Classification of the Mesozoic-Cenozoic metallogenic series and belts in Mexico and its tectonic significance
-
摘要:
墨西哥是矿产资源大国,其中产量最高的包括银、铜、铁、铅锌等。这些矿产的生成主要源于多种多样的矿床类型和各式各样的矿化类型,其中浅成低温热液型、斑岩型、矽卡岩型、IOCG(铁氧化物铜金)型是最突出的矿床类型。这些矿床的形成与北科迪勒拉山系的形成有关,体现了联合大陆长期积聚或解体的某些阶段,尤其是中新生代成矿带的空间展布特征与其形成的大地构造环境密切相关。划分的9个构造-岩浆-成矿带,分别形成3个俯冲成矿系列,即从沿海到内陆依次发育的IOCG型铁铜金成矿带→斑岩型铜钼金成矿带→浅成低温热液型银金多金属成矿带,分别代表太平洋古板块、法拉隆板块和科科斯板块向北美板块从俯冲、挤压到碰撞后伸展的板块构造岩浆成矿环境。这类俯冲边界型成矿系统的主体部分是西马德里造山带岩浆弧中的斑岩型铜钼矿成矿系统和盆岭省中的火山岩控制的浅成低温热液型银金矿成矿系统。
Abstract:Mexico is a great production country in mineral resources such as in silver, copper, iron, lead and zinc with the highest output of these resources. The generation of these minerals is mainly attributed to a variety of types and all kinds of mineralization types of ore deposits. Among these types, the epithermal type, porphyry type, skarn type, IOCG type are the most prominent types. The formation of these deposits is related to the formation of the cordilleras, which embodies some stages of long-term accumulation or disintegration of the united continent. The spatial distribution characteristics of Mesozoic-Cenozoic metallogenic belts, in particular, are closely related to the tectonic environment. The authors recognized nine tectonic-magmatic metallogenic belts, which respectively form three subductional metallogenic serie:from the coast to the inland, they are the IOCG iron-copper mineralization zone, the porphyry gold-copper-molybdenum mineralization zone and the epithermal gold-silver polymetallic metallogenic belt, which represent the plate tectonic magmatic metallogenic environment from subduction, extrusion to post-collision stretching of the Pacific plate, Farallon plate and Cocos plate towards the North American plate. Mexican subduction boundary metallogenic systems are mainly reflected in the porphyry copper-molybdenum metallogenic system of the magmatic arc in the west Madre orogenic belt and the silver-gold hypothermal metallogenic system controlled by volcanic rocks in the basin-ridge province.
-
Keywords:
- Mexico /
- Mesozoic-Cenozoic /
- metallogenic series /
- metallogenic belts /
- tectonic
-
党的十九大报告指出,“要以‘一带一路’为重点,坚持引进来和走出去并重,遵循共商共建共享原则,加强创新能力开放合作,形成陆海内外联动、东西双向互济的开放格局”。在国家实施“一带一路”建设及拉美战略的契机下,提升中国在拉丁美洲地区地学领域的话语权,提高服务水平和质量,从粗放型服务向精准型服务转变,依靠科技创新解决全球重大资源环境问题和地球系统科学问题的能力,是新形势下对境外地质工作的新需求。因此,“两种资源、两个市场”、实施“走出去”是中国长期的资源战略任务,而拉丁美洲地区是中国实施“走出去”战略最重要的优选地区之一。
拉丁美洲是指从墨西哥起的西半球南部的整个地区,也就是地处北纬32°42′和南纬56°54′之间的大陆,东濒加勒比海和大西洋,与非洲大陆的最短距离约为2494.4km;西临太平洋;南隔德雷克海峡与南极洲相望;北界墨西哥与美国界河布拉沃河(即格兰德河),与美国为邻。拉丁美洲包括北美洲的墨西哥、中美洲和南美洲大陆,共有34个国家和地区,2008年人口约5.77亿,主要是印欧混血和黑白混血人种,其次为黑人、印第安人和白种人。由于本区都隶属拉丁语族,因此这些国家被称为拉丁美洲国家,这个地区被称为拉丁美洲。
早在20世纪20年代,澳大利亚学者安德鲁斯E就已指出统一的环太平洋成矿带的存在。40年代原苏联学者斯米尔诺夫C C将环太平洋成矿带划分为以铜为主的内带和以锡钨为主的外带,尔后西里托(1976)、米切尔(1976)、拉德科维奇(1983)均做出了巨大贡献,包括拉丁美洲在内的环太平洋地区的构造与矿产受到普遍重视,发表了大量的论文和专著。中国学者从西太平洋和东太平洋分析对比的角度出发做了许多研究,如张炳熹、李文达、裴荣富、戚建中、陆志刚、陶奎元等。近年来,随着境外地质矿产工作的开展,年轻一代的学者又做了许多有益的工作。特别是中国地质调查局南京地质调查中心境外地质室,他们的工作成果正陆续推向社会。《拉丁美洲地区重要矿产成矿规律研究》专辑的发表正是其集中体现。
该专辑系国内首次总结拉丁美洲地区的成矿地质条件,划分成矿区带,研究成矿系列,将对该地区进一步规划和开发起到指导作用。其主要特色在于:
(1)全面清晰地讨论了拉丁美洲地区重要成矿带的区域地质背景和成矿地质环境,通过对代表性的成矿带、成矿作用和典型矿床的研究,以点带面地阐明了拉丁美洲地区的优势矿产资源。
(2)利用大量的第一手资料,涉及原创、方法及技术,进行系统性、集成性、综合性分析整理,为拉丁美洲地区优势矿产资源成矿规律研究的真实性、准确性提供了依据,并能够使读者顺藤摸瓜,进一步查找所需资料。
(3)文章涵盖面广泛,论文编写单位以中国地质调查局南京地质调查中心为主,中国地质调查局发展研究中心、中国地质科学院地质研究所、吉林大学地球科学学院、福州大学紫金学院,以及秘鲁地质矿产冶金研究院、中国中资企业等多家单位参与;从学科领域看,从典型矿床解剖、重要成矿带成矿规律到投资环境均有涉及,并进行了国际、国内的对比研究,提升了文章的学术水平。可以服务不同层面,满足不同层次的需求。
总之,加强境外地质矿产研究工作十分重要,不仅要收集境外地质矿产资料,开展实地考察,更要加强综合研究,使境外地质矿产编图、成矿区带划分、成矿规律总结等得到深化,才能集成为有影响的大成果。《拉丁美洲地区重要矿产成矿规律研究》专辑的出版,为进一步开展境外地质成矿规律综合研究提供了有借鉴意义的工作思路、方法和实例。
在此,我热诚祝贺这一系列研究成果的取得,并向具有创新意识和国际化视野的地学人才、为境外地质矿床研究作出贡献的专家学者们表示由衷的祝贺!
致谢: 中国地质调查局发展研究中心邱瑞照研究员、国土资源部咨询研究中心李裕伟研究员、国土资源部信息中心肖庆辉研究员、中国地质科学院地质研究所卢民杰研究员、中国地质调查局科技外事部刘大文研究员、中国地质调查局发展研究中心向运川、李玉龙、葛佐研究员等对本次研究进行了指导和建议,在此一并表示衷心的感谢。 -
图 1 全球板块分布示意图[1]
Figure 1. Sketch map of global plates distribution
图 2 墨西哥及墨西哥湾盆地板块构造图[2]
Figure 2. Tectonic plates of Mexico and the gulf of Mexico basin
图 4 墨西哥重要成矿区带划分[14]
1—浸染状、斑岩型及角砾岩型铜-钼-金成矿带;2—浸染状、脉状及网脉状铜-金-银成矿带;3—层状、喷流型及脉状铅-锌-铜-金成矿带;4—块状硫化物型铜-铅-锌-金-银成矿带;5—碱性金属和贵金属成矿带;6—IOCG型铁矿床成矿带;7—铁矿;8—萤石矿;9—石墨
Figure 4. The division of important metallogenic belts in Mexico
图 6 板块俯冲边界大陆岩浆弧[15]
Figure 6. Continental magmatic arc in subduction boundary
图 7 板块俯冲边界主要矿床类型[16]
Figure 7. Main types of ore deposits in subduction boundary
-
王军, 曹锦元, 智铎强.墨西哥哈利斯科州Cinco Minas银金矿区构造与成矿关系[J].矿产勘查, 2014, 1:90-95. doi: 10.3969/j.issn.1674-7801.2014.01.015 Bartolini C, Lang H, Spell T.Geochronology, geochemistry, and tectonic setting of the Mesozoic Nazas arc in north central Mexico, and its continuation to northern South America[C]//Bartolini C, Buffler R T, Blickwede J.The Circum-Gulf of Mexico and the Caribbean:Hydrocarb on habitats, basin formation, and plate tectonics.Aapg Memoir, 2003, 79:427-461.
Clark K F, Fitch D C.Evolución de Depósitos Metálicos en Tiempo y Espacio en México[C]//Clark K F, Salas-Pizá G, Cubillas-Estrada R.Geología Económica de México, 2nd ed.Servicio Geológico Mexicano & Asociación de Ingenieros de Minas, Metalurgistas y Geólogos de México, 2009:62-133.
Camprubi A.Major metallogenic provinces and epochs of Mexico[J]. Society for Geology Applied to Mineraldeposits, 2009, (25):1-30. https://www.researchgate.net/profile/Antoni_Camprubi2/publication/259694528_Major_metallogenic_provinces_and_epochs_of_Mexico/links/02e7e52d5d0f365ad9000000/Major-metallogenic-provinces-and-epochs-of-Mexico.pdf
Mortensen J K, Hall B V, Bissig T, et al.Age and paleotectonic setting of volcanogenic massive sulfide deposits in the Guerrero Terrane of central Mexico:Constraints from U-Pb age and Pb isotope studies[J]. Economic Geology, 2008, 103(1):117-140. doi: 10.2113/gsecongeo.103.1.117
Valencia V A, Barra F, Weber B, et al.Re-Os and U-Pb geochronology of the El Arco porphyry copper deposit, Baja California Mexico:Implications for the Jurassic tectonic setting[J]. Journal of South American Earth Sciences, 2006, 22:39-51. doi: 10.1016/j.jsames.2006.08.005
Cruise M, Hitzman M, Lopez G.Baja California, Mexico——new IOCG discoveries in a frontier district[C]//Proceedings of the Ores & Orogenesis Symposium, Arizona Geological Society, abstract, 2007:97.
Rio-Salas R D, Ochoa-Landín L, Valencia-Moreno M, et al.New U-Pb and Re-Os geochronology of Laramide porphyry copper mineralization along the Cananea lineament, northeastern Sonora, Mexico:Contribution to the understanding of the Cananea copper district[J]. Ore Geology Reviews, 2017, 81(3):1125-1135.
Rivas-Sanchez M L, Alva-Valdivia L M, Arenas-Alatorre J, et al.Berthierine and chamosite hydrothermal:genetic guides in the Peña Colorada magnetite-bearing ore deposit, Mexico[J]. Earth Planets and Space, 2006, 58:1389-1400. doi: 10.1186/BF03352635
Camprubi A, Ferrari L, Cosca M A, et al.Ages of epithermal deposits in Mexico:Regional significance and links with the evolution of Tertiary volcanism[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2003, 98:1029-1038. doi: 10.2113/gsecongeo.98.5.1029
George-Aniel B.墨西哥奇瓦瓦州谢拉佩尼亚布兰卡矿区火山成因铀矿化——三种成因模式[J]. Economic Geology, 1991, 86(2):233-248. USGS.Porphyry Copper Assessment of Mexico[M]. USGS, 2010.
李杰美, 王美娟, 朝银银, 等. 国外与火山-次火山岩有关的银矿床[C]//黄金地质专题信息编辑之十八, 2009. 王磊, 柳玉龙, 李丰收, 等.墨西哥成矿分带及与侵入岩相关矿床分布规律[J].矿产勘查, 2014, 5(4):663-671. http://www.cnki.com.cn/Article/CJFDTotal-YSJS201404021.htm Richards J P.Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Econ.Geol., 2003, 98:1515-1533. doi: 10.2113/gsecongeo.98.8.1515
陈华勇, 肖兵.俯冲边界成矿作用研究进展及若干问题[J].地学前缘, 2014, 21(5):13-22. http://www.irgrid.ac.cn/handle/1471x/983930 方维萱, 柳玉龙, 张宁林, 等.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式[J].西北大学学报(自然科学版), 2009, 39(3):404-413. http://www.doc88.com/p-9952816104797.html Centeno-García E, Guerrero-Suastegui M, Talavera-Mendoza O.The Guerrero Composite Terrane of western Mexico:Collision and subsequent rifting in a supra-subduction zone[C]//Draut A, Clift P D, Scholl D W.Formation and Applications of the SedimentaryRecord in Arc Collision Zones.Geological Society of America SpecialPaper, 2008, 436:279-308.
Anderson T H, Nourse J A.Pull-apart basins at releasing bends of the sinistral Late Jurassic Mojave-Sonora fault system[J]. Geological Society of America Special Papers, 2005, 393:97-122. http://geology.cpp.edu/janourse/ArticlesAbstracts/spe393-03.pdf
Denison R E, Burke W N, Hetherington E A, et al.Basement rock framework of parts of Texas, southern New Mexico and northern Mexico[C]//Seewald K, Sundeen D.The geologic framework of the Chihuahua tectonic belt.West Texas Geological Society, Midland, TX, 1971:3-14.
Ramirez-Espinosa J.Tectono-magmatic evolution of the Paleozoic Acatlán Complex in southern Mexico, and its correlation with the Appalachian system[D]. Unpubl.Ph.D.thesis, University of Arizona, 2001:1-170.
Sedlock R L, Ortega-Gutiérrez F, Speed R C.Tectonostratigraphic terranes and tectonic evolution of Mexico[J]. Geological Society of America Special Papers, 1993, 278:1-153. doi: 10.1130/SPE278
Keppie J D.Terranes of Mexico revisited:A 1.3 billion year odyssey[J]. International Geology Review, 2004, 46(9):765-794. doi: 10.2747/0020-6814.46.9.765
Carfantan J C.Les ensembles géologiques du Mexique meridional.Evolution géodynamique durante le Mésozoique et le Cénozoique[J]. Geofísica Internacional, 1983, 22:9-37. https://www.researchgate.net/publication/257296713_The_buried_southern_continuation_of_the_Oaxaca-Juarez_terrane_boundary_and_Oaxaca_Fault_southern_Mexico_Magnetotelluric_constraints
Guerrero J, Silver L, Anderson T.Estudios geocronologicos en el Camplejo Xolapa[M]. IV Convencion geologica nacional, Mexico, Resumenes, 1978.
Ortega-Gutiérrez F, Elías-Herrera M, Morán-Zenteno D J, et al.A review of batholiths and other plutonic intrusions of Mexico[J]. Gondwana Research, 2014, 26(3/4):834-868.