.50 67.87 ΣREE 50.49 109.84 84.26 98.30 132.50 41.47 61.53 24.35 4.45 111.11 84.78 48.65 124.04 96.15 LREE 40.88 93.33 72.08 80.31 116.80 26.18 43.70 23.29 3.57 85.61 67.93 33.54 97.16 78.50 HREE 9.61 16.51 12.18 17.99 15.70 15.29 17.83 1.06 0.88 25.50 16.85 15.11 26.88 17.65 LREE/HREE 4.25 5.65 5.92 4.46 7.44 1.71 2.45 21.97 4.06 3.36 4.03 2.22 3.61 4.45 (La/Yb)N 4.24 7.32 8.78 4.88 10.09 1.27 1.33 2.22 3.08 2.88 3.75 1.75 3.48 4.34 δEu 1.09 1.00 1.04 1.04 1.06 0.96 0.92 1.43 0.95 0.85 0.99 0.97 0.83 1.01 δCe 0.95 0.90 0.89 0.93 0.94 0.84 1.43 15.94 0.91 0.96 0.97 1.00 0.95 1.00 注:主量元素含量单位为%,微量和稀土元素单位为10-6 表 2 阿克塞蛇绿岩组火山岩样品LA-ICP-MS锆岩U-Th-Pb定年结果
Table 2 LA-ICP-MS zircons U-Th-Pb compositions of Aksay ophiolite basic lava
测定点号 同位素比值 年龄/Ma 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U 比值 ±σ 比值 ±σ 比值 ±σ 年龄 ±σ 年龄 ±σ 半个洼一带玄武质凝灰岩928TW4,采样坐标:北纬39°26′07″、东经94°25′36″ 928tw4-01 0.05772 0.00075 0.68051 0.01004 0.08555 0.00109 527 6 529 6 928tw4-02 0.0569 0.00072 0.6793 0.00981 0.08663 0.0011 526 6 536 7 928tw4-03 0.0584 0.00095 0.65232 0.01136 0.08106 0.00106 510 7 502 6 928tw4-04 0.05765 0.00091 0.64536 0.01107 0.08123 0.00106 506 7 503 6 928tw4-05 0.0571 0.00076 0.66213 0.00999 0.08411 0.00107 516 6 521 6 928tw4-06 0.0571 0.00072 0.63751 0.0089 0.08096 0.00098 501 6 502 6 928tw4-07 0.05722 0.00078 0.65562 0.00973 0.0831 0.00102 512 6 515 6 928tw4-08 0.05707 0.0007 0.65315 0.00901 0.083 0.00101 510 6 514 6 928tw4-09 0.05835 0.00111 0.64027 0.01254 0.07958 0.00104 502 8 494 6 928tw4-10 0.05824 0.00074 0.67808 0.00953 0.08444 0.00103 526 6 523 6 928tw4-11 0.05785 0.00068 0.67962 0.00909 0.0852 0.00103 527 5 527 6 -
Dewey J F, Bird J M. The origin and emplacement of the ophiolite suite:Appalachian ophilites in Newfoundland[J]. Journal of Geophysical Research, 1971, 76:3179-3206. doi: 10.1029/JB076i014p03179
Nicolas A. Structure of Ophiolites and Dynamics fo Oceanic Lithosphere:Dordrecht, the Netherlands[M]. Kluwer Academic Publishers, 1989.
Lagabrielle Y, Guivel C, Maury R, et al. Magmatic-tectonic effects of high thermal regime at the site of active ridge subduction:The Chile triple junction model[J]. Tectonophysics, 2000, 326:255-268. doi: 10.1016/S0040-1951(00)00124-4
Cawood P A, Kroner A, Collins W J, et al. Accretion-ary orogens through Earth history in Space and time[J]. Geological Society of London Special Publication, 2009, 318:1-36. doi: 10.1144/SP318.1
Dilek Y, Furnes H. Ophiolite genesis and global tectonics:geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 2011, 123(3/4):387-411. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/123/3-4/387/125632/ophiolite-genesis-and-global-tectonics-geochemical
Lister G, Forster M. Tectonic mode switches and the nature of orogenesis[J]. Lithos, 2009, 113:274-291. doi: 10.1016/j.lithos.2008.10.024
Reagan M K, Ishizuka O S, Stern R J, et al. Fore-arc basalts and subduction initiation in the IzuBonin-Mariana system[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3):1-17. doi: 10.1029/2009GC002871
Dilek Y, Furnes H. Spontaneous subduction initiation and forearc magmatism as revealed by Phanerozoic suprasubduction zone ophiolites[C]//Geological Society of America Abstracts with Programs, 2010, 42(5): 575.
杨经绥, 史仁灯, 吴才来, 等.北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年[J].岩石学报, 2008, 24(7):1567-1584. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20080713&journal_id=ysxb&year_id=2008 崔军文, 唐哲民, 邓晋福.阿尔金断裂系[M].北京:地质出版社, 2000:1-249. 李向民, 马中平, 孙吉明, 等.阿尔金断裂南缘约马克其镁铁-超镁铁岩的性质和年代学研究[J].岩石学报, 2009, 25(4):862-872. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090411 许志琴, 杨经绥, 张新建, 等.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J].地质学报, 1999, 73(3):193-205. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe199903000&dbname=CJFD&dbcode=CJFQ 杨经绥, 吴才来, 史仁灯.阿尔金山米兰红柳沟的席状岩墙群:海底扩张的重要证据[J].地质通报, 2002, 21(2):69-74. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20020222&flag=1 郭召杰, 张志诚, 王建君.阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义[J].科学通报, 1998, 43(18):1981-1984. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb199818017&dbname=CJFD&dbcode=CJFQ 张志诚, 郭召杰, 宋彪.阿尔金山北缘蛇绿混杂岩中辉长岩锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报, 2009, 25(3):568-576. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090309 修群业, 于海峰, 刘永顺, 等.阿尔金北缘枕状玄武岩的地质特征及其锆石U-Pb年龄[J].地质学报, 2007, 81(6):787-794. http://www.oalib.com/paper/4874121 刘函, 王国灿, 杨子江, 等.恰什坎萨伊沟玄武岩年代学、地球化学特征及其对北阿尔金洋盆闭合过程的制约[J].地质学报, 2013, 87(1):38-54. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201301005.htm 张新建, 孟繁聪, 于胜尧, 等.北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域构造意义[J].中国地质, 2007, 34(4):558-564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200704002 刘良, 车自成, 罗金海, 等.阿尔金山西段榴辉岩的确定及其地质意义[J].科学通报, 1996, 41(16):1485-1488. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb199616012&dbname=CJFD&dbcode=CJFQ 王焰, 刘良, 车自成, 等.阿尔金茫崖地区早古生代蛇绿岩的地球化学特征[J].地质论评, 1999, 45(增刊):1010-1014. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp1999s1148&dbname=CJFD&dbcode=CJFQ 刘良, 车自成, 王焰, 等.阿尔金高压变质岩带的特征及其构造意义[J].岩石学报, 1999, 15:57-64. http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_ysxb98199901006 Boynton W V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[C]//Henderson P. Rare earth element geochemistry. Elservier, 1984, 2: 63-114.
吴峻, 兰朝利, 李继亮, 等.阿尔金红柳沟蛇绿混杂岩中MORB与OIB组合的地球化学证据[J].岩石矿物学杂志, 2002, 21(1):24-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200201003 Melson W G, Vallier T L, Wright T L, et al. The Geophysics of the Pacific Ocean Basin and Its Margin[C]//Chemical diversity of abyssal volcanic glass erupted along Pacific, Atlantic and Indian Ocean sea floor. Spreading Centers, 1976: 351-367.
Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S. Andesite: Orogenic Andesite and Related Rocks. Chichester: Willy, 1982: 525-548.
Wilson M. Igneous Petrogenesis[M]. London:Unwin Hyman, 1989:1-466.
Jakes P, White A J R. Major and trace element abundances in volcanic rocks of orogenic areas[J]. Bull. Geol. Soc. Am., 1972, 83:29-40. doi: 10.1130/0016-7606(1972)83[29:MATEAI]2.0.CO;2
夏林圻, 李向民, 余吉远, 等.祁连山新元古代中—晚期至早古生代火山作用与构造演化[J].中国地质, 2016, 43(4):1087-1138. http://www.cqvip.com/QK/90050X/201604/669848882.html 高晓峰, 校培喜, 过磊, 等.北阿尔金地区早古生代有限洋盆开启时限:来自斜长花岗岩的证据[J].中国科学(D辑), 2012, 3:359-368. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201203006&dbname=CJFD&dbcode=CJFQ 王金荣, 宋春晖, 高军平, 等.阿拉善北部格尔乌苏蛇绿混杂岩的形成机制[J].兰州大学学报(自然科学版), 1995, 31(2):140-147. http://www.cqvip.com/qk/95222x/1995002/1637467.html 杨子江, 马华东, 王宗秀, 等.阿尔金山北缘冰沟蛇绿混杂岩中辉长岩锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报, 2012, 28(7):2269-2276. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20120726&journal_id=ysxb&year_id=2012