• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

内蒙古西乌旗石匠山晚侏罗世-早白垩世A型花岗岩锆石U-Pb年龄及构造环境

王金芳, 李英杰, 李红阳, 董培培

王金芳, 李英杰, 李红阳, 董培培. 2018: 内蒙古西乌旗石匠山晚侏罗世-早白垩世A型花岗岩锆石U-Pb年龄及构造环境. 地质通报, 37(2-3): 382-396.
引用本文: 王金芳, 李英杰, 李红阳, 董培培. 2018: 内蒙古西乌旗石匠山晚侏罗世-早白垩世A型花岗岩锆石U-Pb年龄及构造环境. 地质通报, 37(2-3): 382-396.
WANG Jinfang, LI Yingjie, LI Hongyang, DONG Peipei. 2018: Zircon U-Pb dating of the Shijiangshan Late Jurassic-Early Cretaceous A-type granite in Xi Ujimqin Banner of Inner Mongolia and its tectonic setting. Geological Bulletin of China, 37(2-3): 382-396.
Citation: WANG Jinfang, LI Yingjie, LI Hongyang, DONG Peipei. 2018: Zircon U-Pb dating of the Shijiangshan Late Jurassic-Early Cretaceous A-type granite in Xi Ujimqin Banner of Inner Mongolia and its tectonic setting. Geological Bulletin of China, 37(2-3): 382-396.

内蒙古西乌旗石匠山晚侏罗世-早白垩世A型花岗岩锆石U-Pb年龄及构造环境

基金项目: 

国家自然科学基金项目《内蒙古西乌旗迪彦庙蛇绿岩年代学、地球化学及大地构造意义》 41502211

中国地质调查局项目《内蒙古1:5万沙日勒昭等四幅区域地质矿产调查》 1212011120701

《内蒙古1:5万高力罕牧场三连等四幅区域地质矿产调查》 1212011120711

河北地质大学青年基金《西乌旗巴彦沟A型花岗岩岩石学地球化学研究》 QN201703

详细信息
    作者简介:

    王金芳(1983-), 女, 硕士, 讲师, 从事岩石学研究工作。E-mail:wjfb1983@163.com

  • 中图分类号: P534.5;P588.12+1

Zircon U-Pb dating of the Shijiangshan Late Jurassic-Early Cretaceous A-type granite in Xi Ujimqin Banner of Inner Mongolia and its tectonic setting

  • 摘要:

    内蒙古西乌旗石匠山A型花岗岩位于贺根山缝合带内,侵位于早石炭世迪彦庙-白音布拉格蛇绿岩带和下二叠统寿山沟组与大石寨组中,岩性为二长花岗岩。石匠山A型花岗岩富硅(SiO2=74.18%~77.16%)、富钾(K2O=4.31%~5.07%)、富碱(Na2O+K2O=8.44%~9.16%),贫Al2O3、CaO、MgO、TiO2、P2O5、Sr、Ba、Eu、Ti和P,具有较高的Ga/Al(3.98~6.09)、(Na2O+K2O)/CaO、K2O/MgO、TFeO/MgO、Rb/Nb、Y/Nb、Sc/Nb值,稀土元素配分曲线为典型的海鸥式分布,δEu为0.01~0.19,负Eu异常显著,明显不同于I、S和M型花岗岩,为典型的铝质A型花岗岩。在地球化学分类判别图解上,石匠山A型花岗岩显示A2型后造山铝质花岗岩特征,反映其形成于后造山伸展环境。LA-ICP-MS锆石U-Pb测年结果表明,该花岗岩的侵位年龄为159.8±1.3Ma、143.1±1.3Ma、136.20±0.69Ma,即形成时代为晚侏罗世-早白垩世,揭示贺根山缝合带在晚侏罗世-早白垩世为后造山伸展阶段。

    Abstract:

    Lying along the Hegenshan collisional orogenic suture zone in Xi Ujimqin Banner of Inner Mongolia, the Shijiangshan Atype granite intruded into Early Carboniferous Diyanmiao-Baiyinbulage ophiolite as well as Early Permian Shoushangou Formation and Dashizhai Formation, and consists mainly of monzogranites. The granite is geochemically characterized by high SiO2 (74.18%~77.16%), K2O (4.31%~5.07%), high absolute alkali values (Na2O+K2O=8.44%~9.16%), low Al2O3, CaO, MgO, TiO2, P2O5, Sr, Ba, Eu, Ti, P values, and higher Ga/Al (3.98~6.09), (Na2O+K2O)/CaO, K2O/MgO, TFeO/MgO, Rb/Nb, Y/Nb, Sc/Nb ratios. It is characterized by typical flat or slight right-inclined gull-wing shaped REE distribution patterns with obvious negative Eu anomalies (δEu=0.01~0.19). The Shijiangshan monzogranite exhibits typical geochemical characteristics of A-type granite, being significantly different from I, S and M type granites in geochemistry. According to the chemical subdivision diagrams of the A-type granitoids, the Shijiangshan A-type granite belongs to aluminous A2-type granitoid, formed and emplaced in a post-orogenic extension setting. LAICP-MS zircon U-Pb dating shows that the ages of the granite are 159.8±1.3Ma, 143.1±1.3Ma and 136.20±0.69Ma, suggesting that it was produced during Late Jurassic to Early Cretaceous and that the Hegenshan suture zone was at the post orogenic extension stage in the Late Jurassic-Early Cretaceous period.

  • 致谢: 野外调查中得到中国地质调查局天津地质调查中心谷永昌研究员和辛后田、刘永顺副研究员等的热情指导和帮助,在此一并表示衷心的感谢。
  • 图  1   内蒙古西乌旗石匠山A型花岗岩区域构造(a)和地质简图(b)[29]

    1—上侏罗统满克头鄂博组;2—下二叠统寿山沟组;3—下二叠统大石寨组;4—早白垩世二长花岗岩;5—晚侏罗世二长花岗岩;6—早石炭世白音布拉格蛇绿岩;7—采样位置

    Figure  1.   Sketch tectonic(a) and geological (b) map of the Shijiangshan A-type granite in Xi Ujimqin Banner, Inner Mongolia

    图  2   石匠山A型花岗岩照片

    a—二长花岗岩;b—条纹结构。Pth—条纹长石;Pl—斜长石;Q—石英

    Figure  2.   Photographs of the Shijiangshan A-type granite

    图  3   石匠山A型花岗岩锆石阴极发光(CL)图像及其206Pb/238U年龄

    Figure  3.   Cathodoluminescence images and 206Pb/238U ages of zircons from the Shijiangshan A-type granite

    图  4   石匠山A型花岗岩锆石U-Pb年龄谐和图和直方图

    Figure  4.   U-Pb concordia diagram of zircons from the Shijiangshan A-type granite

    图  5   石匠山A型花岗岩铝饱和指数(A/CNK-A/NK)图解[42]

    IAG—岛弧;CAG—大陆弧;CCG—大陆碰撞;RRG—裂谷;CEUG—大陆造陆抬升;POG—后造山;OP—大洋

    Figure  5.   Shand's index of the Shijiangshan A-type granite

    图  6   石匠山A型花岗岩SiO2-K2O分类图解[43]

    Figure  6.   SiO2-K2O classification diagram of the Shijiangshan A-type granite

    图  7   石匠山A型花岗岩稀土元素球粒陨石标准化配分模式[44]

    Figure  7.   Chondrite-normalized REE patterns of the Shijiangshan A-type granite

    图  8   石匠山A型花岗岩微量元素原始地幔标准化蛛网图[45]

    Figure  8.   Primitive mantle-normalized trace element spider diagram of the Shijiangshan A-type granite

    图  9   石匠山A型花岗岩10000×Ga/Al对(K2O+Na2O)、(K2O+Na2O)/CaO、K2O/MgO、TFeO/MgO判别图[3]

    Figure  9.   K2O+Na2O, (K2O+Na2O)/CaO, K2O/MgO and TFeO/MgO versus 10000×Ga/Al discrimination diagrams of the Shijiangshan A-type granite

    图  10   石匠山A型花岗岩K2O-Na2O图解[2]

    Figure  10.   K2O-Na2O plot of the Shijiangshan A-type granite

    图  11   石匠山A1和A2型花岗岩类Y-Nb-Ce和Y-Nb-3Ga三角形判别图解[5]

    Figure  11.   Y-Nb-Ce and Y-Nb-3Ga triangular plots for distinguishing between A1 and A2 granitoids from the Shijiangshan A-type granite

    图  12   石匠山A1和A2型花岗岩Y/Nb-Rb/Nb和Y/NbSc/Nb图解[5]

    Figure  12.   Y/Nb-Rb/Nb and Y/Nb-Sc/Nb plots for distinguishing between A1 and A2 granitoids from the Shijiangshan A-type granite

    图  13   石匠山A型花岗岩SiO2-Al2O3(a)和SiO2-TFeO/(TFeO+MgO)(b)构造环境判别图解[42](代号注释同图 5

    Figure  13.   SiO2-Al2O3(a) and SiO2-TFeO/(TFeO+MgO)(b) tectonic discriminant diagrams of the Shijiangshan A-type granite

    图  14   石匠山A型花岗岩(Y+Nb)-Rb和Y-Nb构造环境判别图解[55](图中代号注释同图 5

    Figure  14.   (Y+Nb)-Rb and Y-Nb tectonic discriminant diagrams of the Shijiangshan A-type granite

    图  15   石匠山A型花岗岩R1-R2构造环境判别图解[53, 56]

    Figure  15.   R1-R2 tectonic discriminant diagram of the Shijiangshan A-type granite

    表  1   石匠山A型花岗岩LA-ICP-MS锆石U-Th-Pb测试结果

    Table  1   LA-ICP-MS U-Th-Pb dating of zircons from the Shijiangshan A-type granite

    测点 元素含量/10-6 Th/U 同位素原子比值 表面年龄/Ma
    Pb U Th 206Pb/238U ±% 207Pb/235U ±% 207Pb/206Pb ±% 206Pb/238U
    TWS01
    1 53 2112 734 0.35 0.0510 15 0.179 1.2 0.0255 2.1 162 ±1
    2 44 1708 610 0.36 0.0522 15 0.181 1.2 0.0251 2.0 160 ±2
    3 32 1235 834 0.68 0.0510 7.5 0.177 2.4 0.0252 1.1 160 ±2
    4 20 547 342 0.63 0.0535 8.6 0.186 2.2 0.0252 1.2 161 ±2
    5 11 425 198 0.47 0.0509 11 0.180 1.7 0.0256 1.5 163 ±2
    6 58 2083 1158 0.56 0.0505 9.1 0.178 2.0 0.0256 1.3 163 ±2
    7 17 638 253 0.40 0.0505 13 0.177 1.4 0.0254 1.8 162 ±2
    8 14 551 197 0.36 0.0500 14 0.170 1.2 0.0247 2.0 157 ±1
    9 7 275 409 1.49 0.0548 3.6 0.183 5.1 0.0242 0.47 154 ±3
    10 36 1481 750 0.51 0.0516 10 0.174 1.7 0.0245 1.4 156 ±1
    11 7 287 91 0.32 0.0488 15 0.166 1.1 0.0246 2.3 157 ±1
    12 10 387 188 0.49 0.0486 9.9 0.164 1.7 0.0245 1.5 156 ±2
    13 22 788 352 0.45 0.0567 13 0.198 1.6 0.0253 1.6 161 ±2
    14 74 2737 869 0.32 0.0475 15 0.171 1.2 0.0260 2.3 166 ±2
    15 68 2351 840 0.36 0.0496 14 0.175 1.3 0.0256 2.0 163 ±2
    16 61 2393 1093 0.46 0.0514 11 0.181 1.6 0.0255 1.6 162 ±2
    17 33 1225 693 0.57 0.0512 9.0 0.177 2.0 0.0251 1.3 160 ±1
    18 82 3318 955 0.29 0.0499 17 0.173 1.0 0.0251 2.5 160 ±2
    19 110 3074 1190 0.39 0.0547 14 0.186 1.3 0.0247 1.9 157 ±2
    20 48 1872 985 0.53 0.0537 10 0.187 1.8 0.0252 1.4 160 ±2
    TWS02
    1 168 7124 3182 0.45 0.0492 1.0 0.157 1.2 0.0231 1.0 147 ±2
    2 175 7534 3066 0.41 0.0503 1.1 0.157 1.0 0.0226 1.3 144 ±2
    3 85 3403 2669 0.78 0.0511 4.8 0.160 3.7 0.0228 1.4 145 ±2
    4 3 77 69 0.89 0.0497 8.8 0.157 3.3 0.0230 2.4 146 ±3
    5 13 413 180 0.44 0.0523 9.1 0.163 3.4 0.0227 2.5 144 ±4
    6 81 3208 1433 0.45 0.0509 2.1 0.154 2.8 0.0219 1.3 140 ±2
    7 333 15004 3873 0.26 0.0482 1.1 0.152 1.2 0.0228 1.1 145 ±2
    8 19 824 540 0.66 0.0484 1.1 0.149 1.1 0.0224 0.71 143 ±1
    9 63 2518 1050 0.42 0.0497 0.99 0.153 1.4 0.0223 1.1 142 ±2
    10 15 575 314 0.55 0.0475 5.2 0.151 6.1 0.0230 1.1 147 ±2
    11 30 1296 720 0.56 0.0494 1.3 0.154 1.4 0.0227 1.4 144 ±2
    12 271 11777 6196 0.53 0.0522 0.96 0.162 1.3 0.0225 1.3 144 ±2
    13 101 4523 1167 0.26 0.0491 1.3 0.156 1.2 0.0231 2.6 147 ±4
    14 83 3572 1454 0.41 0.0494 2.6 0.157 3.1 0.0231 1.3 147 ±2
    15 82 3621 1869 0.52 0.0546 1.2 0.164 1.5 0.0217 0.83 139 ±1
    16 46 367 215 0.59 0.0535 2.3 0.158 2.4 0.0215 0.83 137 ±2
    17 65 2010 2793 1.39 0.0485 2.1 0.146 2.9 0.0218 1.7 139 ±2
    18 16 2937 875 0.30 0.0479 1.0 0.148 1.3 0.0224 0.79 143 ±1
    19 48 682 278 0.41 0.0544 1.7 0.167 2.0 0.0222 1.0 142 ±1
    TWS03
    1 66 3012 1346 0.45 0.0501 1.8 0.149 2.2 0.0215 1.0 137 ±1
    2 45 2081 1322 0.64 0.0545 2.7 0.157 2.1 0.0209 1.0 134 ±1
    3 59 2685 1333 0.50 0.0496 1.4 0.146 1.0 0.0214 1.3 137 ±2
    4 47 2124 991 0.47 0.0489 0.97 0.146 1.1 0.0217 1.2 138 ±2
    5 18 847 311 0.37 0.0499 1.9 0.148 2.1 0.0215 1.2 137 ±2
    6 13 595 201 0.34 0.0498 4.1 0.147 4.6 0.0214 1.1 136 ±2
    7 46 2115 819 0.39 0.0527 1.7 0.155 1.4 0.0214 1.2 136 ±2
    8 66 2992 1247 0.42 0.0527 1.0 0.157 0.89 0.0217 1.2 138 ±2
    9 8 397 300 0.75 0.0535 6.1 0.150 6.0 0.0204 0.94 130 ±1
    10 59 2722 1216 0.45 0.0477 1.4 0.141 1.2 0.0215 1.1 137 ±1
    11 50 2333 1181 0.51 0.0500 0.94 0.147 1.2 0.0213 1.1 136 ±1
    12 60 2699 1474 0.55 0.0491 0.93 0.146 1.2 0.0215 1.2 137 ±2
    13 29 1236 1227 0.99 0.0531 4.2 0.155 3.0 0.0212 1.1 135 ±1
    14 134 6460 2309 0.36 0.0480 0.79 0.137 0.93 0.0207 1.2 132 ±2
    15 74 3443 1230 0.36 0.0483 0.95 0.142 1.5 0.0214 1.3 136 ±2
    16 70 3211 1403 0.44 0.0490 0.90 0.145 0.96 0.0215 0.93 137 ±1
    17 52 2344 1233 0.53 0.0493 1.60 0.145 1.7 0.0213 1.1 136 ±2
    18 63 2917 1390 0.48 0.0492 0.98 0.144 1.2 0.0212 1.2 135 ±2
    19 64 2906 1385 0.48 0.0472 0.89 0.140 1.1 0.0215 1.3 137 ±2
    20 68 3117 1269 0.41 0.0489 0.92 0.144 1.0 0.0214 1.2 137 ±2
      注:误差为1σ;Pb*代表放射成因铅
    下载: 导出CSV

    表  2   石匠山A型花岗岩的主量、微量和稀土元素分析结果

    Table  2   Major, trace element and REE analyses of the Shijiangshan A-type granite

    样品号
    (岩性)
    ST01
    (zcπηγJ3)
    ST03
    (xπηγβJ3)
    ST05
    (zcπηγβJ3)
    ST07
    (zcηγβK1)
    ST09
    (zcηγK1)
    ST11
    (zcηγK1)
    ST13
    (zcηγK1)
    ST15
    (zcηγK1)
    世界A型花岗岩平均(148) 中国A型花岗岩平均(197)
    SiO2 74.68 76.07 74.18 77.16 77.08 76.33 76.92 75.52 73.81 73.55
    TiO2 0.182 0.080 0.120 0.051 0.049 0.062 0.040 0.081 0.26 0.23
    Al2O3 13.3 12.99 13.69 12.54 12.4 12.42 12.65 12.72 12.40 12.81
    Fe2O3 0.73 0.61 1.19 0.68 0.54 0.89 0.53 0.80 1.24 1.42
    FeO 1.01 0.26 0.34 0.12 0.26 0.12 0.12 0.92 1.58 1.18
    MnO 0.0300 0.0100 0.0170 0.0130 0.0061 0.0072 0.089 0.050 0.060 0.090
    MgO 0.220 0.073 0.079 0.062 0.081 0.038 0.041 0.100 0.20 0.27
    CaO 0.26 0.32 0.36 0.24 0.44 0.77 0.33 0.63 0.75 0.82
    Na2O 4.15 3.93 4.09 4.13 3.93 3.90 4.20 4.05 4.07 3.76
    K2O 4.32 4.85 5.07 4.31 4.54 4.75 4.57 4.51 4.65 4.69
    P2O5 0.046 0.019 0.023 0.013 0.016 0.018 0.011 0.023 0.040 0.070
    烧失量 1.01 0.74 0.83 0.66 0.64 0.67 0.55 0.52
    总计 99.94 99.95 99.99 99.98 99.98 99.98 99.97 99.92
    Ba 144.10 48.31 37.04 24.51 25.23 21.54 32.88 7.24 352 235.96
    Rb 253.60 383.04 228.51 229.12 302.03 345.41 276.61 284.00 169 269.69
    Sr 34.29 14.18 9.73 8.56 7.12 6.90 16.5 7.64 48 57.54
    Zr 238.50 117.32 220.03 117.56 115.91 89.62 112.21 180.00 528 333.77
    Pb 19.48 29.70 18.62 24.23 17.71 16.91 13.22 24
    Zn 38.70 32.91 50.77 24.52 21.41 26.49 16.50
    Cu 3.60 2.31 3.91 2.12 4.80 3.00 2.30 2
    Ni 3.90 2.61 2.22 1.80 1.75 2.67 2.50 < 1
    V 10.20 4.70 3.03 7.30 3.10 1.61 2.29 3.02 6
    Cr 6.14 5.40 4.22 4.02 3.71 3.20 3.30 3.94
    Hf 8.56 5.71 11.48 6.86 6.71 4.17 6.56 9.45
    Sc 2.64 2.00 2.10 0.62 2.20 1.81 1.30 6.23 4.0
    Ta 4.39 7.45 1.92 3.32 4.01 2.88 2.84 1.90
    Nb 28.76 33.07 14.90 18.79 22.56 23.05 15.40 17.40 37 34.93
    U 2.57 4.06 2.32 3.90 3.27 5.37 3.27 1.86 5.00
    Th 14.68 14.33 10.58 12.97 15.43 29.98 31.31 27.60 23
    Ga 32.21 29.81 28.80 30.90 34.22 34.70 27.90 41.01 24.6 18.54
    Y 60.87 56.46 27.00 26.15 60.67 72.91 35.72 27.10 75 54.03
    Rb/Sr 7.39 26.97 23.67 26.57 42.65 50.01 16.79 37.17 3.52 4.69
    K/Rb 141.41 105.12 184.15 156.17 124.82 114.23 137.24 131.83 229
    Ga/Al 4.57 4.34 3.98 4.66 5.21 5.29 4.16 6.09 3.75
    La 24.49 20.08 46.83 8.75 8.78 21.80 24.99 17.00
    Ce 104.80 48.99 148.20 28.91 26.66 56.82 40.29 26.90
    Pr 6.57 5.44 10.02 2.50 4.66 8.47 9.41 6.36
    Nd 22.81 18.02 34.26 9.33 21.61 36.52 39.21 25.8
    Sm 5.79 3.57 5.16 2.42 7.84 10.64 10.18 6.3
    Eu 0.37 0.15 0.12 0.050 0.060 0.061 0.11 0.016
    Gd 6.37 3.06 4.75 2.46 6.46 8.82 6.84 5.38
    Tb 1.55 0.64 0.68 0.66 1.51 1.85 1.31 0.96
    Dy 10.75 4.24 3.71 4.77 9.64 10.94 7.08 5.21
    Ho 2.31 0.94 0.77 1.08 2.00 2.20 1.26 0.94
    Er 6.66 2.94 2.27 3.19 5.64 5.84 3.33 2.59
    Tm 1.24 0.62 0.42 0.63 1.05 1.01 0.60 0.44
    Yb 7.3 4.11 2.74 3.88 6.23 5.69 3.65 2.65
    Lu 1.2 0.66 0.49 0.80 1.12 0.83 0.69 0.40
    ΣREE 202.21 113.46 260.46 69.43 103.25 171.49 148.96 100.95
    δEu 0.19 0.14 0.07 0.07 0.03 0.02 0.04 0.01
    (La/Yb)N 2.26 3.29 11.53 1.52 0.95 2.58 4.62 4.33
      注:主量元素含量单位为%,稀土、微量元素含量为10-6。zcπηγJ3—中粗粒似斑状二长花岗岩;xπηγβJ3—细粒似斑状黑云母二长花岗岩;zcηγβK1—中粗粒黑云母二长花岗岩;zcηγK1—中粗粒二长花岗岩
    下载: 导出CSV
  • Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Geol. Soc. Am. Abstracts, 1979, 11: 468. http://www.oalib.com/references/19189721

    Collins W J, Beams S D, White A J R, et al.Nature and origin of A-type granites with particular reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80: 189-200. doi: 10.1007/BF00374895

    Whalen J B, Currie K, Chappel B W. A-type granite: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419. doi: 10.1007/BF00402202

    Eby G N. The A-type granitoids: a review of their occurrence and chemical characteristics and speculation on their petrogenesis[J]. Lithos, 1990, 26: 115-134. doi: 10.1016/0024-4937(90)90043-Z

    Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20: 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    Pitcher W S. The Nature and Origin of Granite[M]. Blackie: Academic and Professional, 1993:1-316.

    洪大卫, 王式洸, 韩宝福等.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学(B辑), 1995, 25(4):418-426. https://www.wenkuxiazai.com/doc/d03dc42558fb770bf78a5571-3.html

    King P L, White A J R, Chappe ll B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. J. Petrol., 1997, 38(3): 371-391. doi: 10.1093/petroj/38.3.371

    许保良, 阎国翰, 张臣等. A型花岗岩的岩石学亚类及其物质来源[J].地学前缘, 1998, 5(3):113-124. https://www.wenkuxiazai.com/doc/a968ef05e87101f69e31952a-2.html
    邱检生, 王德滋, 蟹泽聪等.福建沿海铝质A型花岗岩的地球化学及岩石成因[J].地球化学, 2000, 29(4):313-321. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_dqhx200004001

    Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187: 143-173. doi: 10.1016/S0009-2541(02)00018-9

    刘红涛, 翟明国, 刘建明, 等.华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J].岩石学报, 2002, 18(4):433-448. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20020451&journal_id=ysxb&year_id=2002
    张晓晖, 张宏福, 汤艳杰, 等.内蒙古中部锡林浩特-西乌旗早三叠世A型酸性火山岩的地球化学特征及其地质意义[J].岩石学报, 2006, 22(11):2769-2780. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=2006011296&year_id=2006&quarter_id=11&falg=1

    Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97: 1-29. doi: 10.1016/j.lithos.2006.12.007

    吴锁平, 王梅英, 戚开静. A型花岗岩研究现状及其述评[J].岩石矿物学杂志, 2007, 26(1):57-66. https://www.wenkuxiazai.com/doc/2faace9f680203d8ce2f2466.html
    张旗, 冉白皋, 李承东. A型花岗岩的实质是什么?[J].岩石矿物学杂志, 2012, 31(4):621-626. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7958130
    石玉若, 刘敦一, 张旗, 等.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb年龄及其区域构造意义[J].地质通报, 2007, 26(2):183-189. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20070231&flag=1
    石玉若, 刘翠, 邓晋福, 等.内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨[J].岩石学报, 2014, 30(11):3155-3171. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201411005.htm
    薛富红, 张晓晖, 邓江夏, 等.内蒙古中部达来地区晚侏罗世A型花岗岩:地球化学特征、岩石成因与地质意义[J].岩石学报, 2015, 31(6):1774-1788. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201506020

    Whalen J B, Jenner G A, Longstaffe F J, et al. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite:Petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians[J]. Journal of Petrology, 1996, 37: 1463-1489. doi: 10.1093/petrology/37.6.1463

    Barbarin B. Granitoids main petrogenetic classification in relation to origin and tectonic setting[J]. Geochemical Journal, 1990, 25: 227-238. http://www.researchgate.net/publication/227747123_Granitoids_Main_petrogenetic_classifications_in_relation_to_origin_and_tectonic_setting

    Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46: 605-626. doi: 10.1016/S0024-4937(98)00085-1

    Coleman D S, Frost T P, Glazner A F. Evidence from the Lamarck granodiorite for rapid Late Cretaceous crust formation in California[J]. Science, 1992, 258(5090): 1924-1926. doi: 10.1126/science.258.5090.1924

    Bonin B, Azzouni S A, Bussy F, et al. Alkali calcic and alkaline post-orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings[J]. Lithos, 1998, 45(1/4): 45-70. https://www.sciencedirect.com/science/article/pii/S0024493798000255

    Jahn B. M, Griffin W L, Windley B F. Continental growth in the Phanerozoic: Evidence from Central Asian[J]. Tectonophysics, 2000, 328: 1-227. doi: 10.1016/S0040-1951(00)00175-X

    陈志广, 张连昌, 吴华英, 等.内蒙古西拉木伦成矿带碾子沟钼矿区A型花岗岩地球化学和构造背景[J].岩石学报, 2008, 24(4): 879-889. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20080426&journal_id=ysxb&year_id=2008
    孙金凤, 杨进辉.华北东部早白垩世A型花岗岩与克拉通破坏[J].地球科学, 2009, 34(1):137-147. https://www.researchgate.net/publication/270152614_huabeidongbuzaobaieshiAxinghuagangyanyukelatongpohuai
    李竞妍, 郭锋, 李超文, 等.东北地区晚古生代—中生代I型和A型花岗岩Nd同位素变化趋势及其构造意义[J].岩石学报, 2014, 30(7):1995-2008. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20140713&journal_id=ysxb&year_id=2014
    李英杰, 王金芳, 李红阳, 等.内蒙西乌旗白音布拉格蛇绿岩地球化学特征[J].岩石学报, 2013, 29(8):2719-2730. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20130809&journal_id=ysxb&year_id=2013
    陈斌, 赵国春, Simon Wilde.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评, 2001, 47(4):361-367. doi: 10.3321/j.issn:0371-5736.2001.04.005

    Jian P, Liu DY, Kroner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118: 169-190. doi: 10.1016/j.lithos.2010.04.014

    Miao L, Shi Y, Guo F, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(4): 404-415. https://www.sciencedirect.com/science/article/pii/S1367912007002222

    王金芳, 李英杰, 李红阳, 等.内蒙古梅劳特乌拉蛇绿岩中埃达克岩的发现及其演化模式[J].地质学报, 2017, 91(8):1776-1795. http://www.cqvip.com/QK/95080X/199604/2363561.html
    李英杰, 王金芳, 李红阳, 等.内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J].岩石学报, 2015, 31(5):1461-1470. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20150520&journal_id=ysxb&year_id=2015
    李英杰, 王金芳, 李红阳, 等.内蒙古西乌旗迪彦庙蛇绿岩的识别[J].岩石学报, 2012, 28(4):1282-1290. http://d.wanfangdata.com.cn/Periodical_ysxb98201204024.aspx

    WANG Jinfang, LI Yingjie, LI Hongyang. Zircon LA-ICP-MS U-Pb Age and Island-Arc Origin of the Bayanhua Gabbro in the Hegenshan Suture Zone, Inner Mongolia[J]. Acta Geologica Sinica, 2017, 91(6): 2316-2317. doi: 10.1111/acgs.2017.91.issue-6

    王金芳, 李英杰, 李红阳, 等.内蒙古西乌旗努和特早白垩世A型花岗岩LA-ICPMS锆石U-Pb年龄及其地质意义[J].地质通报, 2017, 36(8):1343-1358. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20170805&flag=1
    程天赦, 杨文静, 王登红.内蒙古西乌旗阿鲁包格山A型花岗岩锆石U-Pb年龄、地球化学特征及地质意义[J].大地构造与成矿学, 2014, 38(3):718-728. http://www.oalib.com/paper/4875936

    Anderson T. Correction of commen lead U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192: 59-79. doi: 10.1016/S0009-2541(02)00195-X

    Claesson S, Vetrin V, Bayanova T, et al. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 2000, 51: 95-108. doi: 10.1016/S0024-4937(99)00076-6

    Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures[J]. Reviews in Mineralogy & Geochemistry, 2003, 53(1): 469-500. https://www.researchgate.net/publication/238448416_Atlas_of_Zircon_Textures

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Bulletin of the Geological Society of America, 1989, 101: 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu Area, NorthernTurkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63-81. doi: 10.1007/BF00384745

    Boynton W V. Geochemistry of the rare earth elements: meteorite studies[C]//Henderson P. Rare earth element geochemistry. Elsevier, 1984: 63-114.

    Sun S S, McDonough W F. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London, Special Publication, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    林强, 葛文春, 吴福元, 等.大兴安岭中生代花岗岩类的地球化学[J].岩石学报, 2004, 20(3):403-412. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_ysxb98200403004

    Liu W, Siebel W, Li XJ, et al.Petrogenesis of the Linxi granitoids, northern Inner Mongolia of China: Constraints on basaltic underplating[J]. Chem. Geol., 2005, 219(1/4): 5-35. https://homepages.uni-tuebingen.de/wolfgang.siebel/pdffiles/liu_wei.pdf

    周振华, 吕林素, 杨永军, 等.内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年代学和岩石地球化学制约[J].岩石学报, 2010, 26(12):3521-3537. http://d.wanfangdata.com.cn/Periodical_ysxb98201012006.aspx
    解洪晶, 武广, 朱明田, 等.内蒙古道郎呼都格地区A型花岗岩年代学、地球化学及地质意义[J].岩石学报, 2012, 28(2):483-494. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20120211
    施光海, 苗来成, 张福勤, 等.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报, 2004, 49(4):384-389. http://d.wanfangdata.com.cn/Periodical_kxtb200404015.aspx

    Creaser R A, Price R C, Wormald R J. A-type granites revisited: Assessmentofaresidual-sourcemodel[J]. Geology, 1991, 19:163-166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2

    Patino Douce A E.Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25: 743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2

    Hong D W, Wang S G, Han B F, et al. Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere[J]. Journal of Southeast Asian Earth Sciences, 1996, 13(1): 13-27. doi: 10.1016/0743-9547(96)00002-5

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36: 891-931. doi: 10.1093/petrology/36.4.891

    Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[C]//Kokelaar B P, Howells M F. Marginal Basin Geology. Geological Society of London Special Publication, 1984, 16: 77-94. http://www.researchgate.net/publication/237966121_Characteristics_and_tectonic_significance_of_super-suduction_zone_ophilites

    De La Roche H, Leteeeier J, Grande Claude P, et al. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses—Its relationships and current nomemclature [J]. Chem. Geol. 1980, 29: 183-210. doi: 10.1016/0009-2541(80)90020-0

    辽宁省第二区域地质测量队. L-50-35(白塔子庙幅)1: 200000地质图说明书, 1972.
    沈阳地质矿产研究所. L50C004003(西乌珠穆沁旗幅)1: 250000区域地质调查报告, 2004.
图(15)  /  表(2)
计量
  • 文章访问数:  3821
  • HTML全文浏览量:  445
  • PDF下载量:  3060
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-19
  • 修回日期:  2017-03-26
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2018-02-28

目录

    /

    返回文章
    返回