• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

阿尔金造山带南缘中―晚奥陶世正长花岗岩的发现及其地质意义

张若愚, 曾忠诚, 陈宁, 李琦, 王天毅, 赵江林

张若愚, 曾忠诚, 陈宁, 李琦, 王天毅, 赵江林. 2018: 阿尔金造山带南缘中―晚奥陶世正长花岗岩的发现及其地质意义. 地质通报, 37(4): 545-558.
引用本文: 张若愚, 曾忠诚, 陈宁, 李琦, 王天毅, 赵江林. 2018: 阿尔金造山带南缘中―晚奥陶世正长花岗岩的发现及其地质意义. 地质通报, 37(4): 545-558.
ZHANG Ruoyu, ZENG Zhongcheng, CHEN Ning, LI Qi, WANG Tianyi, ZHAO Jianglin. 2018: The discovery of Middle-Late Ordovician syenogranite on the southern margin of Altun orogenic belt and its geological significance. Geological Bulletin of China, 37(4): 545-558.
Citation: ZHANG Ruoyu, ZENG Zhongcheng, CHEN Ning, LI Qi, WANG Tianyi, ZHAO Jianglin. 2018: The discovery of Middle-Late Ordovician syenogranite on the southern margin of Altun orogenic belt and its geological significance. Geological Bulletin of China, 37(4): 545-558.

阿尔金造山带南缘中―晚奥陶世正长花岗岩的发现及其地质意义

基金项目: 

中国地质调查局项目《新疆阿尔金地区1:5万J45E010020等六幅区域地质矿产调查》 12120114081901

《新疆西昆仑1:5万喀英迪吉勒嘎等五幅区域地质调查》 1212011120533

详细信息
    作者简介:

    张若愚(1990-), 男, 本科, 助理工程师, 从事区域地质调查工作。E-mail:guyuexuanci@163.com

    通讯作者:

    曾忠诚(1983-), 男, 硕士, 高级工程师, 从事区域地质调查及构造地质学研究。E-mail:113191186@qq.com

  • 中图分类号: P534.42

The discovery of Middle-Late Ordovician syenogranite on the southern margin of Altun orogenic belt and its geological significance

  • 摘要:

    出露于阿尔金造山带帕夏拉依档沟一带的正长花岗岩,LA-ICP-MS锆石U-Pb测年结果显示其形成年龄为455.1±3.6Ma,属中―晚奥陶世。地球化学结果显示,主量元素具有富硅、富铝、富钾,低钛、贫钙、贫镁的特点,为强过铝质花岗岩系列,具高钾钙碱性特征。稀土元素总量较高,轻稀土元素富集、重稀土元素亏损,稀土元素球粒陨石标准化配分曲线有右倾型特征和明显的负Eu异常,与典型壳源花岗岩配分曲线一致。Ba、Sr、Ti等具负异常,Rb、Th、K等大离子亲石元素具正异常,显示S型花岗岩特征。结合原岩判别图解,推断其源区物质主要来源于上地壳变泥质沉积岩类。结合区域资料,认为正长花岗岩形成于挤压体制向拉张体制转换的构造环境,属后碰撞花岗岩类,表明在中―晚奥陶世阿中地块和柴达木地块已由挤压碰撞阶段转为伸展后碰撞阶段。

    Abstract:

    The syenogranite is located in the Paxialayidang ditch of the Altun Mountains. The U-Pb dating of zircons from the syenogranite using LA-ICP-MS yielded a group age of 455.1±3.6Ma, indicating that the crystallization of the intrusion occurred in Middle-Late Ordovician period. The geochemical analysis shows that major elements are characterized by high SiO2, Al2O3 and K2O and low TiO2, CaO and MgO, which suggests that syenogranite belongs to the typical high-K calc-alkaline series with deeply peraluminous feature. In addition, the rocks are enriched in total REE. The samples are enriched in LREE (light rare earth elements) and depleted in HREE (heavy rare earth elements) with Eu anomalies. The chondrite-normalized REE patterns show right-oblique type. The syenogranite is enriched in large ion lithophile elements of Rb, Th, K and depleted in high field strength elements of Ba, Sr, Ti, with the characteristics of S-type granite. In combination with the diagrams for discriminating compositions of original rocks, the authors hold that the rocks were formed by the partial melting of meta-pelitic sedimentary rocks from the lower crust. Combined with the data of regional geological characteristics, the authors consider that the syenogranite was formed in the transitional tectonic setting from the compressional to the extensional regime, thus belonging to the post-collisional granites. It is shown that Azhong Block and Qaidam Block entered into a transformation period from compression to extension during Middle-Late Ordovician period.

  • 致谢: 在成文过程中得到中国地质调查局西安地质调查中心李向民研究员的帮助,审稿专家提出宝贵的意见,在此表示衷心的感谢。
  • 图  1   阿尔金造山带地质构造图(a)及研究区地质简图(b, 据参考文献修改)

    TRB—塔里木盆地;QL—祁连山;QDB—柴达木盆地;WKL—西昆仑;EKL—东昆仑;HMLY—喜马拉雅山;INP—印度板块;Q—第四系;N2y—新近系油砂山组;J1—2dm—侏罗系大煤沟组;OMm—奥陶纪茫崖蛇绿混杂岩;QbS—青白口系索尔库里群;Pt1A—古元古代阿尔金岩群;O-S—玉苏普阿勒塔格岩体;ξγO2—3c—正长花岗岩;γδoQb—亚干布阳片麻岩;γδQb—盖里克片麻岩;OΣH—超基性岩块体;β—玄武岩块体;v—辉长岩脉;νQb—斜长角闪岩

    Figure  1.   Geological and tectonic map of Altun orogenic belt (a) and geological sketch map of the study area (b)

    图版Ⅰ  

    a、b、c.正长花岗岩宏观露头照片;d.正长花岗岩遥感影像特征;e.正长花岗岩中条纹长石;f.正长花岗岩中斜长石绢云母化、粘土化。Pt1A—古元古代阿尔金岩群;γδQb—盖里克片麻岩;ηγO2-3a—二长花岗岩;ξγO2-3c—正长花岗岩;Qhpal—全新统冲洪积物

    图版Ⅰ.  

    图  2   中―晚奥陶世正长花岗岩锆石阴极发光(CL)图像及U-Pb年龄

    Figure  2.   Zircon CL images and U-Pb ages of the syenogranite in Middle-Late Ordovician period

    图  3   中―晚奥陶世正长花岗岩LA-ICP-MS锆石U-Pb年龄谐和图

    Figure  3.   LA-ICP-MS zircon U-Pb concordia diagram for the syenogranite in Middle-Late Ordovician period

    图  4   中―晚奥陶世正长花岗岩A/CNK-A/NK (a)和SiO2-K2O图解(b) [13-14]

    Figure  4.   A/CNK-A/NK (a) and SiO2-K2O diagrams (b) of the syenogranite in Middle-Late Ordovician period

    图  5   中―晚奥陶世正长花岗岩球粒陨石标准化稀土元素分布型式(a)和原始地幔标准化微量元素蛛网图(b) [15]

    Figure  5.   Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element patterns (b) of the syenogranite in Middle-Late Ordovician period

    图  6   中―晚奥陶世正长花岗岩10000Ga/Al-FeO/MgO(a)和10000Ga/Al-Y图解(b)

    Figure  6.   Diagrams of 10000Ga/Al-FeO/MgO (a) and 10000Ga/Al-Y (b) of the syenogranite in Middle-Late Ordovician period

    图  7   中―晚奥陶世正长花岗岩ACF图解

    Figure  7.   ACF diagram of the syenogranite in Middle-Late Ordovician period

    图  8   中―晚奥陶世正长花岗岩Rb/Sr-Rb/Ba图解

    Figure  8.   Rb/Sr-Rb/Ba diagram of the syenogranite in Middle-Late Ordovician period

    图  9   中―晚奥陶世正长花岗岩微量元素构造环境判别图解[24-25]

    ORG—洋中脊花岗岩;VAG—火山弧花岗岩;WPG—板内花岗岩;syn-COLG—同碰撞花岗岩

    Figure  9.   Diagrams of the tectonic setting of major elements for the syenogranite in Middle-Late Ordovician period

    图  10   中―晚奥陶世正长花岗岩R1-R2构造环境判别图解(a) [26]和Hf-Rb/30-Ta×3三角判别图解(b) [27]

    Figure  10.   R1-R2(a) and Hf-Rb/30-Ta×3 (b)discrimination diagrams for the syenogranite in Middle-Late Ordovician period

    表  1   正长花岗岩(PM030-25) LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table  1   LA-ICP-MS zircon U-Th-Pb isotopic analyses of the syenogranite(PM030/25-1)

    点号 同位素比值 年龄/Ma
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206U 207Pb/235U 206Pb/238Th 208Pb/232Th
    比值 误差
    (1σ)
    比值 误差
    (1σ)
    比值 误差
    (1σ)
    比值 误差
    (1σ)
    年龄 误差
    (1σ)
    年龄 误差
    (1σ)
    年龄 误差
    (1σ)
    年龄 误差
    (1σ)
    01 0.05707 0.00171 0.57749 0.00941 0.07342 0.00112 0.05629 0.0011 494 65 463 6 457 7 1107 21
    02 0.05687 0.00168 0.57305 0.00885 0.0731 0.00111 0.07703 0.00145 486 65 460 6 455 7 1500 27
    03 0.05535 0.00164 0.55877 0.00869 0.07323 0.00112 0.02783 0.00069 426 64 451 6 456 7 555 14
    04 0.05688 0.00174 0.57085 0.00989 0.0728 0.00113 0.05736 0.00174 486 67 459 6 453 7 1127 33
    05 0.06285 0.00188 0.58845 0.00961 0.06792 0.00105 0.14796 0.00256 703 63 470 6 424 6 2789 45
    06 0.0543 0.0016 0.54623 0.00841 0.07297 0.00112 0.0405 0.00066 383 65 443 6 454 7 803 13
    07 0.07356 0.00224 0.68855 0.0118 0.0679 0.00106 0.27561 0.00532 1029 60 532 7 424 6 4920 84
    08 0.05507 0.00162 0.55805 0.00866 0.0735 0.00114 0.04739 0.00075 415 64 450 6 457 7 936 15
    09 0.0534 0.00173 0.52987 0.01078 0.07197 0.00114 0.0417 0.00171 346 72 432 7 448 7 826 33
    10 0.05618 0.00166 0.56795 0.00899 0.07332 0.00114 0.04302 0.00086 459 65 457 6 456 7 851 17
    11 0.08164 0.0024 0.70473 0.01088 0.0626 0.00098 0.37524 0.00498 1237 56 542 6 391 6 6440 73
    12 0.05635 0.00166 0.56979 0.00893 0.07332 0.00115 0.06536 0.00104 466 64 458 6 456 7 1280 20
    13 0.05457 0.00161 0.55501 0.0087 0.07375 0.00116 0.06298 0.00094 395 64 448 6 459 7 1235 18
    14 0.05535 0.00163 0.55715 0.00873 0.07298 0.00115 0.06047 0.00084 426 64 450 6 454 7 1187 16
    15 0.05469 0.00161 0.55186 0.00871 0.07316 0.00116 0.02667 0.00039 400 63 446 6 455 7 532 8
    16 0.05455 0.00161 0.55219 0.00877 0.07339 0.00117 0.03629 0.00059 394 64 446 6 457 7 721 12
    17 0.05348 0.00158 0.54063 0.00861 0.07329 0.00117 0.02897 0.00048 349 65 439 6 456 7 577 9
    18 0.0608 0.00179 0.52975 0.00842 0.06316 0.00101 0.11114 0.00152 632 62 432 6 395 6 2130 28
    下载: 导出CSV

    表  2   中―晚奥陶世正长花岗岩主量、微量和稀土元素分析结果

    Table  2   Major, trace and rare earth elements analyses of the syenogranite in Middle-Late Ordovician period

    样号 PM030/25-1 PM030/25-2 PM030/27-1 PM030/27-2
    SiO2 73.53 73.49 72.15 72.21
    TiO2 0.14 0.15 0.11 0.13
    Al2O3 13.96 13.68 14.49 14.52
    Fe2O3 0.68 0.70 0.65 0.65
    FeO 0.76 0.72 0.86 0.85
    MnO 0.02 0.02 0.02 0.02
    MgO 0.32 0.30 0.29 0.29
    CaO 0.52 0.51 0.55 0.50
    Na2O 2.36 2.18 1.99 2.01
    K2O 6.68 6.59 8.20 8.17
    P2O5 0.06 0.05 0.06 0.06
    烧失量 0.54 0.66 0.40 0.52
    总计 99.57 99.05 99.77 99.93
    σ 2.68 2.52 3.56 3.55
    K2O/Na2O 2.83 3.02 4.12 4.06
    AR 1.97 1.89 1.72 1.73
    SI 2.96 2.86 2.42 2.42
    FL 94.56 94.50 94.88 95.32
    MF 81.77 82.56 83.93 83.84
    R1 2455.31 2537.80 2138.28 2141.96
    R2 345.35 337.79 357.47 352.70
    AIK 0.80 0.78 0.84 0.84
    A/CNK 1.16 1.17 1.10 1.11
    K2O+Na2O 9.04 8.77 10.19 10.18
    Na2O/K2O 0.35 0.33 0.24 0.25
    m/f 0.41 0.39 0.35 0.35
    La 25.4 23.66 15.1 18.23
    Ce 54.6 50.38 32.3 36.66
    Pr 7.23 7.42 4.22 5.64
    Nd 25.8 23.66 15.1 17.23
    Sm 7.17 6.98 4.24 4.67
    Eu 0.598 0.61 0.635 0.63
    Gd 6.66 5.99 4 4.26
    Tb 1.08 1.02 0.665 0.85
    Dy 5.77 4.99 3.68 3.95
    Ho 0.966 0.95 0.632 0.72
    Er 2.33 2.16 1.53 1.73
    Tm 0.318 0.29 0.208 0.26
    Yb 1.78 1.78 1.14 1.28
    Lu 0.264 0.2 0.164 0.19
    Y 30.2 28.76 19.1 21.93
    ∑REE 170.17 158.85 102.71 118.23
    LREE 120.80 112.71 71.60 83.06
    HREE 49.37 46.14 31.12 35.17
    LREE/HREE 2.45 2.44 2.30 2.36
    δEu 0.26 0.28 0.46 0.42
    δCe 0.94 0.89 0.94 0.84
    (La/Yb)N 9.64 8.98 8.95 9.62
    (La/Sm)N 2.23 2.13 2.24 2.46
    (Gd/Yb)N 3.03 2.73 2.84 2.70
    Cu 14.10 13.99 13.50 13.65
    Pb 66.90 66.40 65.80 66.10
    Zn 35.50 34.60 26.00 28.20
    Co 1.88 1.94 2.59 2.42
    Ni 2.13 2.45 3.57 3.31
    Cr 17.10 16.96 15.30 16.10
    V 6.60 8.20 11.90 10.30
    Ga 17.20 17.10 16.20 16.80
    Sr 86.10 88.20 92.30 91.40
    Ba 255.70 266.00 295.80 289.00
    Rb 319.20 327.00 339.50 338.00
    Nb 28.70 26.80 11.10 13.70
    Ta 3.42 3.32 0.94 1.45
    Zr 67.80 65.90 26.40 27.10
    Hf 7.46 7.32 1.77 1.89
    U 7.23 7.13 6.40 6.41
    Th 16.70 15.10 9.24 10.30
    Ag 0.03 0.03 0.04 0.04
    Au/10-9 3.17 3.16 3.12 3.16
    Cs 7.47 7.58 7.87 7.79
    Mg# 29.43 28.37 26.30 26.43
    Rb/Sr 3.71 3.71 3.68 3.70
    K/Rb 173.65 167.23 200.42 200.57
    Ba/Sr 2.97 3.02 3.20 3.16
    Th/Ta 4.88 4.55 9.82 7.10
    K 55429.79 54682.98 68042.55 67793.62
    注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV
  • 刘良, 车自成, 王焰, 等.阿尔金高压变质岩带的特征及其构造意义[J].岩石学报, 1999, 1:57-64. http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_ysxb98199901006
    校培喜, 高晓峰, 康磊, 等.阿尔金-东昆仑西段成矿带地质背景研究[M].北京:地质出版社, 2014.
    曹玉亭, 刘良, 王超, 等.阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J].岩石学报, 2010, 26(11):3259-3271. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011009.htm
    康磊, 刘良, 曹玉亭, 等.阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义[J].岩石学报, 2013, 29(9):3039-3048. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20130907&journal_id=ysxb&year_id=2013
    刘良, 康磊, 曹玉亭, 等.南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用[J].中国科学:地球科学, 2015, 45(8):1126-1137. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201508004&dbname=CJFD&dbcode=CJFQ
    吴才来, 郜源红, 雷敏, 等.南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因[J].岩石学报, 2014, 30(8):2297-2323. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201408014.htm
    王超, 刘良, 张安达, 等.阿尔金造山带南缘岩浆混合作用:玉苏普阿勒克塔格岩体岩石学和地球化学证据[J].岩石学报, 2008, 24(12):2809-2819. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200812015
    张若愚, 曾忠诚, 朱伟鹏, 等.阿尔金造山带帕夏拉依档岩体锆石U-Pb年代学、地球化学特征及地质意义[J].地质论评, 2016, 62(5):1283-1299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201605014
    李琦, 曾忠诚, 陈宁, 等.阿尔金南缘新元古代盖里克片麻岩年代学、地球化学特征及其构造意义[J].现代地质, 2015, 6:1271-1283. doi: 10.3969/j.issn.1000-8527.2015.06.002

    Anderson T.Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemcal Geology, 2002, 192(1/2):59-79.

    Ludwig K R. Isoplot/Exversion 2.49. A Geochronological Toolkit for Microsoft Excel[J]. Berkeley:Berkeley Geochronology Center Special Publication, 2003, 1:1-56.

    Yuan H, Wu F, Gao S, et al. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS[J]. Science Bulletin, 2003, 48(22):2411-2421. doi: 10.1360/03wd0139

    Maniar P D. Tectonic discrimination of granitoids[J]. Geol. Soc. Am. Bull., 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4):247-263. doi: 10.1016/0024-4937(89)90028-5

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32kbar:Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4):891-931. doi: 10.1093/petrology/36.4.891

    Whelan J F, Cobb J C, Rye R O. Stable isotope geochemistry of sphalerite and other mineral matter in coal beds of the Illinois and Forest City basins[J]. Economic Geology, 1988, 83(5):990-1007. doi: 10.2113/gsecongeo.83.5.990

    Eby G N. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1):115-134. https://www.sciencedirect.com/science/article/pii/002449379090043Z

    Chappell B W. Two contrasting granite type[J]. Pacific Geology, 1974, 8:173-174.

    Davies J H, Blanckenburg F V. Slab breakoff:A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth & Planetary Science Letters, 1995, 129(1/4):85-102. http://www.sciencedirect.com/science/article/pii/0012821X9400237S

    张宏飞, 高山, 张本仁, 等.大别山地壳结构的Pb同位素地球化学示踪[J].地球化学, 2001, 30(4):395-401. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200104013.htm
    李曙光, 李秋立, 侯振辉, 等.大别山超高压变质岩的冷却史及折返机制[J].岩石学报, 2005, 21(4):1117-1124. http://d.wanfangdata.com.cn/Periodical_ysxb98200504010.aspx
    李曙光.大别山超高压变质岩折返机制与华北-华南陆块碰撞过程[J].地学前缘, 2004, 11(3):63-70. http://www.cqvip.com/QK/98600X/200403/10851964.html

    Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    Pearce J A, Deng W. The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986)[J]. Philosophical Transactions of the Royal Society of London, 1988, 327(1594):215-238. doi: 10.1098/rsta.1988.0127

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1):43-55. https://www.sciencedirect.com/science/article/pii/0009254185900348

    Harris N B W. Geochemical characteristics of collision-zone magmatism[J]. Collision Tectonics, 1986, 19(5):67-81. http://ci.nii.ac.jp/naid/30036979526

    杨文强, 刘良, 丁海波, 等.南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义[J].岩石学报, 2012, 28(12):4139-4150. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20121226&journal_id=ysxb
    张建新, 于胜尧, 李云帅, 等.原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J].岩石学报, 2015, 31(12):3531-3554. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20151203&journal_id=ysxb&year_id=2015
    刘良, 张安达, 陈丹玲, 等.阿尔金江尕勒萨依榴辉岩和围岩锆石LA-ICP-MS微区原位定年及其地质意义[J].地学前缘, 2007, 14(1):98-107. http://d.wanfangdata.com.cn/Periodical_dxqy200701009.aspx
    康磊, 校培喜, 高晓峰, 等.茫崖二长花岗岩、石英闪长岩的年代学、地球化学及岩石成因:对阿尔金南缘早古生代构造-岩浆演化的启示[J].岩石学报, 2016, 32(6):1731-1748. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20160612&journal_id=ysxb&year_id=2016
    马中平, 李向民, 徐学义, 等.南阿尔金山清水泉镁铁-超镁铁质侵入体LA-ICP-MS锆石U-Pb同位素定年及其意义[J].中国地质, 2011, 38(4):1071-1078. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201104026.htm
    董洪凯, 郭金城, 陈海燕, 等.新疆阿尔金地区长沙沟一带奥陶纪侵入岩及其演化特征[J].西北地质, 2014, 47(4):73-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201404008
    董增产, 校培喜, 奚仁刚, 等.阿尔金南缘构造混杂岩带中角闪辉长岩地球化学特征及同位素测年[J].地质论评, 2011, 57(2):207-216. http://www.cqvip.com/QK/91067X/201102/37637990.html
    徐旭明, 郭金城, 陈海燕, 等.新疆阿尔金长沙沟一带奥陶纪辉长岩SHRIMP锆石U-Pb年龄及其地球化学特征[J].西北地质, 2014, 47(4):156-162. http://www.cnki.com.cn/Article/CJFDTotal-XBDI201404018.htm
    关锁平, 吴才来, 陈其龙.阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境[J].地质通报, 2007, 26(10):1385-1392. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=2007010218&flag=1
    陕西省地质调查中心. 新疆阿尔金地区1: 5万J45E010020等六幅区域地质矿产调查报告. 2017.
图(11)  /  表(2)
计量
  • 文章访问数:  2502
  • HTML全文浏览量:  259
  • PDF下载量:  1895
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-06
  • 修回日期:  2018-03-12
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2018-03-31

目录

    /

    返回文章
    返回