The discovery of Middle-Late Ordovician syenogranite on the southern margin of Altun orogenic belt and its geological significance
-
摘要:
出露于阿尔金造山带帕夏拉依档沟一带的正长花岗岩,LA-ICP-MS锆石U-Pb测年结果显示其形成年龄为455.1±3.6Ma,属中―晚奥陶世。地球化学结果显示,主量元素具有富硅、富铝、富钾,低钛、贫钙、贫镁的特点,为强过铝质花岗岩系列,具高钾钙碱性特征。稀土元素总量较高,轻稀土元素富集、重稀土元素亏损,稀土元素球粒陨石标准化配分曲线有右倾型特征和明显的负Eu异常,与典型壳源花岗岩配分曲线一致。Ba、Sr、Ti等具负异常,Rb、Th、K等大离子亲石元素具正异常,显示S型花岗岩特征。结合原岩判别图解,推断其源区物质主要来源于上地壳变泥质沉积岩类。结合区域资料,认为正长花岗岩形成于挤压体制向拉张体制转换的构造环境,属后碰撞花岗岩类,表明在中―晚奥陶世阿中地块和柴达木地块已由挤压碰撞阶段转为伸展后碰撞阶段。
-
关键词:
- 阿尔金造山带 /
- LA-ICP-MS锆石U-Pb测年 /
- 正长花岗岩 /
- 地球化学 /
- 岩石成因
Abstract:The syenogranite is located in the Paxialayidang ditch of the Altun Mountains. The U-Pb dating of zircons from the syenogranite using LA-ICP-MS yielded a group age of 455.1±3.6Ma, indicating that the crystallization of the intrusion occurred in Middle-Late Ordovician period. The geochemical analysis shows that major elements are characterized by high SiO2, Al2O3 and K2O and low TiO2, CaO and MgO, which suggests that syenogranite belongs to the typical high-K calc-alkaline series with deeply peraluminous feature. In addition, the rocks are enriched in total REE. The samples are enriched in LREE (light rare earth elements) and depleted in HREE (heavy rare earth elements) with Eu anomalies. The chondrite-normalized REE patterns show right-oblique type. The syenogranite is enriched in large ion lithophile elements of Rb, Th, K and depleted in high field strength elements of Ba, Sr, Ti, with the characteristics of S-type granite. In combination with the diagrams for discriminating compositions of original rocks, the authors hold that the rocks were formed by the partial melting of meta-pelitic sedimentary rocks from the lower crust. Combined with the data of regional geological characteristics, the authors consider that the syenogranite was formed in the transitional tectonic setting from the compressional to the extensional regime, thus belonging to the post-collisional granites. It is shown that Azhong Block and Qaidam Block entered into a transformation period from compression to extension during Middle-Late Ordovician period.
-
Keywords:
- Altun orogenic belt /
- LA-ICP-MS zircon U-Pb dating /
- syenogranite /
- geochemistry /
- petrogenesis
-
致谢: 在成文过程中得到中国地质调查局西安地质调查中心李向民研究员的帮助,审稿专家提出宝贵的意见,在此表示衷心的感谢。
-
图 1 阿尔金造山带地质构造图(a)及研究区地质简图(b, 据参考文献①修改)
TRB—塔里木盆地;QL—祁连山;QDB—柴达木盆地;WKL—西昆仑;EKL—东昆仑;HMLY—喜马拉雅山;INP—印度板块;Q—第四系;N2y—新近系油砂山组;J1—2dm—侏罗系大煤沟组;
OMm—奥陶纪茫崖蛇绿混杂岩;QbS—青白口系索尔库里群;Pt1A—古元古代阿尔金岩群;O-S—玉苏普阿勒塔格岩体;ξγO2—3c—正长花岗岩;γδoQb—亚干布阳片麻岩;γδQb—盖里克片麻岩;OΣH—超基性岩块体;β—玄武岩块体;v—辉长岩脉;νQb—斜长角闪岩Figure 1. Geological and tectonic map of Altun orogenic belt (a) and geological sketch map of the study area (b)
图 5 中―晚奥陶世正长花岗岩球粒陨石标准化稀土元素分布型式(a)和原始地幔标准化微量元素蛛网图(b) [15]
Figure 5. Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element patterns (b) of the syenogranite in Middle-Late Ordovician period
表 1 正长花岗岩(PM030-25) LA-ICP-MS锆石U-Th-Pb同位素分析结果
Table 1 LA-ICP-MS zircon U-Th-Pb isotopic analyses of the syenogranite(PM030/25-1)
点号 同位素比值 年龄/Ma 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206U 207Pb/235U 206Pb/238Th 208Pb/232Th 比值 误差
(1σ)比值 误差
(1σ)比值 误差
(1σ)比值 误差
(1σ)年龄 误差
(1σ)年龄 误差
(1σ)年龄 误差
(1σ)年龄 误差
(1σ)01 0.05707 0.00171 0.57749 0.00941 0.07342 0.00112 0.05629 0.0011 494 65 463 6 457 7 1107 21 02 0.05687 0.00168 0.57305 0.00885 0.0731 0.00111 0.07703 0.00145 486 65 460 6 455 7 1500 27 03 0.05535 0.00164 0.55877 0.00869 0.07323 0.00112 0.02783 0.00069 426 64 451 6 456 7 555 14 04 0.05688 0.00174 0.57085 0.00989 0.0728 0.00113 0.05736 0.00174 486 67 459 6 453 7 1127 33 05 0.06285 0.00188 0.58845 0.00961 0.06792 0.00105 0.14796 0.00256 703 63 470 6 424 6 2789 45 06 0.0543 0.0016 0.54623 0.00841 0.07297 0.00112 0.0405 0.00066 383 65 443 6 454 7 803 13 07 0.07356 0.00224 0.68855 0.0118 0.0679 0.00106 0.27561 0.00532 1029 60 532 7 424 6 4920 84 08 0.05507 0.00162 0.55805 0.00866 0.0735 0.00114 0.04739 0.00075 415 64 450 6 457 7 936 15 09 0.0534 0.00173 0.52987 0.01078 0.07197 0.00114 0.0417 0.00171 346 72 432 7 448 7 826 33 10 0.05618 0.00166 0.56795 0.00899 0.07332 0.00114 0.04302 0.00086 459 65 457 6 456 7 851 17 11 0.08164 0.0024 0.70473 0.01088 0.0626 0.00098 0.37524 0.00498 1237 56 542 6 391 6 6440 73 12 0.05635 0.00166 0.56979 0.00893 0.07332 0.00115 0.06536 0.00104 466 64 458 6 456 7 1280 20 13 0.05457 0.00161 0.55501 0.0087 0.07375 0.00116 0.06298 0.00094 395 64 448 6 459 7 1235 18 14 0.05535 0.00163 0.55715 0.00873 0.07298 0.00115 0.06047 0.00084 426 64 450 6 454 7 1187 16 15 0.05469 0.00161 0.55186 0.00871 0.07316 0.00116 0.02667 0.00039 400 63 446 6 455 7 532 8 16 0.05455 0.00161 0.55219 0.00877 0.07339 0.00117 0.03629 0.00059 394 64 446 6 457 7 721 12 17 0.05348 0.00158 0.54063 0.00861 0.07329 0.00117 0.02897 0.00048 349 65 439 6 456 7 577 9 18 0.0608 0.00179 0.52975 0.00842 0.06316 0.00101 0.11114 0.00152 632 62 432 6 395 6 2130 28 表 2 中―晚奥陶世正长花岗岩主量、微量和稀土元素分析结果
Table 2 Major, trace and rare earth elements analyses of the syenogranite in Middle-Late Ordovician period
样号 PM030/25-1 PM030/25-2 PM030/27-1 PM030/27-2 SiO2 73.53 73.49 72.15 72.21 TiO2 0.14 0.15 0.11 0.13 Al2O3 13.96 13.68 14.49 14.52 Fe2O3 0.68 0.70 0.65 0.65 FeO 0.76 0.72 0.86 0.85 MnO 0.02 0.02 0.02 0.02 MgO 0.32 0.30 0.29 0.29 CaO 0.52 0.51 0.55 0.50 Na2O 2.36 2.18 1.99 2.01 K2O 6.68 6.59 8.20 8.17 P2O5 0.06 0.05 0.06 0.06 烧失量 0.54 0.66 0.40 0.52 总计 99.57 99.05 99.77 99.93 σ 2.68 2.52 3.56 3.55 K2O/Na2O 2.83 3.02 4.12 4.06 AR 1.97 1.89 1.72 1.73 SI 2.96 2.86 2.42 2.42 FL 94.56 94.50 94.88 95.32 MF 81.77 82.56 83.93 83.84 R1 2455.31 2537.80 2138.28 2141.96 R2 345.35 337.79 357.47 352.70 AIK 0.80 0.78 0.84 0.84 A/CNK 1.16 1.17 1.10 1.11 K2O+Na2O 9.04 8.77 10.19 10.18 Na2O/K2O 0.35 0.33 0.24 0.25 m/f 0.41 0.39 0.35 0.35 La 25.4 23.66 15.1 18.23 Ce 54.6 50.38 32.3 36.66 Pr 7.23 7.42 4.22 5.64 Nd 25.8 23.66 15.1 17.23 Sm 7.17 6.98 4.24 4.67 Eu 0.598 0.61 0.635 0.63 Gd 6.66 5.99 4 4.26 Tb 1.08 1.02 0.665 0.85 Dy 5.77 4.99 3.68 3.95 Ho 0.966 0.95 0.632 0.72 Er 2.33 2.16 1.53 1.73 Tm 0.318 0.29 0.208 0.26 Yb 1.78 1.78 1.14 1.28 Lu 0.264 0.2 0.164 0.19 Y 30.2 28.76 19.1 21.93 ∑REE 170.17 158.85 102.71 118.23 LREE 120.80 112.71 71.60 83.06 HREE 49.37 46.14 31.12 35.17 LREE/HREE 2.45 2.44 2.30 2.36 δEu 0.26 0.28 0.46 0.42 δCe 0.94 0.89 0.94 0.84 (La/Yb)N 9.64 8.98 8.95 9.62 (La/Sm)N 2.23 2.13 2.24 2.46 (Gd/Yb)N 3.03 2.73 2.84 2.70 Cu 14.10 13.99 13.50 13.65 Pb 66.90 66.40 65.80 66.10 Zn 35.50 34.60 26.00 28.20 Co 1.88 1.94 2.59 2.42 Ni 2.13 2.45 3.57 3.31 Cr 17.10 16.96 15.30 16.10 V 6.60 8.20 11.90 10.30 Ga 17.20 17.10 16.20 16.80 Sr 86.10 88.20 92.30 91.40 Ba 255.70 266.00 295.80 289.00 Rb 319.20 327.00 339.50 338.00 Nb 28.70 26.80 11.10 13.70 Ta 3.42 3.32 0.94 1.45 Zr 67.80 65.90 26.40 27.10 Hf 7.46 7.32 1.77 1.89 U 7.23 7.13 6.40 6.41 Th 16.70 15.10 9.24 10.30 Ag 0.03 0.03 0.04 0.04 Au/10-9 3.17 3.16 3.12 3.16 Cs 7.47 7.58 7.87 7.79 Mg# 29.43 28.37 26.30 26.43 Rb/Sr 3.71 3.71 3.68 3.70 K/Rb 173.65 167.23 200.42 200.57 Ba/Sr 2.97 3.02 3.20 3.16 Th/Ta 4.88 4.55 9.82 7.10 K 55429.79 54682.98 68042.55 67793.62 注:主量元素含量单位为%,微量和稀土元素含量为10-6 -
刘良, 车自成, 王焰, 等.阿尔金高压变质岩带的特征及其构造意义[J].岩石学报, 1999, 1:57-64. http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_ysxb98199901006 校培喜, 高晓峰, 康磊, 等.阿尔金-东昆仑西段成矿带地质背景研究[M].北京:地质出版社, 2014. 曹玉亭, 刘良, 王超, 等.阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J].岩石学报, 2010, 26(11):3259-3271. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011009.htm 康磊, 刘良, 曹玉亭, 等.阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义[J].岩石学报, 2013, 29(9):3039-3048. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20130907&journal_id=ysxb&year_id=2013 刘良, 康磊, 曹玉亭, 等.南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用[J].中国科学:地球科学, 2015, 45(8):1126-1137. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201508004&dbname=CJFD&dbcode=CJFQ 吴才来, 郜源红, 雷敏, 等.南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因[J].岩石学报, 2014, 30(8):2297-2323. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201408014.htm 王超, 刘良, 张安达, 等.阿尔金造山带南缘岩浆混合作用:玉苏普阿勒克塔格岩体岩石学和地球化学证据[J].岩石学报, 2008, 24(12):2809-2819. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200812015 张若愚, 曾忠诚, 朱伟鹏, 等.阿尔金造山带帕夏拉依档岩体锆石U-Pb年代学、地球化学特征及地质意义[J].地质论评, 2016, 62(5):1283-1299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201605014 李琦, 曾忠诚, 陈宁, 等.阿尔金南缘新元古代盖里克片麻岩年代学、地球化学特征及其构造意义[J].现代地质, 2015, 6:1271-1283. doi: 10.3969/j.issn.1000-8527.2015.06.002 Anderson T.Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemcal Geology, 2002, 192(1/2):59-79.
Ludwig K R. Isoplot/Exversion 2.49. A Geochronological Toolkit for Microsoft Excel[J]. Berkeley:Berkeley Geochronology Center Special Publication, 2003, 1:1-56.
Yuan H, Wu F, Gao S, et al. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS[J]. Science Bulletin, 2003, 48(22):2411-2421. doi: 10.1360/03wd0139
Maniar P D. Tectonic discrimination of granitoids[J]. Geol. Soc. Am. Bull., 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4):247-263. doi: 10.1016/0024-4937(89)90028-5
Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32kbar:Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4):891-931. doi: 10.1093/petrology/36.4.891
Whelan J F, Cobb J C, Rye R O. Stable isotope geochemistry of sphalerite and other mineral matter in coal beds of the Illinois and Forest City basins[J]. Economic Geology, 1988, 83(5):990-1007. doi: 10.2113/gsecongeo.83.5.990
Eby G N. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1):115-134. https://www.sciencedirect.com/science/article/pii/002449379090043Z
Chappell B W. Two contrasting granite type[J]. Pacific Geology, 1974, 8:173-174.
Davies J H, Blanckenburg F V. Slab breakoff:A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth & Planetary Science Letters, 1995, 129(1/4):85-102. http://www.sciencedirect.com/science/article/pii/0012821X9400237S
张宏飞, 高山, 张本仁, 等.大别山地壳结构的Pb同位素地球化学示踪[J].地球化学, 2001, 30(4):395-401. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200104013.htm 李曙光, 李秋立, 侯振辉, 等.大别山超高压变质岩的冷却史及折返机制[J].岩石学报, 2005, 21(4):1117-1124. http://d.wanfangdata.com.cn/Periodical_ysxb98200504010.aspx 李曙光.大别山超高压变质岩折返机制与华北-华南陆块碰撞过程[J].地学前缘, 2004, 11(3):63-70. http://www.cqvip.com/QK/98600X/200403/10851964.html Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956
Pearce J A, Deng W. The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986)[J]. Philosophical Transactions of the Royal Society of London, 1988, 327(1594):215-238. doi: 10.1098/rsta.1988.0127
Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1):43-55. https://www.sciencedirect.com/science/article/pii/0009254185900348
Harris N B W. Geochemical characteristics of collision-zone magmatism[J]. Collision Tectonics, 1986, 19(5):67-81. http://ci.nii.ac.jp/naid/30036979526
杨文强, 刘良, 丁海波, 等.南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义[J].岩石学报, 2012, 28(12):4139-4150. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20121226&journal_id=ysxb 张建新, 于胜尧, 李云帅, 等.原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J].岩石学报, 2015, 31(12):3531-3554. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20151203&journal_id=ysxb&year_id=2015 刘良, 张安达, 陈丹玲, 等.阿尔金江尕勒萨依榴辉岩和围岩锆石LA-ICP-MS微区原位定年及其地质意义[J].地学前缘, 2007, 14(1):98-107. http://d.wanfangdata.com.cn/Periodical_dxqy200701009.aspx 康磊, 校培喜, 高晓峰, 等.茫崖二长花岗岩、石英闪长岩的年代学、地球化学及岩石成因:对阿尔金南缘早古生代构造-岩浆演化的启示[J].岩石学报, 2016, 32(6):1731-1748. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20160612&journal_id=ysxb&year_id=2016 马中平, 李向民, 徐学义, 等.南阿尔金山清水泉镁铁-超镁铁质侵入体LA-ICP-MS锆石U-Pb同位素定年及其意义[J].中国地质, 2011, 38(4):1071-1078. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201104026.htm 董洪凯, 郭金城, 陈海燕, 等.新疆阿尔金地区长沙沟一带奥陶纪侵入岩及其演化特征[J].西北地质, 2014, 47(4):73-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201404008 董增产, 校培喜, 奚仁刚, 等.阿尔金南缘构造混杂岩带中角闪辉长岩地球化学特征及同位素测年[J].地质论评, 2011, 57(2):207-216. http://www.cqvip.com/QK/91067X/201102/37637990.html 徐旭明, 郭金城, 陈海燕, 等.新疆阿尔金长沙沟一带奥陶纪辉长岩SHRIMP锆石U-Pb年龄及其地球化学特征[J].西北地质, 2014, 47(4):156-162. http://www.cnki.com.cn/Article/CJFDTotal-XBDI201404018.htm 关锁平, 吴才来, 陈其龙.阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境[J].地质通报, 2007, 26(10):1385-1392. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=2007010218&flag=1 陕西省地质调查中心. 新疆阿尔金地区1: 5万J45E010020等六幅区域地质矿产调查报告. 2017.