• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

基岩区构造地质填图方法思考、实践、探索

张进, 曲军峰, 张庆龙, 李锦轶, 郑荣国, 张北航, 赵衡, 解国爱, 刘建峰, 贺振宇

张进, 曲军峰, 张庆龙, 李锦轶, 郑荣国, 张北航, 赵衡, 解国爱, 刘建峰, 贺振宇. 2018: 基岩区构造地质填图方法思考、实践、探索. 地质通报, 37(2-3): 192-221.
引用本文: 张进, 曲军峰, 张庆龙, 李锦轶, 郑荣国, 张北航, 赵衡, 解国爱, 刘建峰, 贺振宇. 2018: 基岩区构造地质填图方法思考、实践、探索. 地质通报, 37(2-3): 192-221.
ZHANG Jin, QU Junfeng, ZHANG Qinglong, LI Jinyi, ZHENG Rongguo, ZHANG Beihang, ZHAO Heng, XIE Guoai, LIU Jianfeng, HE Zhenyu. 2018: The structural mapping in exposed bedrock areas: methods, practice and exploration. Geological Bulletin of China, 37(2-3): 192-221.
Citation: ZHANG Jin, QU Junfeng, ZHANG Qinglong, LI Jinyi, ZHENG Rongguo, ZHANG Beihang, ZHAO Heng, XIE Guoai, LIU Jianfeng, HE Zhenyu. 2018: The structural mapping in exposed bedrock areas: methods, practice and exploration. Geological Bulletin of China, 37(2-3): 192-221.

基岩区构造地质填图方法思考、实践、探索

基金项目: 

国家自然科学基金项目《阿拉善地块主要断裂系统性质、阶段和构造背景研究》 41572190

中国地质调查局项目《狼山儿驼庙幅、巴彦哈拉幅1:5万构造填图全国典型示范试点》 12120115069601

详细信息
    作者简介:

    张进(1973-), 男, 博士, 研究员, 从事构造地质研究和填图工作。E-mail: zhangjinem@sina.com

  • 中图分类号: P54

The structural mapping in exposed bedrock areas: methods, practice and exploration

  • 摘要:

    构造地质填图是地质填图的重要内容,也是构造地质研究的基础源泉。填图的主要目标是确定地质体的空间展布规律、变形的几何学和运动学特征,建立填图区构造格架和构造演化序列,探讨构造运动与岩浆活动、变质作用和成矿作用的关系;主要内容是确定填图单元、表示各种(可填的)构造要素。填图的详细程度根据填图的比例尺而定,比例尺越大,可填制和表示的构造要素越多。填图中要重视中小构造要素的观察和描述,构造要素的测量要尽可能多。主要方法包括穿越法、追索法和查证法;比例尺越大,追索法的重要性越大。卫星遥感影像是填图的重要基础,影像的使用贯穿填图的始终。

    Abstract:

    Structural mapping is not only an important part of basic geological mapping but also the source and foundation of structural geology. The major objectives of structural geology mapping lie in finding out the spatial distribution, geometric characteristics and the kinematic properties of the geological units. Furthermore, the structural framework and the evolution can be established in mapping areas so that researchers can have a better understanding of structures'relationships with magma activities, metamorphic events, and mineralization. The primary task of structure field mapping is to define mappable units and measure various structural elements in outcrops. The details of mapping depends on the mapping scale:the larger the scale, the more the mappable structural elements. Attention should be paid to the observation and description of medium-small structures. Mappable elements need to be measured and depicted in detail. There are three methods used in the field mapping, namely crosscutting, tracking and checking. In general, the tracking method plays a more important role as the mapping scale becomes larger. Depending upon the actual conditions, these methods can be flexibly selected or modified. Various kinds of satellite images are useful throughout the field mapping.

  • 中国东北地区位于西伯利亚板块、华北板块和西太平洋板块的交汇部位[1],由额尔古纳地块、兴安地块、松嫩地块、佳木斯地块、兴凯地块等造山微陆块(图 1-a)在古生代拼合而成[2-5]。大兴安岭包含额尔古纳地块、兴安地块和松嫩地块南西部(图 1-b),以发育巨量显生宙岩浆岩为典型特征,为研究东亚地区构造演化提供了天然的实验室。以往研究表明,大兴安岭显生宙岩浆活动可分为古生代和中生代2个阶段,其中古生代岩浆活动常作为古亚洲洋闭合的产物,标志中亚造山带东段构造演化的结束[2, 6-7];而中生代岩浆活动则与软流圈地幔上涌[8-9]和新生地壳的卷入[2, 10-15]密切相关。

    图  1  东北地区构造分区图(a)和主要地理单元(b)(据参考文献[2-3]修改)
    Figure  1.  Tectonic subdivision (a) and main geographical units in Northeast China(b)

    受大兴安岭中生代岩浆活动分布面积广、时间跨度大等因素制约,相关构造背景和动力学机制仍存有较多分歧,目前主要有3种主流观点:①幔柱模式[16-18]; ②蒙古-鄂霍茨克洋闭合及后碰撞造山模式[19-23];③古太平洋板块俯冲模式[7, 24-31]。大兴安岭中生代岩浆岩呈北东向展布,岩浆活动时间跨度可达70 Ma,且未见同时代OIB的发育,加之地震层析成像识别出板片状高速异常[32],因此,本区发育地幔柱的可能性较小。蒙古-鄂霍茨克洋的闭合常被认为发生于中侏罗世[19, 21],大兴安岭仅额尔古纳等少数区域受其控制。另外,据前人对东亚晚中生代岩浆活动的统计分析可知,自大兴安岭向松辽盆地、吉黑东部直至朝鲜半岛,中生代岩浆岩年龄呈现逐渐年轻的趋势[25],蒙古-鄂霍茨克洋的闭合及后造山拉伸很难造成如此宽广的影响。但若为古太平洋板块的西向俯冲的结果,那古太平洋板块是如何俯冲如此远的距离(大于2000 km)触发额尔古纳等地区大规模的钙碱性系列岩浆活动,而对松辽盆地及其东部地区无明显影响呢?

    基于此,本文详细研究大兴安岭北段吉峰地区火山岩-花岗岩岩石学、年代学和地球化学特征,并结合大兴安岭及其邻区晚中生代岩浆岩的成岩时代、岩石成因类型及其空间展布规律,深入探讨大兴安岭及其邻区中生代构造演化特征及动力学机制。

    吉峰地区火山-侵入杂岩体位于大兴安岭北段金河-三望山火山喷发带金河火山岩盆地和阿南林场火山岩盆地,大地构造位置属兴安地块鄂伦春褶皱带(图 1图 2-a)。区内植被茂密、露头条件不佳,仅出露秀山、旭光等小型花岗岩体,而广泛发育大面积中生代火山岩地层,两者呈侵入接触关系(图 2-b)。

    图  2  大兴安岭北段(a)(据参考文献[32]修改)和吉峰地区地质图(b)(据参考文献修改)
    Figure  2.  Geological map of the middle part of the Da Hinggan Mountains(a)and Jifeng area(b)

    吉峰花岗岩主要为二长花岗岩和石英二长斑岩。二长花岗岩主要由长石(约70%)、石英(约25%)和黑云母(约5%)组成,其中斜长石粒度0.2~2 mm,轻微粘土化,碱性长石粒度一般为2~5 mm,可见文象结构,石英呈他形粒状,粒度0.2~2 mm,可见轻微波状消光(图 3-a)。二长斑岩斑晶由斜长石、少量钾长石和暗色矿物构成,粒度一般0.5~3.5 mm;基质由长石、石英、少量暗色矿物构成,粒度一般小于0.05 mm(图 3-b)。

    图  3  吉峰地区花岗质岩石岩石学特征
    a—二长花岗岩(+);b—石英二长斑岩(+);c—满克头鄂博组流纹岩(+);d—玛尼吐组熔结凝灰岩(-) Qtz—石英;Pl—斜长石;Kfs—钾长石;Bi—黑云母;Cry—晶屑;Det—岩屑;Hya—玻屑
    Figure  3.  Petrological characteristics of granitic rocks in Jifeng area

    火山岩地层主要为满克头鄂博组(J3mk)和玛尼吐组(J3mn)。满克头鄂博组流纹岩斑晶由斜长石、钾长石、石英、黑云母组成,粒度0.2~2.5 mm,其中斜长石多高岭土化和绢云母化,钾长石轻微高岭土化,石英部分被熔蚀呈浑圆状、港湾状,黑云母呈片状,多色性明显;基质由长石、石英组成(图 3-c)。玛尼吐组熔结凝灰岩由晶屑、岩屑、玻屑及少量火山尘组成,以小于2.0 mm的凝灰物为主。其中晶屑由长石、黑云母构成,可见熔蚀现象,且长石可见强绢云母化,黑云母长轴多定向排列;岩屑以塑性为主、刚性次之;玻屑呈蚯蚓状、细纹状等,均脱玻为隐晶状长英质,被少量粘土交代(图 3-d)。

    锆石挑选在河北省区域地质矿产调查研究所进行,将岩石样品粉碎至100 μm后,磁选和浮选出锆石精样,并在双目镜下手工挑选具代表性的锆石,粘靶、抛光和镀金后,在北京燕都中实测试技术有限公司进行阴极发光(CL)内部结构照相。LA-ICP-MS锆石U-Pb同位素定年使用布鲁克M90等离子质谱与NewWaveUP213深紫外激光剥蚀系统测定,束斑直径为30 μm,应用标准样GJ-1进行分馏校正,元素含量采用SRM610为外标,具体原理、测试条件及流程见参考文献[33]。LA-ICP-MS锆石U-Pb同位素数据列于表 1,误差为1σ,普通铅校正使用标定的240Pb,年龄加权平均值及谐和图采用Isoplot程序[34]完成。

    表  1  吉峰花岗质岩石LA-ICP-MS锆石U-Th-Pb定年数据
    Table  1.  LA-ICP-MS zircon U-Th-Pb age data of granitic rocks in Jifeng area
    分析点Pb/10-6Th/10-6U/10-6Th/U同位素比值年龄/Ma
    207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb
    TW426,英安质熔结凝灰岩,18个测点年龄加权平均值为145.2±1.1 Ma,MSWD=1.4
    TW426-042.3357.4766.860.860.44500.02910.02430.00050.12840.0072373.820.51553.32076.898.2
    TW426-021.2934.3241.160.830.31230.01410.02430.00060.10520.0058275.910.9154.73.51718.2101.7
    TW426-072.2167.1269.670.960.22900.01000.02300.00040.07730.0040209.38.3146.82.71127.8103.2
    TW426-011.9553.8663.030.850.23090.01020.02340.00040.07670.0038210.98.5148.92.71114.598.2
    TW426-093.61142.07101.321.400.22840.01040.02310.00040.08010.0049208.98.6147.22.41199.1120.4
    TW426-052.86106.6182.761.290.22820.01070.02330.00040.07650.0039208.78.8148.42.61109.399.1
    TW426-081.8959.6963.840.940.22460.01080.02290.00050.07590.0040205.79.0146.32.91094.4106.0
    TW426-063.22113.4790.031.260.22660.00950.02350.00040.07460.0037207.47.8149.92.21057.493.5
    TW426-103.0496.7397.660.990.20840.01000.02300.00030.06900.0035192.28.4146.62.2901.9110.2
    TW426-032.8494.9486.751.090.20450.00960.02310.00040.06750.00321898.1147.42.3853.797.4
    TW426-01-12.95120.0892.551.300.16410.00570.02220.00030.05500.0020154.35.0141.31.741384.3
    TW426-03-13.34113.37105.891.070.16650.00510.02300.00020.05320.0017156.44.5146.51.5338.972.2
    TW426-07-13.15122.8198.271.250.16490.00550.02270.00020.05340.00181554.8144.81.5346.443.5
    TW426-05-12.2275.7875.251.010.16060.00610.02260.00030.05280.0022151.25.41441.7320.488.0
    TW426-04-12.66106.7884.301.270.15930.00570.02270.00030.05170.0018150.15.0144.91.7272.383.3
    TW426-10-13.07115.4399.191.160.15600.00560.02260.00020.05050.0018147.24.9144.31.5220.449.1
    TW426-02-12.85101.9194.981.070.14960.00530.02260.00030.04910.0018141.64.7143.91.6150.185.2
    TW426-06-13.21128.53104.891.230.15320.00490.02230.00020.05050.0017144.84.3142.11.5216.780.5
    TW426-08-12.8391.8995.320.960.15600.00520.02290.00020.05080.0018147.24.6145.71.4231.681.5
    TW426-09-12.61104.5781.181.290.15560.00570.02300.00030.05030.0019146.85.0146.41.7205.691.7
    TW3,流纹岩,16个测点年龄加权平均值为125.4±0.8 Ma,MSWD=0.36
    TW3-06-12.7346.94115.340.410.15820.00660.01990.00030.06070.0027149.25.81271.8627.896.3
    TW3-093.0576.01125.660.600.15630.00760.01970.00030.05930.0030147.46.7125.92.0588.9109.2
    TW3-03-13.4095.66137.310.700.15260.00580.01950.00030.05810.0022144.25.1124.51.660083.3
    TW3-09-13.8292.93152.110.610.15090.00560.01970.00020.05720.0023142.75.01261.5498.287.0
    TW3-02-12.9274.51113.790.650.15510.00570.02050.00030.05620.0021146.45.0130.91.9457.583.3
    TW3-064.70143.10183.690.780.14650.00530.01970.00030.05470.0020138.84.7125.61.6398.278.7
    TW3-04-13.1467.78128.150.530.14500.00590.01970.00020.05460.0023137.55.21261.6398.292.6
    TW3-07-14.94159.41186.530.850.14040.00480.01950.00020.05310.0019133.44.3124.31.4344.579.6
    TW3-024.38114.83176.930.650.14300.00570.01970.00030.05410.0022135.85.1125.71.7372.392.6
    TW3-10-14.5797.84187.070.520.14190.00520.01980.00020.05330.0021134.74.7126.51.6342.788.9
    TW3-013.71100.82152.500.660.13960.00690.01960.00030.05420.0028132.76.1124.81.8388.9118.5
    TW3-076.47225.87254.280.890.13520.00460.01930.00020.05140.0018128.84.1123.51.4257.584.3
    TW3-05-16.51234.01239.650.980.13700.00430.01970.00020.05140.0017130.43.9125.51.5257.577.8
    TW3-053.6995.75147.270.650.13850.00650.01990.00030.05240.0026131.75.8126.91.9301.9111.1
    TW3-01-14.75112.59194.060.580.13140.00470.01960.00020.04920.0018125.34.3125.31.4166.882.4
    TW3-045.03154.98194.500.800.13250.00520.01970.00030.04910.0019126.34.6125.61.6153.890.7
    TW3-084.18116.38168.970.690.13130.00550.01960.00030.04940.0021125.34.91251.6168.6100.0
    TW3-08-17.44249.24250.011.000.14620.00470.02190.00030.04890.0016138.54.2139.51.6142.774.1
    TW4,二长花岗岩,19个测点年龄加权平均值为125.5±1.8 Ma,MSWD=6.7
    TW4-06-12.2553.7391.690.590.16590.00720.01960.00030.06650.0034155.86.3125.32.0821.9100.9
    TW4-10-13.5587.37140.580.620.15690.00680.02010.00030.05770.00261485.9128.11.8520.496.3
    TW4-05-12.4755.0799.000.560.15830.00700.02030.00030.05930.0027149.26.2129.82.057698.1
    TW4-09-14.74112.86179.780.630.15940.00550.02070.00030.05690.0020150.14.8132.11.8487.179.6
    TW4-07-18.18199.41316.380.630.15090.00460.02080.00020.05280.0015142.74.01331.4320.466.7
    TW4-053.54110.76145.870.760.14110.00440.01980.00020.05240.00161343.9126.21.4305.670.4
    TW4-023.82125.50158.370.790.13010.00370.01900.00020.05070.0015124.23.3121.51.4233.473.1
    TW4-084.24136.70179.380.760.12620.00380.01910.00020.04830.0014120.73.4122.11.3122.373.1
    TW4-063.73116.73156.960.740.12860.00370.01920.00020.04970.0015122.83.4122.41.318970.4
    TW4-0310.78457.45413.131.110.12810.00250.01920.00010.04870.0010122.42.3122.40.9131.646.3
    TW4-08-18.35211.54348.210.610.13180.00410.01920.00020.04990.0015125.73.7122.41.3187.170.4
    TW4-147.42304.99297.871.020.13490.00620.01920.00030.05120.0023128.55.6122.52.0250.1101.8
    TW4-04-115.37476.94598.790.800.12730.00300.01940.00020.04780.0011121.62.7123.91.1100.157.4
    TW4-029.67487.47333.541.460.12900.00570.01970.00020.04780.0021123.25.1125.71.587.1103.7
    TW4-073.2998.98136.250.730.13460.00440.01980.00020.05070.0018128.24.0126.51.5233.481.5
    TW4-01-13.4471.52137.850.520.14000.00510.01980.00030.05360.00211334.5126.61.7366.788.9
    TW4-044.41110.45184.670.600.13790.01000.02020.00040.05100.0041131.28.91292.7239185.2
    TW4-03-16.06142.05239.110.590.14090.00490.02050.00020.05050.0018133.84.3130.71.6220.449.1
    TW4-069.23293.04347.050.840.14630.00780.02080.00030.05170.0028138.76.91331.9272.3127.8
    TW4-0316.41500.73502.201.000.17120.00690.02480.00030.05030.0020160.46.0157.81.8209.388.0
    TW4-02-16.78146.85209.130.700.17410.00500.02490.00030.05200.00161634.4158.31.8283.470.4
    TW4-0816.28791.81392.012.020.17650.00610.02490.00030.05200.00191655.3158.31.9283.483.3
    TW4-1213.66308.29437.330.700.17090.00910.02500.00030.04960.0026160.27.9159.42.2172.3122.2
    TW6,花岗斑岩,19个测点年龄加权平均值为125.8±1.0 Ma,MSWD=2.4
    TW6-09-13.6990.47153.580.590.15260.00620.01920.00030.06000.0026144.25.4122.51.6611.194.4
    TW6-07-14.06137.21155.140.880.14840.00550.01940.00030.05660.0022140.54.91241.647685.2
    TW6-088.25234.92337.240.700.14620.00450.01970.00020.05440.0017138.54.0125.61.4387.168.5
    TW6-05-16.96174.85273.190.640.14410.00420.01990.00020.05320.0016136.73.81271.4344.5100.9
    TW6-06-111.20418.86385.641.090.14300.00380.02070.00020.05080.0013135.73.4131.81.4227.865.7
    TW6-074.00117.11162.720.720.12570.00560.01910.00030.04990.0026120.25.1121.71.7190.8120.4
    TW6-08-16.87192.56277.460.690.13690.00440.01940.00020.05220.0018130.33.9123.61.3294.577.8
    TW6-0110.25394.76373.871.060.12800.00370.02000.00020.04710.0014122.33.3127.41.453.866.7
    TW6-02-112.42403.63472.630.850.13410.00340.01950.00020.05030.0013127.73.1124.61.2209.393.5
    TW6-04-132.851132.261223.710.930.13590.00260.01980.00020.04950.0008129.42.3126.61.3172.338.9
    TW6-034.42133.86176.600.760.13730.00590.02000.00030.05100.0022130.65.3127.72.1242.7102.8
    TW6-01-111.08474.07386.391.230.12940.00340.01960.00020.04840.0013123.53.11251.3116.867.6
    TW6-046.76175.91279.380.630.13630.00460.02000.00030.05010.0017129.74.2127.81.7211.281.5
    TW6-0611.03296.75455.480.650.13630.00380.02000.00020.04980.0014129.83.4127.61.4183.469.4
    TW6-105.33159.45210.360.760.13320.00540.01960.00020.04990.00211274.9125.21.6190.893.5
    TW6-03-118.44554.42693.880.800.13310.00270.01970.00020.04920.0010126.82.5125.81.1166.848.1
    TW6-10-110.45420.23382.961.100.13090.00410.01950.00020.05070.0020124.93.7124.51.5233.495.4
    TW6-028.77253.19359.050.710.13340.00440.01990.00020.04930.0017127.14.0127.11.5161.279.6
    TW6-0916.49581.43623.690.930.13280.00300.01970.00020.04920.0011126.62.7125.61.3166.853.7
    下载: 导出CSV 
    | 显示表格

    全岩地球化学分析在北京燕都中实测试技术有限公司完成。主量元素使用日本岛津XRF-1800型波长色散X射线荧光光谱仪测定,分析误差优于5%;微量元素使用布鲁克(Bruker)公司生产的aurora M90 ICP-MS电感耦合等离子质谱仪测定,分析误差优于10%。全岩地球化学数据见表 2

    表  2  吉峰地区花岗质岩石全岩地球化学数据
    Table  2.  Whole rock geochemical data of granitic rocks in Jifeng area
    元素TW4TW5JP6TW06JP6TW08TW6JP11TW02TW426TW362TW3TW302TW383TW082
    二长花
    岗岩
    二长花
    岗岩
    二长花
    岗岩
    二长花
    岗岩
    花岗斑岩花岗斑岩英安质
    凝灰岩
    流纹岩流纹岩流纹岩流纹岩粗面岩
    SiO275.0373.9774.3674.2366.8873.4967.6874.9171.9073.6171.1962.67
    TiO20.200.170.200.200.390.180.770.200.270.250.370.91
    Al2O313.5614.2113.3113.4416.2214.0616.6613.2614.6114.6415.3816.44
    Fe2O30.931.020.920.931.261.212.901.130.801.101.124.17
    MgO0.060.040.050.050.100.040.060.080.030.020.050.10
    MnO0.240.130.240.240.640.130.850.230.190.070.391.18
    CaO0.680.220.820.761.610.390.470.240.530.471.201.84
    Na2O3.124.213.873.923.344.261.763.525.034.813.623.39
    K2O5.154.695.115.166.535.605.694.994.783.624.615.07
    P2O50.030.030.030.040.100.030.200.040.050.040.130.27
    烧失量0.540.910.580.541.440.482.400.940.511.201.373.44
    FeO0.440.220.460.451.300.090.310.361.080.070.410.26
    总计100.0399.85100.00100.0099.9699.9699.7999.9399.9199.9099.8899.77
    K2O/Na2O1.651.111.321.321.961.323.231.420.950.751.271.49
    FeO*/MgO5.258.455.325.283.828.913.446.009.3014.923.603.41
    A.R.3.774.224.494.553.485.292.544.424.683.522.972.72
    A/CNK1.141.150.991.001.051.021.681.141.011.161.171.14
    A/NK1.271.181.121.121.291.081.841.181.091.241.401.49
    Q35.6331.3230.4929.9918.2626.5034.8834.9722.7931.2230.1419.36
    C1.701.920.010.110.990.377.431.750.322.092.592.78
    Or30.6128.0130.3730.6939.2333.2734.5429.8028.4721.6527.6931.09
    Ab26.5536.0232.9333.3428.6936.2015.3130.1142.8841.2331.1129.78
    An3.200.863.853.557.461.751.060.912.312.065.197.65
    Di(FS)0.000.000.000.000.000.000.000.000.000.000.000.00
    Di(MS)0.000.000.000.000.000.000.000.000.000.000.000.00
    Hy(MS)0.610.340.610.611.610.332.170.580.490.181.003.05
    Hy(FS)0.000.000.000.000.900.000.000.000.940.000.000.00
    Mt1.040.311.071.041.860.000.000.861.160.000.420.00
    Il0.380.330.390.380.760.270.820.380.520.200.710.81
    Hm0.220.820.190.210.001.222.980.550.001.110.854.33
    Ap0.070.080.080.080.240.060.470.100.120.100.300.64
    DI92.7995.3593.8094.0186.1895.9684.7394.8794.1494.1088.9480.22
    Rb222.17175.89189.92217.42280.54189.92220.61169.65201.37199.29156.52266.24
    Sr114.62143.9948.7253.01160.0532.93302.50162.47331.65202.84250.80193.82
    Ba374.76818.52117.55127.84895.44126.16555.12793.801004.40265.32545.52959.64
    Nb21.5812.3123.0330.1524.0317.3215.1512.0917.1121.5213.5718.01
    Ta1.911.191.823.961.982.011.281.211.811.981.141.36
    Zr170.59218.33177.91194.18523.10208.69369.65332.98324.31254.52238.68469.60
    Hf7.365.556.878.1014.046.5010.748.919.758.908.3611.90
    V31.0737.2511.2412.9061.5413.6237.3643.7668.9235.8633.5975.84
    Ni1.541.640.320.276.721.072.551.632.242.011.404.69
    Be4.092.494.395.375.743.613.123.103.844.493.573.61
    Co1.410.611.181.216.050.754.541.494.820.832.488.67
    Li51.0621.0012.0414.0431.176.7224.7313.3447.7713.5815.9221.47
    Th22.5317.1516.9325.2123.1913.4919.8616.0320.6525.2815.8118.69
    U3.493.153.565.244.442.344.293.434.534.071.532.97
    Sc5.766.882.222.689.951.108.578.219.916.535.5811.56
    La31.6625.1641.1041.4957.8114.2246.5135.0738.7255.7332.5748.13
    Ce59.1961.5277.1178.63142.5937.8292.5876.1681.2099.7763.24109.73
    Pr5.775.779.029.3715.303.3810.158.809.1610.866.5413.70
    Nd17.9619.7532.6433.2758.3011.7836.2732.7834.3137.1721.7754.12
    Sm2.432.875.305.649.062.255.335.495.645.383.048.81
    Eu0.310.470.340.371.480.251.010.661.020.600.631.66
    Gd2.722.964.674.938.072.045.174.995.415.082.977.36
    Tb0.390.500.720.791.190.360.790.850.840.750.441.09
    Dy2.222.733.914.506.022.283.984.714.774.082.185.58
    Ho0.450.560.770.871.130.470.790.950.960.820.431.02
    Er1.401.642.422.803.031.572.222.662.642.371.202.64
    Tm0.290.330.440.500.520.300.420.520.500.430.230.45
    Yb2.082.292.983.443.382.122.813.433.353.041.602.90
    Lu0.390.530.510.600.730.530.610.660.590.550.320.67
    Y14.2416.3222.4325.9031.2212.8922.2526.5927.7923.8912.4329.05
    Ga17.8417.4618.2324.5415.9520.0016.0621.98
    Pb35.9421.8320.8536.7023.5324.7915.2021.98
    TZr/℃803825792801890807908868845840833885
    注:FeO*=0.8998×TFe2O3; A/NK=摩尔Al2O3/(Na2O+K2O); A/CNK=摩尔Al2O3/(CaO+Na2O+K2O); A.R.=wt%(Al2O3+CaO+(Na2O+K2O))/(Al2O3+CaO-(Na2O+K2O));DI=Q+Or+Ab+Ne+Lc+Kp; TZr=12900/(2.95+0.85M+ln(49600/Zr), 其中M=摩尔(K+Na+2Ca)/(Si×Al);主量元素含量单位为%, 微量和稀土元素含量单位为10-6
    下载: 导出CSV 
    | 显示表格

    LA-ICP-MS锆石U-Pb同位素定年选取典型花岗岩样品2件(TW4和TW6)、满克头鄂博组流纹岩样品1件(TW3)、玛尼吐组英安质熔结凝灰岩样品1件(TW462)。锆石阴极发光(CL)与测点视年龄图、U-Pb谐和年龄与年龄加权平均值图见图 4。所挑选的锆石颗粒粒径80~130 μm,晶形较好,以长柱状为主,长宽比为1:1~3:1,晶体具有明显的生长环带和韵律结构,Th/U值多大于0.7,具有典型的岩浆成因锆石特征,所测年龄能够代表岩浆的侵位时间[35]。由图 4可知,4个样品的测试结果较理想,大部分测点位于U-Pb谐和线附近,少量测点206Pb/238U年龄偏大,可能为残留锆石,在加权平均计算时予以剔除。其中花岗岩样品TW4的206Pb/238U年龄加权平均值为125.5±1.8 Ma(MSWD=6.7);样品TW6的206Pb/238U年龄加权平均值为125.8±1.0 Ma(MSWD=2.4);满克头鄂博组流纹岩样品TW3的206Pb/238U年龄加权平均值为125.4±0.8 Ma(MSWD=0.36);玛尼吐组凝灰岩样品TW426的206Pb/238U年龄加权平均值为145.2±1.1 Ma(MSWD=1.4)。

    图  4  吉峰地区岩浆岩锆石U-Pb谐和图、阴极发光(CL)图像及年龄值(Ma)
    Figure  4.  LA-ICP-MS zircon U-Pb concordia diagrams, CL images and ages of Jifeng igneous rocks

    (1) 主量元素

    在使用主量元素地球化学图解前,均去除烧失量,重新换算成100%。在TAS图解上,玛尼吐组凝灰岩(TW426)落入流纹岩与英安岩边界;早白垩世花岗岩和满克头鄂博组火山岩样品点分布于流纹岩与粗面岩区域(图 5-a)。

    图  5  吉峰地区花岗质岩石判别图
    a—TAS图解;b—A/CNK-A/NK图解;c—SiO2-K2O图解;d—A.R.-SiO2图解
    Figure  5.  Discrimination diagrams of Jifeng granites and tuffs

    表 2可知,早白垩世花岗岩和满克头鄂博组火山岩地球化学特征较一致:①大多数样品SiO2含量(66.88%~75.03%)与分异指数(87.4~97.2)较高(除粗面岩TW082外);②岩石Al2O3含量高(13.26%~16.44%),铝饱和指数(A/CNK)介于0.99~1.17之间,在A/CNK-A/NK图解上大体投影于过铝质岩区域(图 5-b),在CIPW标准矿物中则可见刚玉分子的出现;③全碱含量高,K2O+Na2O值为8.23%~9.87%,K2O/Na2O值多大于1.1,在SiO2-K2O图解上,样品点主要落入橄榄粗玄系列和高钾钙碱性系列(图 5-c),而在A.R.-SiO2图解上,大体落入碱性岩区域(图 5-d);④在Harker图解中,TiO2、Al2O3、TFe2O3、CaO、P2O5含量随SiO2含量增高而降低(图 6)。

    图  6  吉峰花岗质火山-侵入杂岩哈克图解
    Figure  6.  Harker diagrams of Jifeng granitic volcanic-intrusive complex

    而玛尼吐组火山岩样品TW426地球化学特征则稍有不同,具有较低的SiO2含量(67.68%),高的Al2O3含量(16.66%)和铝饱和指数(1.68),在A/CNK-A/NK图解上位于强烈过铝质区域,低全碱含量(7.65%)和Wright碱度率(2.54)及高K2O/Na2O值(3.23)等特征。

    (2) 微量元素

    表 2可知,早白垩世花岗岩、满克头鄂博组流纹岩及玛尼吐组凝灰岩微量元素地球化学特征较一致。在球粒陨石标准化稀土元素配分模式图(图 7-a)中,所有样品均表现出右倾的海鸥式配分模式,具有相对富集的LREE、较高的(La/Yb)N值(4.82~14.60)及轻微-中等的负Eu异常。在微量元素原始地幔标准化蛛网图(图 7-b)中,大离子亲石元素(LILE)Rb、U、Th、K及Pb富集,Ba和高场强元素(HSFE)Ti、Nb、Ta、Sr、P等则明显亏损。

    图  7  吉峰花岗岩-火山岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据参考文献[36])
    Figure  7.  Chondrite-normalized REE patterns(a)and primitive-mantle-normalized trace element spidergrams(b)for the Jifeng granites and tuffs

    前文已述,大兴安岭北段吉峰地区秀山花岗岩、旭光花岗岩、满克头鄂博组流纹岩和玛尼吐组凝灰岩的锆石U-Pb年龄分别为125.5±1.8 Ma,125.8±1.0 Ma,125.4±0.78 Ma,145.2±1.1 Ma,指示该区至少经历了约145 Ma和约125 Ma两期岩浆活动。

    本文采集的岩石样品的A/CNK=0.99~1.68(平均1.14),CIPW标准矿物计算中出现刚玉分子(0.01%~7.43%),表现出准铝质-过铝质岩石的特征,暗示其与S型花岗岩的亲缘性。但其P2O5含量低(0.03%~0.28%),P2O5与SiO2表现出明显的负相关趋势(图 6),且岩石未见堇青石、石榴子石等矿物,因而基本排除其为S型花岗岩的可能[37-40]

    同时,岩石具有高硅、高铝、高分异指数、轻重稀土元素中等分异、LILE富集、HSFE强烈亏损、部分主量、微量元素与SiO2呈负相关等高分异特征,与I型花岗岩有较好的相似性。Chappell等[41]指出,在高分异的情况下,A型花岗岩原本高的Zr、Nb、Ce、Y含量会明显降低[42],导致其与I型花岗岩之间成因类型判别困难。在花岗岩成因判别图解中,大部分样品具有Ga/Al×10000>2.6、(Zr+Nb+Ce+Y)>350×10-6、Zr>250×10-6等特征,投影于A型花岗岩区域[43](图 8)。加之吉峰地区岩浆岩锆石饱和温度为792~908 ℃,平均841 ℃,高于I型和S型花岗岩形成温度(表 2)。因此,在无较富镁铁质岩石伴生的情况下,笔者倾向于利用Whalen等[43]的指标,将吉峰地区上述2期花岗质岩石归为A型花岗岩。

    图  8  吉峰花岗岩成因类型判别图解(底图据参考文献[43])
    a—K2O-Na2O图解;b—10000Ga/Al-K2O+Na2O图解;c—10000Ga/Al-Nb图解;d—10000Ga/Al-Zr图解;e—(Zr+Nb+Ce+Y)-FeO*/MgO图解;f—(Zr+Nb+Ce+Y)-(K2O+Na2O)图解。FG—分异的长英质花岗岩; OGT—未分异的M、I、S花岗岩
    Figure  8.  Classification diagrams indicating Jifeng granites belonging to A-types granite

    前文已述,大兴安岭北段吉峰地区2期岩浆岩均为A型花岗岩。通常认为,A型花岗岩形成于较高温度、来源于较浅部的中上地壳(成岩压力较低),与大陆裂谷、大洋热点区、后造山等拉张构造背景息息相关[37, 43-47]。在构造背景判别图上,吉峰地区大部分样品点落入后碰撞区域(图 9),指示大兴安岭北段在晚侏罗世(145.2 Ma)和早白垩世(125.4~125.8 Ma)均处于伸展的大地构造背景。

    图  9  吉峰地区花岗质岩石大地构造背景判别图(底图据参考文献[48])
    Figure  9.  Tectonic background discriminant diagram of granitic rocks in Jifeng area

    为更全面地理解大兴安岭北段吉峰地区晚中生代的构造背景和成岩动力学机制,本文系统分析了大兴安岭及其邻区已发表的170~100 Ma的年龄和地球化学数据。由图 10可知,大兴安岭岩浆活动自170 Ma开始逐渐增强,在约132 Ma达到高峰,之后逐渐减弱,在约120 Ma后岩浆活动近于停歇。但若依据岩石成因类型进行分类统计,可见岩浆活动随时间有规律地进行:①晚侏罗世(170~145 Ma),在大兴安岭全区广泛发育,其中158 Ma和150 Ma存在2个小的活动峰期,岩石介于碱性-亚碱性之间,以钙碱性为主[3, 49-55];②早白垩世早期(145~135 Ma),岩石以高钾钙碱性I型(部分为埃达克质岩)和A型花岗质岩浆岩共同发育为典型特征(图 10)[25, 56-69],相对晚侏罗世,该期岩浆活动进一步活跃,岩石极性显著增大;③早白垩世中期(135~120 Ma),岩浆活动强烈发育,在约132 Ma达到峰值,岩石主要为A型花岗质岩石和后碰撞花岗岩[2, 25, 52, 58, 67, 70-76],岩石极性进一步增大;④早白垩世晚期(120~100 Ma),大兴安岭地区岩浆活动迅速减弱,而松辽盆地开始发育大量A型花岗岩和双峰式火山岩(图 10)[77-85];吉黑东部则以钙碱性组合为主兼有碱性岩特征,并具有自陆缘向陆内极性成分增加的趋势[3]

    图  10  大兴安岭及其邻区晚中生代年龄直方图
    (图a数据据本文及参考文献[4, 49-162],图b数据据参考文献[52])
    Figure  10.  Histogram of the Late Mesozoic ages in the Da Hinggan Mountains and their adjacent areas

    基于前文大兴安岭及其邻区岩浆岩年龄框架,笔者认为,大兴安岭及其邻区构造演化可能并非受单一构造体系域的控制。

    (1) 中晚侏罗世(170~145 Ma)

    大兴安岭、东蒙古和外贝加尔地区在该期岩浆活动强烈[7, 26, 52-53, 89, 163-164],而松辽盆地及其东部地区岩浆作用却十分少见。古太平洋板块很难俯冲如此远的距离(大于2000 km)触发大兴安岭以西地区大规模岩浆活动,而对松辽盆地及其东部地区无显著影响。因而大兴安岭地区中晚侏罗世钙碱性岩石组合可能更多地受蒙古-鄂霍茨克洋闭合制约[3]。但同时需明白,古太平洋板块西向俯冲及南部特提斯洋向北俯冲的远程效应,驱动华北北缘增生带向北与西伯利亚板块俯冲碰撞,并导致大兴安岭岩石圈挤压和增厚[165]

    (2) 早白垩世早期(145~135 Ma)

    高Sr、低Y的埃达克质岩石的发育,指示大兴安岭地区在该期仍以蒙古-鄂霍茨克构造体系域为主,发生了加厚地壳的部分熔融,而A型花岗岩则可能为加厚条件下岩浆底侵下地壳部分熔融的产物,也表明该时期大兴安岭地区即将发生由挤压加厚向伸展的转换。

    (3) 早白垩世中期(135~120 Ma)

    尽管该期仍可见埃达克质岩的发育,但A型花岗质火山-侵入岩和后碰撞花岗岩比例逐渐增大,岩石极性亦逐步增大,指示大兴安岭地区处于强烈的拉张环境,可能为蒙古-鄂霍茨克后造山阶段或拆沉阶段。但值得注意的是,该时期黑龙江、饶河等地可见构造核杂岩[2],指示中国东北地区伸展作用的广泛分布。因此,也不能排除古太平洋板块后撤导致的加厚地壳拆沉的可能。

    (4) 早白垩世晚期(120~100 Ma)

    本阶段大兴安岭地区岩浆活动迅速减弱,指示蒙古-鄂霍茨克构造体系域控制作用的结束。而松辽盆地大规模的A型花岗岩和双峰式火山岩,指示东北地区拉伸作用的快速东移;吉黑东部岩浆岩呈现出由东向西极性增大的趋势[3],则可能受东部俯冲板片的局部挤压的控制。这表明东北地区在该期主要受古太平洋构造体系域的控制。

    (1) 大兴安岭北段吉峰地区发育约145.2 Ma和约125.4 Ma两期岩浆活动,2期岩浆岩均具有A型花岗岩的地球化学特征。其中第一期A型花岗岩可能为以挤压加厚为主、向伸展转换的构造背景下地壳部分熔融的产物;而第二期A型花岗岩可能为强烈拉伸环境下大兴安岭加厚地壳大规模拆沉的产物。

    (2) 大兴安岭晚中生代大规模岩浆活动受蒙古-鄂霍茨克和古太平洋构造体系域的共同控制,其中早白垩世中期以前主要受蒙古-鄂霍茨克构造体系域控制,早白垩世晚期则以古太平洋构造体系域为主。

    致谢: 在近十年的构造地质填图实践中,笔者团队主要得到了英国皇家地质学会、中国地震局地质研究所、国家自然科学基金、中国科学技术部、中国地质科学院地质研究所、中国地质调查局等单位项目的资助,没有这些项目,不可能开展长期的锻炼和摸索。感谢南京大学朱文斌教授在审稿过程中提出的一系列建设性意见:感谢美国东康涅狄格州立大学Cunningham教授、香港大学Webb副教授、南京大学孔庆友副教授、中国地质调查局天津地质调查中心陆松年研究员、中国地质调查局张智勇教授级高工、中国地质大学(武汉)张克信教授、中国地质科学院地质研究所杨天南研究员、中国地质调查局南京地质调查中心邢光福研究员、中国地质调查局发展研究中心肖庆辉和冯艳芳研究员、中国地质调查局西安地质调查中心王永和研究员等在以往的填图中给予的鼓励和讨论。感谢南京大学地球与工程学院田荣松、李法浩、艾米尔·丁硕士研究生参与狼山的野外填图工作;感谢工程首席科学家中国地质科学院地质研究所王涛研究员在项目执行过程中给予的支持。
  • 图  1   小型线理主要类型[7]

    A—矿物集合体定向排列显示的拉伸线理;B—柱状或针状矿物平行排列而成的生长线理;C—面理揉皱形成的褶纹线理;D—交面线理

    Figure  1.   Types of small-scale lineations

    图  2   褶皱不同部位的次级褶皱类型[11]

    Figure  2.   Subordinate folds in large scale folds

    图  3   主断层及其派生次级断层(裂)[18]

    Figure  3.   The main fault plan and its secondary fractures

    图  4   P、R剪切面组合形成的走滑断层带波状延伸特征[31]

    Figure  4.   The P and R shear assembly that forms wave shaped slip fault zone

    图  5   R剪切断层面表现类型(右行剪切)[12]

    Figure  5.   Types related to the R shears on the main fault surfaces (dextral shear)

    图  6   PR和RX断面类型[30]

    Figure  6.   Types of PR and RX

    图  7   断层面上发育的不同断面构造,示右行走滑(湖南雪峰山)

    Figure  7.   Asymmetric depressions on the main faults showing dextral slipping (Xuefeng Mountain in Hunan Province)

    图  8   P剪切断层面表现类型(右行剪切)[12]

    Figure  8.   Types related to the P shear on the main fault surfaces (dextral slipping)

    图  9   张性破裂与断层面关系[12]

    A—破裂与断层面夹角45°,指示右行;B—新月形破裂,月牙指示右行

    Figure  9.   Types of tensile fractures (dextral slipping)

    图  10   露头尺度构造与区域尺度构造的关系[44]

    Figure  10.   The relationships of minor structures to the large-scale structures

    图  11   北山造山带二叠系叠加褶皱地质图[68]

    (1)—二叠系层理极点图;(2)—第一期轴面劈理极点图;(3)—第二期轴面劈理极点图

    Figure  11.   Geological map of the Permian refolded fold in Beishan orogeny

    图  12   巴彦乌拉山中段(A)和南段(B)地质图[76]

    Figure  12.   Geological maps of central(A) and southern(B) parts of the Bayanwula Mountain

    图  13   香山寺口子地区地质图.

    A—填图区地质图;B—香山群褶皱枢纽赤平投影及极密图(下半球);C—中宁组-靖远组褶皱枢纽赤平投影及极密图(下半球)

    Figure  13.   Geological map of the Sikouzi area[77]

    图  14   小峡背斜地质图[82]

    Figure  14.   Geological map of the Xiaoxia anticline

    图  15   狼山地区1: 5万构造地质填图(局部)

    Figure  15.   1: 50000 geological map of part of the Langshan area

    图  16   陈蔡岩群地质图

    B—江绍断裂带糜棱面理与拉伸线理赤平投影;C—陈蔡岩群面理与极点;D—陈蔡岩群褶皱枢纽赤平投影

    Figure  16.   Geological map of the Chencai region[108]

  • 高秉璋, 洪大卫, 郑基俭, 等.花岗岩类区1:5万区域地质填图方法指南[M].武汉:中国地质大学出版社, 1991.
    房立民, 杨振升, 李勤, 等.变质岩区1:5万区域地质填图方法指南[M].武汉:中国地质大学出版社, 1991.
    熊家镛, 卢重明, 徐怀艾, 等.沉积岩区1:5万区域地质填图方法指南[M].武汉:中国地质大学出版社, 1991.
    熊家镛, 张志斌, 蔡麟荪.陆内造山带1:50000区域地质填图方法研究——以哀牢山造山带为例[M].武汉:中国地质大学出版社, 1998.

    McClay K. The Mapping of Geological Structures[M]. John Wiley & Sons, 2nd edition, 2004.

    Davis G H, Reynolds S J, Kluth C F. Structural geology of rocks and regions (Third edition)[M]. John Wiley & Sons, 2012.

    Turner F J, Weiss L E. Structural analysis of metamorphic tectonites[M]. Me. Graw-Htll Book Comp., 1963.

    Sander B. Gefugekunde der Gesteine[M]. Vienna. Julius Springer, 1930.

    Backlund H. Petrogenetische Studien an Taimyrgesteinen[J]. GFF, 1918, 40(2):101-203. doi: 10.1080/11035891809444435?needAccess=true

    Holmes A. The Nomenclature Of Petrology[M]. London, HardPress Publishing, 1928.

    Fossen H. Structural Geology. Structural geology[M]. Cambridge University Press, 2010.

    Petit J P. Criteria for the sense of movement on fault surfaces in brittle rocks[J]. Journal of Structural Geology, 1987, 9:597-608. doi: 10.1016/0191-8141(87)90145-3

    Doblas M. Slickenside kinematic indicators[J]. Tectonophysics, 1998, 295:187-197. doi: 10.1016/S0040-1951(98)00120-6

    Angelier J. Fault slip analysis and palaeostress reconstruction[C]//Hancock P L. Continental Deformation. London: Pergamon Press, 1994: 53-100.

    Tjia H D. Slickensides and fault movements[J]. GSA Bulletin, 1964, 75:683-686. doi: 10.1130/0016-7606(1964)75[683:SAFM]2.0.CO;2

    Riedel W. Zur Mechanik geologischer brucherscheinungen[J]. Zentralblatt fur Mineralogie, Geologie und Palaontologie, 1929, 1929B:354-368. http://www.oalib.com/references/19190949

    Groshong R H J. Low-temperature deformation mechanisms and their interpretation[J]. GSA Bulletin, 1988, 100:1329-1360. doi: 10.1130/0016-7606(1988)100<1329:LTDMAT>2.3.CO;2

    Logan J M, Dengo C A, Higgs N G, et al. Fabrics of experimental fault zones: their development and relationship to mechanical behavior[C]//Evans B, Wong T. Fault mechanics and transport properties of rocks. San Diego: Academic Press, 1992: 33-67.

    Brosch F J, Kurz W. Fault damage zones dominated by high-angle fractures within layer-parallel brittle shear zones:examples from the eastern Alps[J]. Geological Society, London, Special Publications, 2008, 299(1):75-95. doi: 10.1144/SP299.5

    Richard P D, Naylor M A, Koopman A. Experimental models of strike-slip tectonics[J]. Petroleum Geoscience, 1995, 1:71-80. doi: 10.1144/petgeo.1.1.71

    Keller J V A, Hall S H, McClay K R. Shear fracture pattern and microstructural evolution in transpression fault zones from field and laboratory studies[J]. Journal of Structural Geology, 1997, 19:1173-1187. doi: 10.1016/S0191-8141(97)00042-4

    Tindall S E. Development of oblique-slip basement-cored uplifts: Insights from the Kaibab uplift and from physical models[D]. The University of Arizona: Ph D Thesis, 2000.

    Tindall S E, Davis G H. Monocline development by oblique-slip fault-propagation folding:the East Kaibab monocline, Colorado Plateau, Utah[J]. Journal of Structural Geology, 1999, 21:1303-1320. doi: 10.1016/S0191-8141(99)00089-9

    Naylor M A, Mandl G, Sijpesteijn C H K. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 1986, 8:737-752. doi: 10.1016/0191-8141(86)90022-2

    Kim Young-Seog, Peacock D C P, Sanderson D J. Fault damage zones[J]. Journal of Structural Geology, 2004, 26:503-517. doi: 10.1016/j.jsg.2003.08.002

    Hancock P L, Barka A A. Kinematic indicators on active normal faults in western Turkey[J]. Journal of Structural Geology, 1987, 9:573-584. doi: 10.1016/0191-8141(87)90142-8

    Chester F M, Chester J S. Stress and deformation along wavy frictional faults[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B10):23421-23430. doi: 10.1029/2000JB900241

    Davis G A, 郑亚东.变质核杂岩的定义、类型及构造背景[J].地质通报, 2002, 21(4):185-192. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20020457&flag=1

    Sagy A, Brodsky E E, Axen G J. Evolution of fault-surface roughness with slip[J]. Geology, 2007, 35(3):283-286. doi: 10.1130/G23235A.1

    Gamond J F. Displacement features associated with fault zones:a comparison between observed examples and experimental models[J]. Journal of Structural Geology, 1983, 5:33-45. doi: 10.1016/0191-8141(83)90005-6

    Cowgill E, Arrowsmith J R, Yin A, et al. The akato tagh bend along the altyn tagh fault, northwest Tibet 2:active deformation and the importance of transpression and strain hardening within the Altyn Tagh system[J]. GSA Bulletin, 2004, 116:1443-1464. doi: 10.1130/B25360.1

    Woodcock N H, Schubert C. Continent strike-slip tectonics[C]//Hancock P L. Continental Deformation. London: Pergamon Press, 1994: 251-263.

    Hancock P L. Brittle microtectonics:principles and practice[J]. Journal of Structural Geology, 1985, 7:437-457. doi: 10.1016/0191-8141(85)90048-3

    Pollard D D, Segall P, Delaney P T. Formation and interpretation of dilatant echelon cracks[J]. GSA Bulletin, 1982, 93(12):1291-1303. doi: 10.1130/0016-7606(1982)93<1291:FAIODE>2.0.CO;2

    Rothery E. En echelon vein array development in extension and shear[J]. Journal of Structural Geology, 1988, 10(1):63-71. doi: 10.1016/0191-8141(88)90128-9

    Aydin A, Schultz R A. Effect of mechanical interaction on the development of strike-slip faults with echelon patterns[J]. Journal of Structural Geology, 1990, 12(1):123-129. doi: 10.1016/0191-8141(90)90053-2

    Tjia H D. Fault movement, reoriented stress field and subsidiary structures[J]. Pacific Geology, 1971, 5, 49-90. https://www.sciencedirect.com/science/article/pii/0031920176900650

    Doblas M, Mahecha V, Hoyos M. Slickenside and fault surface kinematic indicators on active normal faults of the Alpine Betic cordilleras, Granada, southern Spain[J]. Journal of Structural Geology, 1997, 19(2):159-170. doi: 10.1016/S0191-8141(96)00086-7

    Platt J P, Vissers R L M. Extensional structures in anisotropic rocks[J]. Journal of Structural Geology, 1980, 2:397-410. doi: 10.1016/0191-8141(80)90002-4

    Hancock P L. The analysis of en-echelon veins[J]. Geological Magzine, 1972, 109:269-276. doi: 10.1017/S0016756800039315

    Norris D K, Barron K. Structural analysis of features on natural and artificial faults[C]//Baer A, Norris D K. Research in Tectonics. Geological Survey of Canada Paper, 1969: 68-52, 136-167.

    Means W D. A newly recognized type of slickenside striation[J]. Journal of Structural Geology, 1987, 9:585-590. doi: 10.1016/0191-8141(87)90143-X

    Engelder J T. Microscopic wear grooves on slickensides:Indicators of paleoseismicity[J]. Journal of geophysical Research, 1974, 79(29):4387-4392. doi: 10.1029/JB079i029p04387

    Wilson G. The tectonic significance of small scale structures and their importance to the geologist in the field[M]. Societé Geologique de Belgique, 1961.

    Hansen E. Strain Facies[M]. Berlin, New York, Springer-Verlag, 1971.

    Julivert M, Marcos A. Superimposed folding under flexural conditions in the Cantabrian Zone (Hercynian Cordillera, northwest Spain)[J]. American Journal of Science, 1973, 273(5):353-375. doi: 10.2475/ajs.273.5.353

    Hatcher R D. Macroscopic polyphase folding illustrated by the Toxaway dome, eastern Blue Ridge, South Carolina-North Carolina[J]. GSA Bulletin, 1977, 88(11):1678-1688. doi: 10.1130/0016-7606(1977)88<1678:MPFIBT>2.0.CO;2

    Grujic D, Walter T R, Gärtner H. Shape and structure of analogue models of refolded layers[J]. Journal of Structural Geology, 2002, 24(8):1313-1326. doi: 10.1016/S0191-8141(01)00134-1

    Ramsay J G. Folding and Fracturing of Rocks[J]. New York-London, 1967. http://is.muni.cz/publication/472138

    Ramsay J G, Huber I M. The Techniques of modern structural geology. volume 2:folds and fractures[M]. London-San Diego, 1987.

    Ramsay J G, Lisle R J. The Techniques of modern structural geology. volume 3:applications of continuum mechanics in structural geology[M]. London-San Diego, 2000.

    Thiessen R. Two-dimensional refold interference patterns[J]. Journal of Structural Geology, 1986, 8(5):563-573. doi: 10.1016/0191-8141(86)90005-2

    Thiessen R L, Means W D. Classification of fold interference patterns:a reexamination[J]. Journal of structural Geology, 1980, 2(3):311-316. doi: 10.1016/0191-8141(80)90019-X

    Moore R R, Johnson S E. Three-dimensional reconstruction and modelling of complexly folded surfaces using mathematica[J]. Computers & Geosciences, 2001, 27(4):401-418. https://www.sciencedirect.com/science/article/pii/S0098300400000790

    Grasemann B, Wiesmayr G, Draganits E, et al. Classification of refold structures[J]. The Journal of Geology, 2004, 112(1):119-125. doi: 10.1086/379696

    Weiss L E. Geometry of superposed folding[J]. GSA Bulletin, 1959, 70(1):91-106. doi: 10.1130/0016-7606(1959)70[91:GOSF]2.0.CO;2

    Watkinson A J. Patterns of fold interference:influence of early fold shapes[J]. Journal of Structural Geology, 1981, 3(1):19-23. doi: 10.1016/0191-8141(81)90053-5

    Johns M K, Mosher S. Physical models of regional fold superposition:the role of competence contrast[J]. Journal of Structural Geology, 1996, 18(4):475-492. https://www.sciencedirect.com/science/article/pii/019181419500100R

    Ghosh S K, Ramberg H. Buckling experiments on intersecting fold patterns[J]. Tectonophysics, 1968, 5(2):89-105. doi: 10.1016/0040-1951(68)90083-8

    Ghosh S K, Mandal N, Khan D, et al. Modes of superposed buckling in single layers controlled by initial tightness of early folds[J]. Journal of Structural Geology, 1992, 14(4):381-394. doi: 10.1016/0191-8141(92)90100-B

    Ghosh S K, Mandal N, Sengupta S, et al. Superposed buckling in multilayers[J]. Journal of Structural Geology, 1993, 15(1):95-111. doi: 10.1016/0191-8141(93)90081-K

    Gruji cD. The influence of initial fold geometry on type 1 and type 2 interference patterns:an experimental approach[J]. Journal of Structural Geology, 1993, 15(3/5):293-307. http://cat.inist.fr/?aModele=afficheN&cpsidt=4716735

    Li J Y. Late Neoproterozoic and paleozoic tectonic framework and evolution of eastern Xinjiang, NW China[J]. Geological Review, 2004, 50(3):304-322. https://www.sciencedirect.com/science/article/pii/S1342937X12001852

    左国朝, 刘义科, 刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报, 2003, 12(1):1-15. https://www.wenkuxiazai.com/doc/730ef92187c24028915fc3a3.html

    Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China):implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4):370-395. doi: 10.2475/ajs.304.4.370

    Xiao W, Han C, Yuan C, et al. Middle cambrian to permian subduction-related accretionary orogenesis of northern Xinjiang, NW China:implications for the tectonic evolution of central asia[J]. Journal of Asian Earth Sciences, 2008, 32(2):102-117. https://www.sciencedirect.com/science/article/pii/S1367912007001708

    甘肃省地质矿产局.甘肃省区域地质志[M].北京:地质出版社, 1989.

    Zhang J, Cunningham D. Kilometer-scale refolded folds caused by strike-slip reversal and intraplate shortening in the Beishan region, China[J]. Tectonics, 2012, 31:1-19. doi: 10.1029/2011TC003050/full?scrollTo=footer-citing

    沈其韩, 耿元生, 王新社, 等.阿拉善地区前寒武纪斜长角闪岩的岩石学、地球化学、形成环境和年代学[J].岩石矿物学杂志, 2005, 24(1):21-31. http://d.wanfangdata.com.cn/Periodical_yskwxzz200501003.aspx
    杨振德, 潘行适, 杨易福.阿拉善断块及邻区地质构造特征与矿产[M].北京:科学出版社, 1988.
    内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1996.

    Wu S J, Hu J M, Ren M H, et al. Petrography and zircon U-Pb isotopic study of the bayanwulashan complex:constrains on the paleoproterozoic evolution of the alxa block, westernmost north China craton[J]. Journal of Asian Earth Sciences, 2014, 94:226-239. doi: 10.1016/j.jseaes.2014.05.011

    李俊建, 沈保丰, 李惠民, 等.内蒙古西部巴彦乌拉山地区花岗闪长岩质片麻岩的单颗粒锆石U-Pb法年龄[J].地质通报, 2004, 23(12):1243-1245. doi: 10.3969/j.issn.1671-2552.2004.12.013
    耿元生, 王新社, 沈其韩, 等.内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定[J].中国地质, 2006, 33(1):138-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200601015
    耿元生, 王新社, 沈其韩, 等.内蒙古阿拉善地区前寒武纪变质岩系形成时代的初步研究[J].中国地质, 2007, 34(2):77-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200702006

    Zhang J, Li J Y, Xiao W X, et al. Kinematics and geochronology of multistage ductile deformation along the eastern alxa block, NW China:new constraints on the relationship between the north China plate and the alxa block[J]. Journal of Structural Geology, 2013, 57:38-57. doi: 10.1016/j.jsg.2013.10.002

    Zhang J, Li J Y, Zhang B H, et al. Timing of amalgamation of the alxa block and the north China block:constraints based on detrital zircon U-Pb ages and sedimentologic and structural evidence[J]. Tectonophysics, 2016:668-669. https://www.sciencedirect.com/science/article/pii/S0040195115006642

    Zhang J, Zhang Y P, Xiao W X, et al. Linking the alxa terrane to the eastern gondwana during the early paleozoic:Constraints from detrital zircon U-Pb ages and cambrian sedimentary records[J]. Gondwana Research, 2015, 28(3):1168-1182. doi: 10.1016/j.gr.2014.09.012

    Liu S. The coupling mechanism of basin and orogen in the western Ordos Basin and adjacent regions of China[J]. Journal of Asian Earth Sciences, 1998, 16(4):369-383. doi: 10.1016/S0743-9547(98)00020-8

    张进, 马宗晋, 任文军.鄂尔多斯西缘逆冲褶皱带构造特征及其南北差异的形成机制[J].地质学报, 2004, 78(5):600-611. http://www.cnki.com.cn/Article/CJFDTotal-DZKX201502005.htm
    王进寿, 张开成, 王占昌, 等.西宁盆地深部构造与地震[J].高原地震, 2006, 18(3):16-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gydz200603004

    Zhang J, Cunningham D. Polyphase transpressional development of a NNE-striking basement-cored anticline in the Xining basin, northeastern qinghai-tibetan plateau[J]. Geological Magazine, 2013, 150:626-638. doi: 10.1017/S0016756812000866

    Darby B J, Ritts B D. Mesozoic contractional deformation in the middle of the asian tectonic collage:the intraplate western ordos fold-thrust belt, China[J]. Earth and Planetary Science Letters, 2002, 205(1):13-24. http://linkinghub.elsevier.com/retrieve/pii/S0012821X02010269

    Darby B J, Ritts B D. Mesozoic structural architecture of the lang shan, north-central China:intraplate contraction, extension, and synorogenic sedimentation[J]. Journal of Structural Geology, 2007, 29(12):2006-2016. doi: 10.1016/j.jsg.2007.06.011

    Zhang J, Li J Y, Li Y F, et al. Mesozoic-Cenozoic multi-stage intraplate deformation events in the Langshan region and their tectonic implications[J]. Acta Geologica Sinica, 2014, 88(1):78-102. doi: 10.1111/acgs.2014.88.issue-1

    Dan W, Li X H, Wang Q, et al. Phanerozoic amalgamation of the alxa block and north China craton:evidence from paleozoic granitoids, U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry[J]. Gondwana Research, 2016, 32:105-121. doi: 10.1016/j.gr.2015.02.011

    Zhao G, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 2005, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002

    浙江省地质矿产局.浙江省区域地质志[M].北京:地质出版社, 1989.
    福建省地质矿产局.福建省区域地质志[M].北京:地质出版社, 1985.
    广东省地质矿产局.广东省区域地质志[M].北京:地质出版社, 1988.
    水涛.中国东南大陆基底构造格局[J].中国科学(B辑), 1987(4):78-86. doi: 10.1360/zb1987-17-4-414
    水涛, 徐步台, 梁如华, 等.中国浙闽变质基底地质[M].北京:科学出版社, 1988.
    水涛, 徐步台, 梁如华, 等.绍兴-江山古陆对接带[J].科学通报, 1986, 31(6):444-448. http://www.oalib.com/paper/1675500
    孔祥生, 包超民, 顾明光.浙江诸暨地区陈蔡群主要地质特征及其构造演化探讨[J].浙江地质, 1994, (1):15-29. http://www.cqvip.com/QK/83464A/199401/3001299207.html
    孔祥生, 李志飞, 冯长根, 等.浙江陈蔡地区前寒武纪地质(前寒武纪地质第7号)[M].北京:地质出版社, 1995.
    程海.浙西北晚元古代早期碰撞造山带的初步研究[J].地质论评, 1991, 37(3):203-213. http://www.oalib.com/paper/4888365
    程海.浙西北晚元古代岛弧火山岩的地球化学研究[J].地球化学, 1993, (1):18-27. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX601.005.htm

    Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic WuyiYunkai orogeny, southeastern South China:New age constraints and pressure-temperature conditions[J]. GSA Bulletin, 2010, 122(5/6):772-793. http://gsabulletin.gsapubs.org/content/122/5-6/772.abstract

    胡艳华, 顾明光, 徐岩, 等.浙江诸暨地区陈蔡群加里东期变质年龄的确认及其地质意义[J].地质通报, 2011, 30(11):1661-1670. doi: 10.3969/j.issn.1671-2552.2011.11.002
    赵国春, 孙德有, 贺同兴.陈蔡群构造变形特征及变形时代讨论[J].浙江地质, 1994, (1):38-46. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201111003.htm
    赵国春, 孙德有.浙西南陈蔡群变质阶段划分及变质作用p-TD轨变研究[J].吉林大学学报, 1994, (3):246-253. https://www.wenkuxiazai.com/doc/7bbf447902768e9951e738b9.html

    Zhao G, Cawood P A. Tectonothermal evolution of the Mayuan Assemblage in the Cathaysia Block; implications for Neoproterozoic collision-related assembly of the South China Craton[J]. American Journal of Science, 1999, 299(4):309-339. doi: 10.2475/ajs.299.4.309

    Zhang J, Li J Y, Xiao W X, et al. Multistage Deformation in the Northeastern Segment of the Jiangshao Fault (Suture) Belt:Constraints for the Relationship between the Yangtze Plate and the Cathaysia Old Land[J]. Acta Geologica Sinica, 2013, 87(4):948-978. doi: 10.1111/acgs.2013.87.issue-4

    高林志, 丁孝忠, 刘燕学, 等.江山-绍兴断裂带陈蔡岩群片麻岩SHRIMP锆石U-Pb年龄及其地质意义[J].地质通报, 2014, 33(5):641-648. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20140505&flag=1

    Wang D, Zheng J, Ma Q, et al. Early Paleozoic crustal anatexis in the intraplate Wuyi-Yunkai orogen, South China[J]. Lithos, 2013, 175:124-145. http://www.sciencedirect.com/science/article/pii/S0024493713001412

    Xiao W, He H. Early Mesozoic thrust tectonics of the northwest Zhejiang region (Southeast China)[J]. GSA Bulletin, 2005, 117(7/8):945-961. http://bulletin.geoscienceworld.org/content/117/7-8/945

    Zhou X, Zhu Y. Late Proterozoic colisional orogen and geosuture in Southeastern China:Petrological evidence[J]. Acta Geochimica, 1993, 12(3):239-251. doi: 10.1007/BF02843363

    Zhang J, Qu J F, Zhao H, et al. Paleozoic to Mesozoic deformation of eastern Cathaysia, a case study of Chencai Complex, Zhejiang Province, eastern China and its tectonic implications[J]. GSA Bulletin, 2018(accepted). https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/130/1-2/114/353730/paleozoic-to-mesozoic-deformation-of-eastern

  • 期刊类型引用(5)

    1. FENG Yipeng,WANG Genhou,WANG Shulai,LI Dian,WANG Huan,LU Yang,LIU Han,ZHANG Peilie. Structural, ~(40)Ar/~(39)Ar Geochronological and Rheological Feature Analysis of the Guoxuepu Shear Zone: Indications for the Jitang Metamorphic Complex in the Northern Lancangjiang Zone. Acta Geologica Sinica(English Edition). 2024(01): 32-49 . 必应学术
    2. 冯翼鹏,王书来,王根厚,李典,刘函,鲁扬,唐宇,张培烈,韩宁. 藏东吉塘变质核杂岩组成及大地构造意义. 沉积与特提斯地质. 2024(04): 854-870 . 百度学术
    3. 潘亮,周斌,鲁麟,韩奎,高峰,乔新星. 冈底斯带东段日多地区航木多岩体地球化学、锆石U-Pb年代学、Lu-Hf同位素特征及其地质意义. 西北地质. 2021(04): 59-81 . 百度学术
    4. 周文俊,张园,陶东山. 铅锌铜多金属矿地质地球化学特征与找矿潜力分析. 世界有色金属. 2020(09): 64-65 . 百度学术
    5. 乔新星,周斌,韩奎,潘亮,王峰,赵焕强. 冈底斯南带东段日多地区米忍岩体地球化学、年代学、锆石Lu-Hf同位素特征及其地质意义. 地质通报. 2019(09): 1417-1430 . 本站查看

    其他类型引用(3)

图(16)
计量
  • 文章访问数:  3435
  • HTML全文浏览量:  449
  • PDF下载量:  2190
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-04-30
  • 修回日期:  2017-06-19
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2018-02-28

目录

/

返回文章
返回