• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

New metallogenic approaches to the Coastal Batholith, Arequipa segment between 15° and 16°30' South latitude, Peru

WALTER Ccallo, DANTE Soberon, LIU Jun'an, MIRIAN Mamani, RILDO Rodriguez, GUO Weimin, DANIEL Torres, ALAN Santos

WALTER Ccallo, DANTE Soberon, LIU Jun'an, MIRIAN Mamani, RILDO Rodriguez, GUO Weimin, DANIEL Torres, ALAN Santos. 2017: New metallogenic approaches to the Coastal Batholith, Arequipa segment between 15° and 16°30' South latitude, Peru. Geological Bulletin of China, 36(12): 2275-2286.
Citation: WALTER Ccallo, DANTE Soberon, LIU Jun'an, MIRIAN Mamani, RILDO Rodriguez, GUO Weimin, DANIEL Torres, ALAN Santos. 2017: New metallogenic approaches to the Coastal Batholith, Arequipa segment between 15° and 16°30' South latitude, Peru. Geological Bulletin of China, 36(12): 2275-2286.
沃特·卡约, 丹德·索贝龙, 刘君安, 米瑞安·玛玛尼, 里多·罗德里格斯, 郭维民, 丹尼尔·多特, 阿兰·桑多. 2017: 秘鲁南部阿雷基帕段海岸岩基带找矿方向探讨. 地质通报, 36(12): 2275-2286.
引用本文: 沃特·卡约, 丹德·索贝龙, 刘君安, 米瑞安·玛玛尼, 里多·罗德里格斯, 郭维民, 丹尼尔·多特, 阿兰·桑多. 2017: 秘鲁南部阿雷基帕段海岸岩基带找矿方向探讨. 地质通报, 36(12): 2275-2286.

New metallogenic approaches to the Coastal Batholith, Arequipa segment between 15° and 16°30' South latitude, Peru

More Information
    Corresponding author:

    LIU Jun'an: 刘君安(1984-), 男, 硕士, 工程师, 从事拉美地区地质调查、地球化学勘查及成矿规律研究。E-mail:junan2003@qq.com

秘鲁南部阿雷基帕段海岸岩基带找矿方向探讨

基金项目: 

中国地质调查局项目《海上丝绸之路大洋洲和南美洲矿产资源潜力评价》 DD20160110

秘鲁地质矿产冶金研究院项目《Comparative Study:Peruvian Andes and Southeast China》 GR17F

详细信息
    作者简介:

    沃特·卡约(1984-), 男, 本科, 工程师, 从事秘鲁地质矿产勘查和区域成矿规律研究。E-mail:wccallo@ingemmet.gob.pe

  • 中图分类号: P612

  • Abstract:

    The mapping of intrusive rocks from the Arequipa segment of the Coastal Batholith was complemented by detailed petrographic studies and U-Pb zircon ages. The results were analyzed and grouped into seven stages and four cycles. Each stage shows unique magmatic volumes, and the landform finds expression in batholiths and stocks. Cycles Ⅰ and Ⅱ represent the stages of Jurassic magmatism (201~145Ma), the magmatic differentiation grades from gabbros to granites. Cycles Ⅲ and Ⅳ represent the stages of Cretaceous magmatism, the magmatic differentiation varies from tonalites to monzogranites, diorites to granodiorites and from tonalites to granodiorites. In relation to the amphibole and biotite crystal population, the intrusives of the Cycle Ⅰ have abundant pyroxene and amphibole crystals, associated with Au-Fe mineralization; those of Cycle Ⅱ have abundant clustered amphibole crystals and in some cases are aligned or grouped biotite crystals and eventually hexagonal, associated with Cu-Au-Fe mineralization; those of Cycle Ⅲ have well developed isolated amphibole and biotites, and the intrusive rocks are associated with Au-Cu and Fe; those of Cycle Ⅳ have some amphibole and hexagonal biotite in separated form, and the intrusive rocks are more felsic and are associated with Cu-ZnAu-Ag-Fe and Cu-Au-Mo mineralization.

    摘要:

    通过详细的岩相学和锆石U-Pb年龄的研究,秘鲁海岸岩基带阿雷基帕段的填图工作得到了补充,该岩基带岩浆活动可分为7个阶段和4个旋回,各阶段都显示出不同的岩浆容量,其地貌主要表现为岩基和岩脉。旋回Ⅰ和旋回Ⅱ代表侏罗纪岩浆活动阶段(201~145Ma),岩浆分异为辉长岩到花岗岩;旋回Ⅲ和旋回Ⅳ代表白垩纪岩浆,岩浆分异为英云闪长岩-二长花岗岩、闪长岩与花岗闪长岩及英云闪长岩-花岗闪长岩。对角闪石和黑云母矿物晶体的数量关系研究表明,旋回Ⅰ的侵入岩有大量辉石和角闪石结晶,并伴随金-铁成矿作用;旋回Ⅱ有大量的群集角闪石晶体和呈定向排列或群集的六边形黑云母,且伴随铜-金-铁成矿作用;旋回Ⅲ侵入岩内发育角闪石和黑云母,伴随着金-铜和铁成矿作用;旋回Ⅳ发育大量角闪石和六边形黑云母,岩石更偏长英质,并伴随铜-锌-金-银-铁和铜-金-钼成矿作用。

  • Figure  1.   Intrusive units of northern Arequipa segment.

    (The legend shows the grouping of units based on absolute U-Pb ages)

    Figure  2.   Generalized column of metamorphic, sedimentary, volcanic and intrusive rocks corresponding to the southern coast of Peru, Arequipa segment

    Figure  3.   Model of magmatic differentiation of Cycle Ⅰ and Ⅱ (Jurassic intrusives), based on lithological variation and absolute age U-Pb

    图版 Ⅰ  

    图版 Ⅰ.  

    Jurassic intrusive samples: A1. Monzodiorite of the Torrecillas area; A2. Granodiorite with amphiboles; A3. Thin section (polarized light), quartz (cz), amphiboles (ANFs); B1. Diorite of the Chala area, amphibole and biotite crystals accumulated are observed; B2. Cuarzodiorite of the San Luis area, with amphibole crystals; B3. Thin section (polarized light), opaque (Ops), amphiboles (ANFs), plagioclase (PGLs); C1. Granodiorite crystals with some direction in relation to amphibole crystals; C2. Thin section (polarized light), plagioclase altered to sericite (PGLs-ser); C3. Monzogranite with isolated amphibole crystals; D1. Outcrop of Gabbro in the Cañahueca mountain, the contact with the granodiorite can be observed; D2, D3. Gabbro sample with banding compositional

    Figure  4.   Model of magmatic differentiation of Cycles Ⅲ and Ⅳ (Cretaceous intrusives), based on lithological variation and U-Pb age

    图版Ⅱ  

    图版Ⅱ.  

    A1. Granodiorite of the Sondor town, isolated hexagonal biotite crystals are observed. To the right, thin section (polarized light), hexagonal biotite with reabsorption edge; B1. Granodiorite of the Cruzero and Pampahuasi town, diorite enclaves are observed; B2. Thin section (polarized light), amphibole crystals (ANFs) and plagioclase (PGLs); C1. Tonalite of the Calpa mine, crystals of scattered amphiboles are observed; C2. The Fe Acari mine diorite, developed amphibole crystals; C3. Thin section (polarized light), amphiboles are associated with opaque minerals and epoxide (ANFs-Ops-ep). Plagioclase are altered by micas and sericite (PGLs-MCs-ser); D1. Tonalite of the San Luis locality, crystals of developed amphiboles are observed. D2. Thin section (polarized light), Amphiboles chloritized with Fe oxides [ANFs (CLOs-OxsFe)], argillized potassium feldspar [FPKs (ARCs)], epidote (ep); D3. Granodiorite from the locality of Sacota, developed amphibole crystals (ANFs)

    Figure  5.   Population of amphibole and biotite crystals of the intrusives of the Coastal Batholith, Arequipa segment, northern zone

    (To right the magmatic cycles of intrusive rocks of the Coastal Batholith are shown in the study area. In relation to the amphibole crystals observed that there is a larger population in Cycles Ⅰ and Ⅱ, towards Cycles Ⅲ and Ⅳ decreases. In relation to the biotite crystals observed that it decreases towards the Cycle Ⅳ)

    Figure  6.   Magmatic arcs based on plutonism cycles in Coastal Batholith, Arequipa segment

    (Based on ages compiled by Torres et al.[20], Santos et al.[10-11], Huamán et al.[31], Demouy et al.[9], Boeckhout[8], Wasteneys et al.[17], Vidal et al.[32], Mukasa[7] and Cordani et al.[5]) IFS-Iquipi Fault System; CLLFS-Cincha Lluta Fault System; IFS-Ica Fault System

  • Pitcher W S, Atherton M, Cobbing E, et al.Magmatism at a plate edge.The Peruvian Andes[M].Glasgow:Blackie & Son, 1985:1-328.

    Cobbing E J, Pitcher W S, Taylor W P.Segments and super-units in the coastal batholith of Peru[J].Journal of Geology, 1977, 85:625-631. doi: 10.1086/628342

    Weibel M, Frangipane-Gysel M, Hunziker J C.EinBeitragzurVulkanologieSüd-Perus[J].GeologischeRundschau, 1978, 67:243-252. doi: 10.1007/BF01803264

    Sánchez A.Edades Rb-Sr en los segmentos Arequipa-Toquepala del batolito de la costa del Perú.Congreso Latinoamericano de Geología, 5.Actas.Buenos Aires[J].Servicio Geológico Nacional, 1982, 3:487-504. doi: 10.1007/978-3-322-85472-8_3

    Cordani U G, Kawashita K, Siegl G G, et al.Geochronological results from the southeastern part of the Arequipa massif[J] Comunicaciones (Universidad de Chile), 1985, 35:45-51.

    Beckinsale R D, Sánchez A, Brook M, et al. Rb-Srwholerockisochron and K-Ar age determinations for the Coastal Batholith of Peru[C]//Pitcher W S, Atherton M P, Cobbing E J, et al. Magmatism at a plate edge: the Peruvian Andes[M]. Blackie, Glasgow, 1985: 177-202.

    Mukasa S B.Zircon U-Pb ages of super-units in the Coastal batholith, Peru:Implications for magmatic and tectonic processes[J].Geological Society of America Bulletin, 1986, 97(2):241-254. doi: 10.1130/0016-7606(1986)97<241:ZUAOSI>2.0.CO;2

    Boeckhout F. Geochronological constraints on the Paleozoic to early Mesozoic geodynamic evolution of southern coastal Peru[D]. Ph. D. thesis, París, University Genève, 2012

    Demouy S, Paquette J, Louis J, et al.Spatial and temporal evolution of Liassic to Paleocene arc activity in southern Peru unraveled by zircon U-Pb and Hf in-situ data on plutonic rocks[J].Lithos, 2012, 155:183-200. doi: 10.1016/j.lithos.2012.09.001

    Santos A, Weimin G, Tassinari C, et al. Geocronología U-Pb sobre zircones en la contrastación de la evolución espacial-temporal del magmatismo y la metalogenia del Batolito de la costa "Segmento Arequipa"[C]//Congreso Peruano de Geología XVⅢ, 2016.

    Santos A, Cerpa L, Tassinari C, et al. Geocronología de las Rocas Intrusivas Relacionadas a la Mineralización del Pórfido Cuprífero de Zafranal(In edition).

    Schildgen T, Ehlers T, Whipp D, et al.Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru; a thermochronometer and numerical modeling approach[J].Journal of Geophysical Research, 2009, 114:1-22. https://www.researchgate.net/publication/228859450_Quantifying_canyon_incision_and_Andean_Plateau_surface_uplift_southwest_Peru_A_thermochronometer_and_numerical_modeling_approach

    Robb L.Introduction to ore-forming processes[M].Oxford:Blackwell Science, 2005:1-373.

    Barton M D.Granitic magmatism and metallogeny of southwestern North America.Transactions of the Royal Society Edinburgh:Earth Sciences, 1996, 87:261-280. doi: 10.1017/S0263593300006672

    Loewy S L, Connelly J N, Dalziel I W D.An orphaned block:the Arequipa-Antofalla basement of the Central Andean margin of South America[J].Geological Society of America Bulletin, 2004, 116:171-187. doi: 10.1130/B25226.1

    Shackleton R, Ries A, Coward M, et al.Structure, Metamorphism and geochronology of the Arequipa Massif of coastal Perú[J].Journal of the Geological Society, 1979, 136:195-214. doi: 10.1144/gsjgs.136.2.0195

    Wasteneys H, Clark A, Farrar E, et al.Grenvillian granulite-facies metamorphism in the Arequipa Massif, Peru:a Laurentia-Gondwana link[J].Earth and Planetary Science Letters, 1995, 132:63-73. doi: 10.1016/0012-821X(95)00055-H

    Chew D M, Schaltegger U, Kosler J, et al.U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the northcentral Andes[J].Geological Society of America Bulletin, 2007, 119:697-711. doi: 10.1130/B26080.1

    Caldas J. Evidencia de una glaciación Precambriana en la costa sur del Perú[C]//Congreso Geológico Chileno. Arica: Instituto de Investigaciones Geológicas, 1979, 4: 29-38.

    Torres D, Santos A, Ccallo W, et al.Geología de los cuadrángulos de Atico y Chaparra Hojas 33o y 32o[J].INGEMMET, Boletín serie A:carta geológica nacional(in press). https://es.scribd.com/document/351730353/Memoria-2015-Final-v2

    Romeuf N, Aguirre L, Carlier G, et al.Present knowledge of the Jurassic volcanogenic formations of the Southern Coastal Peru[M].Second ISAG, Oxford (UK).1993:437-440.

    Romeuf N, Aguirre L, Soler P, et al.Middle Jurassic volcanism in the northern and central Andes[J].Revista Geológica de Chile, 1995, 22(2):245-259. http://or.nsfc.gov.cn/bitstream/00001903-5/269773/1/1000014453093.doc

    Caldas J.Geología de los cuadrángulos de San Juan, Acarí y Yauca[J].INGEMMET.Boletín, Serie A:Carta Geológica Nacional, 1978, 30:78-86. doi: 10.1007/978-3-642-88282-1_30

    Carlotto V, Quispe J, Acosta H, et al.DOMINIOS GEOTECTÓNICOS Y METALOGÉNESIS DEL PERÚ[J].Boletín Sociedad Geológica del Perú, 2009, 103:1-89. https://es.scribd.com/doc/140198390/DOMINIOS-GEOTECTONICOS-Y-METALOGENESIS-DEL-PERU

    Mamani M, Rivera F.Sistema de fallas Iquipi-Clavelinas:zona de transición cortical e implicancias para el emplazamiento de depósitos minerals[J].Sociedad Geológica del Perú.Boletín, 2011, 105:37-50. https://www.researchgate.net/profile/Mirian_Mamani/publication/310749517_SISTEMA_DE_FALLAS_IQUIPI-CLAVELINAS_ZONA_DE_TRANSICION_CORTICAL_E_IMPLICANCIAS_PARA_EL_EMPLAZAMIENTO_DE_DEPOSITOS_MINERALES_IQUIPI-CLAVELINAS_FAULTS_SYSTEM_CORTICAL_TRANSITION_ZONE_AND_IMPLICATIONS_FO/links/5835b3e808ae102f073d60e1/SISTEMA-DE-FALLAS-IQUIPI-CLAVELINAS-ZONA-DE-TRANSICION-CORTICAL-E-IMPLICANCIAS-PARA-EL-EMPLAZAMIENTO-DE-DEPOSITOS-MINERALES-IQUIPI-CLAVELINAS-FAULTS-SYSTEM-CORTICAL-TRANSITION-ZONE-AND-IMPLICATIONS-FO.pdf

    Vicente J C. Early late Cretaceous overthrusting in the Western Cordillera of southern Peru[C]//Ericksen G E, Cañas M T, Reinemund J A. Geology of the Andes and its relations to hydrocarbon and mineral resources. Circum-Pacifi c Council for Energy and Mineral Resources, Houston T X, Earth Science Series, 1989, 11: 91-117.

    Jaillard E.La fase peruana (Cretácico superior) en la margen peruana[J].Bol.Soc.Geol.Perú, 1992, 83:81-87. http://www.academia.edu/13156592/La_Fase_Peruana_Cret%C3%A1ceo_Superior_en_la_Margen_Peruana

    Jerram D, Martin V.Understanding crystal populations and their significance through the magma plumbing system[M].Geological Society Pub.House, 2008:133-148.

    Stewart J W, Evernden J F, Snelling N J.Age determinations from Andean Peru:a reconnaissance survey[J].Geological Society of America Bulletin, 1974, 85(7):1107-1116. doi: 10.1130/0016-7606(1974)85<1107:ADFAPA>2.0.CO;2

    Li L, Xiong X L, Liu X C.Nb/Ta Fractionation by Amphibole in Hydrous Basaltic Systems:Implications for Arc Magma Evolution and Continental Crust Formation[J].Journal of Petrology, 2017:1-26. https://academic.oup.com/petrology/article-abstract/32/2/365/1442400/Dehydration-Melting-and-Water-Saturated-Melting-of

    Huamán J, Bustamante J, Galvez S. Mineralización supérgena del pórfido Cu-Au-Mo, Proyecto Ocaña, Arequipa-Perú[C]//Congreso Peruano de Geología. Lima: Sociedad Geológica del Perú, 2014: 4.

    Vidal C, Injoque J, Sidder G, et al.Amphibolitic Cu-Fe skarn deposits in the central coast of Peru[J].Economic Geology, 1990, 85(7):1447-1461. doi: 10.2113/gsecongeo.85.7.1447

    Mamani M, Wörner G, Sempere T.Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S):Tracing crustal thickening and magma generation through time and space[J].Geological Society of America Bulletin, 2010, 122(1/2):162-182. http://adsabs.harvard.edu/abs/2010GSAB..122..162M

    Mamani M, Rivera F.Sistema de fallas Iquipi-Clavelinas:zona de transición cortical e implicancias para el emplazamiento de depósitos minerales[J].Sociedad Geológica del Perú.Boletín, 2011, 105:37-50. https://es.scribd.com/document/128412729/SISTEMA-DE-FALLAS-IQUIPI-CLAVELINAS-ZONA-DE-TRANSICION-CORTICAL-E-IMPLICANCIAS-PARA-EL-EMPLAZAMIENTO-DE-DEPOSITOS-MINERALES

    Mamani M, Rodríguez R, Acosta H, et al.Características litológicas y geoquímicas mas resaltantes de los arcos magmáticos del Perú desde el Ordovícico[M].Lima:Sociedad Geológica del Perú, 2012:5.

图(8)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-19
  • 修回日期:  2017-09-18
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2017-11-30

目录

    /

    返回文章
    返回