• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

新疆大红柳滩地区奇台达坂北侧新近系泉水沟组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义

赵江林, 曾忠诚, 贺宁强, 杜彪, 王星, 袁璋

赵江林, 曾忠诚, 贺宁强, 杜彪, 王星, 袁璋. 2017: 新疆大红柳滩地区奇台达坂北侧新近系泉水沟组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义. 地质通报, 36(7): 1129-1146.
引用本文: 赵江林, 曾忠诚, 贺宁强, 杜彪, 王星, 袁璋. 2017: 新疆大红柳滩地区奇台达坂北侧新近系泉水沟组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义. 地质通报, 36(7): 1129-1146.
ZHAO Jianglin, ZENG Zhongcheng, HE Ningqiang, DU Biao, WANG Xing, YUAN Zhang. 2017: LA-ICP-MS zircon U-Pb ages, geochemical characteristics and geo-logical significance of the Neogene Quanshuigou Formation volcanic rocks in the north of Dahongliutan-Qitaidaban area, Xinjiang. Geological Bulletin of China, 36(7): 1129-1146.
Citation: ZHAO Jianglin, ZENG Zhongcheng, HE Ningqiang, DU Biao, WANG Xing, YUAN Zhang. 2017: LA-ICP-MS zircon U-Pb ages, geochemical characteristics and geo-logical significance of the Neogene Quanshuigou Formation volcanic rocks in the north of Dahongliutan-Qitaidaban area, Xinjiang. Geological Bulletin of China, 36(7): 1129-1146.

新疆大红柳滩地区奇台达坂北侧新近系泉水沟组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义

基金项目: 

中国地质调查局项目《新疆西昆仑地区1:5万I44E002006等四幅区调》 1212011220654

《新疆阿尔金地区1:5万J45E010020等六幅区域地质矿产调查》 12120114081901

《新疆阿尔泰1:5万M45E018012等五幅区域地质矿产调查》 12120114040601

详细信息
    作者简介:

    赵江林(1991-), 男, 学士, 助理工程师, 从事区域地质调查工作。E-mail:897949385@qq.com

  • 中图分类号: P534.62;P597+.3

LA-ICP-MS zircon U-Pb ages, geochemical characteristics and geo-logical significance of the Neogene Quanshuigou Formation volcanic rocks in the north of Dahongliutan-Qitaidaban area, Xinjiang

  • 摘要:

    出露于大红柳滩地区奇台达坂北侧的泉水沟组火山岩主要岩性为辉石安山岩、辉石安粗岩和黑云母粗面岩。用LAICP-MS技术测得黑云母安粗岩锆石U-Pb年龄为3.71±0.05Ma,形成时代为上新世。地球化学结果显示,岩石具高Al2O3(13.56%~14.32%)、高K2O(4.46%~5.79%)、高Na2O(3.68%~4.40%),低TiO2(1.09%~1.48%)、低MgO(2.64%~5.18%)的特征,属于钾玄岩序列。稀土元素总量为550×10-6~612×10-6,轻稀土元素总量较高且明显富集,重稀土元素相对亏损,具有右倾型特征和弱Eu异常(δEu=0.55~0.63)。微量元素中大离子亲石元素(K、Rb、Ba、Th、U、Pb)强烈富集,高场强元素(Ti、Nb、Ta、P)亏损,具有造山成因钾玄岩的典型特征。研究表明,泉水沟组火山岩来源于有上地壳卷入的部分熔融富集地幔区。结合区域特征,认为泉水沟组火山岩的形成与上新世喀喇昆仑-甜水海造山带沿大红柳滩-泉水沟断裂和甜水海-郭扎错断裂向NNW方向逆冲推覆有关。

    Abstract:

    The Quanshuigou Formation volcanic rocks are located in northern Dahongliutan-Qitadaban area, western Kunlun Mountains, Xinjiang. The volcanic rocks are mainly composed of pyroxene andesite, pyroxene latite, and biotite trachyte. LA-ICPMS zircon dating indicates that the volcanic rocks were emplaced at 3.71 ±0.05Ma, suggesting that the crystallization age of the Quanshuigou Formation volcanic rocks is Neogene Pliocene. Geochemical analysis shows that major elements are characterized by high Al2O3 (13.56%~14.32%) and K2O (4.46%~5.79%), but low Na2O (3.68%~4.40%), TiO2 (1.09%~1.48%) and MgO (2.64%~5.18%), thus belonging to shoshonite series. In addition, they are enriched in total REE (550×10-6~612×10-6), and the samples are enriched in LREE (light rare earth elements) and depleted in HREE (heavy rare earth elements) with weak Eu anomalies (δEu=0.55~0.63). The chondrite-normalized REE patterns show rightly-inclined type, and the olcanic rocks have rich LILE(such as K, Rb, Ba, Th, U and Pb)but poor high field strength elements (such as Ti, Nb, Ta, and P). They have typical characteristics of orogenic potassic volcanic rocks.Studies show that the rocks were formed by the partial melting enriched mantle sources mixed with a small amount of materials of the upper crust. Combined with the data of regional geology, the authors hold that the formation of the orogenic belt was related to NNW-striking thrust nappe of Karakoram-Tianshuihai along Dahongliutan-Quanshuigou fault and TianshuihaiGuozhacuo fault in the Pliocene. At that time, the volcanic rocks were formed.

  • 致谢: 锆石阴极发光照相和锆石U-Pb同位素测试分别得到西北大学大陆动力学国家重点实验室弓化栋老师的帮助,薄片鉴定得到核工业二〇三研究所陈存善老师的帮助,审稿专家对本文提出了宝贵的修改意见,在此一并表示感谢。
  • 图  1   研究区构造格架简图(a)和地质简图及泉水沟组火山岩实测剖面位置(b)

    1—第四系;2—雪被区;3—新近系泉水沟组上段;4—新近系泉水沟组下段;5—巴颜喀拉山群中组下段;6—巴颜喀拉山群下组上段;7—黄羊岭群下砂板岩组第一段;8—黄羊岭群下砂板岩组第二段;9—黄羊岭群下砂板岩组第三段;10—黄羊岭群下砂板岩组第四段;11—黄羊岭群上砂板岩组第一段;12—奇台达坂构造片岩;13—印支晚期花岗岩;14—闪长玢岩脉;15—断层;16—采样位置;17—实测剖面位置及编号;18—研究区范围

    Figure  1.   Tectonic framework sketch map (a) and geological sketch map of the study area and the profile position of the Quanshuigou Formation volcanic rocks (a)

    图  2   泉水沟组火山岩实测地质剖面

    1—第四系冲洪积物;2—黑云母粗安岩;3—辉石安山岩;4—黑云母粗面岩;5—辉石安粗岩;6—变炭泥质粉砂岩;7—杏仁状构造;8—火山喷发不整合;9—锆石U-Pb年龄样品;10—样品采集位置及编号

    Figure  2.   The measured geological section of the Quanshuigou Formation volcanic rocks

    图版Ⅰ   a.灰黑色杏仁状黑云母粗安岩手标本;b.暗红色致密块状辉石安山岩;c.浅褐色粗面岩宏观特征(含早期的火山岩捕掳体);d.黑云母粗面岩,正交偏光4×10(+);e.辉石安山岩,正交偏光4×10(+);f.安粗岩,正交偏光4×10(+)。Kp—钾长石;Pl—斜长石;Prx—辉石;Lmx—浊沸石;Bit —黑云母;ST—气孔

    图版Ⅰ.  

    图  3   泉水沟组黑云母安粗岩样品(PM007-13)锆石CL图像、测点编号和206Pb/238U年龄值

    Figure  3.   CL images of zircons from the biotite latite (PM007-13) in Quanshuigou Formation, measuring point position and their 206Pb/238U ages

    图  4   黑云母安粗岩样品(PM007-13)锆石稀土元素配分模式图[23]

    Figure  4.   Zircon REE patterns of biotite latite(PM007-13)

    图  5   泉水沟组火山岩样品(PM007-13)锆石U-Pb谐和图(a)和206Pb/238U年龄分布(b)

    Figure  5.   Concordia diagram showing LA-ICP-MS zircon U-Pb dating results (a) and 206Pb/238U weighted mean age (b) of Quanshuigou Formation volcanic rocks(PM007-13)

    图  6   泉水沟组火山岩TAS图解(a,底图据参考文献[24])和SiO2-K2O图解(b,底图据参考文献[25-28])

    Ⅰ—弧拉斑玄武岩系列或低钾钙碱性系列(LKCA);Ⅱ—中钾钙碱性系列(MKCA);Ⅲ—钾钙碱性系列(HKCA);Ⅳ—钾玄岩系列(sh)。SiO2=60%处垂直虚线及关键点K60[28]

    Figure  6.   TAS (a) and SiO2-K2O (b) diagrams for Quanshuigou Formation volcanic rocks

    图  7   泉水沟组火山岩主量元素Harker图解

    Figure  7.   The Harker diagrams of major elements for Quanshuigou Formation volcanic rocks

    图  8   泉水沟组火山岩稀土元素配分模式(a,原始地幔标准化值据参考文献[23])和微量元素蛛网图(b,球粒陨石标准化值据参考文献[23])

    Figure  8.   REE distribuion pattrrns (a) and trace element diagrams (b) for Quanshuigou Formation volcanic rocks

    图  9   Logσ-Logτ图解(a,底图据参考文献[39])、TFeO-MgO-Al2O3图解(b,底图据参考文献[40])、Ta/Yb-Th/Yb图解(c)和Nb*100/ZrTh*100/Zr图解(d)(c、d,底图据参考文献[30])

    Figure  9.   Logσ-Logτ (a), TFeO-MgO-Al2O3 (b), Ta/Yb-Th/Yb (c) and Nb*100/ZrTh*100/Zr (d) diagrams for Quanshuigou Formation volcanic rocks

    图  10   Yb-Ce(a,底图据参考文献[31])、TiO2/Al2O3-Zr/Al2O3(b,底图据参考文献[41])、(Y+Nb)-Rb(c,底图据参考文献[42])和Nb/Zr-Th/Zr图解(d,底图据参考文献[43])

    Figure  10.   Yb-Ce (a), TiO2/Al2O3-Zr/Al2O3 (b), (Y+Nb)-Rb (c) and Nb/Zr-Th/Zr (d) diagrams for Quanshuigou Formation volcanic rocks

    图  11   泉水沟组火山岩Y-Sr/Y图解(底图据参考文献[44])

    Figure  11.   Y-Sr/Y diagram of the Quanshuigou formation volcanic rocks

    图  12   Al2O3-MgO图解(a)、Ne'-Ol'-Q'图解(b)(a、b,底图分别据参考文献[51]和[52])、Sr-Rb图解(c)和SiO2-K2O图解(d)(c、d,底图据参考文献[53])

    Ne—霞石;Ol—橄榄石;Q—石英;En—顽火辉石;Jd—硬玉;Ab—钠长石;Hy—紫苏辉石;Ol'=Ol+3/4×Hy;Ne'=Ne+3/5×Ab;Q'=Q+2/5×Ab+1/4×Hy

    Figure  12.   Al2O3-MgO (a), Ne'-Ol'-Q' (b), Sr-Rb (c) and SiO2-K2O (d) diagrams for Quanshuigou Formation volcanic rocks

    图  13   La-La/Sm(a)和La-La/Yb(b)图解(底图据参考文献[54])

    Figure  13.   La-La/Sm (a) and La-La/Yb (b) diagrams for Quanshuigou Formation volcanic rocks

    图  14   SiO2-Mg#(a,底图据参考文献[5])、Nb/Y-Rb/Y(b,底图据参考文献[38])和La/Yb-Yb(c,底图据参考文献[13])图解

    Figure  14.   SiO2-Mg# (a), Nb/Y-Rb/Y (b) and La/Yb-Yb (c) diagrams for Quanshuigou Formation volcanic rocks

    表  2   泉水沟组火山岩样品(PM007-13)锆石稀土元素含量

    Table  2   Rare earth elements data of zircon from Quanshuigou Formation volcanic rocks(PM007-13)

    10-6  
    原位稀土元素编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE ∑LREE/∑HREE δEu δCe
    1 < 0.034 61.42 0.15 1.69 2.06 0.895 7.3 2.06 21.58 8.1 39.2 9.72 114.01 24.2 268.19 0.09 0.6 113.5
    2 0.23 121.72 0.39 4.47 5.32 1.96 17.51 4.97 50.35 17.88 83.56 19.89 223.22 45.95 551.47 0.08 0.6 76.5
    3 0.912 44.85 0.212 1.55 1.52 0.676 4.95 1.323 13.86 4.99 23.44 5.79 67.32 14.82 171.39 0.09 0.7 23.7
    4 0.164 52.61 0.108 1.35 1.89 0.709 6.26 1.713 18.67 7.11 35.64 8.69 103.01 22.58 237.92 0.09 0.6 92.1
    5 < 0.029 59.39 0.125 1.5 1.9 0.667 5.77 1.653 16.9 6.08 29.35 7.24 85.03 18.51 215.61 0.09 0.6 131.5
    6 0.734 52.71 0.391 4.31 4.25 1.94 14.12 3.68 37.62 13.19 62.18 14.85 171.8 37.36 381.78 0.1 0.7 23.4
    7 3.53 61.52 0.433 2.62 2.41 1.033 7.55 2.12 22.93 8.54 40.45 10.04 116.71 25.62 279.89 0.09 0.7 10.2
    8 0.636 65.22 0.228 2.68 2.84 1.14 8.85 2.45 24.25 8.42 38.26 8.98 103.18 22.12 267.13 0.08 0.6 41.2
    9 0.086 41.96 0.139 1.75 2.03 0.916 7.31 1.989 20.88 7.69 36.69 9.2 107.73 23.65 238.37 0.1 0.7 73.3
    10 2.64 52.89 0.309 2.11 1.93 0.758 6.27 1.679 18.2 6.72 32.27 8.1 96.57 21.25 230.45 0.09 0.6 11.9
    11 0.448 64.31 0.143 1.6 1.78 0.879 6.83 1.852 19.02 7.06 33.79 8.27 102.63 22.99 248.61 0.09 0.7 60.8
    12 1.59 60.76 0.26 2.29 2.69 1.091 8.06 2.31 24.51 9.01 43.34 10.46 122.27 26.52 288.64 0.09 0.7 20.7
    13 0.051 62.31 0.116 1.62 1.91 0.839 6.7 1.977 21.49 8.27 40.88 10.05 121.28 26.47 277.49 0.1 0.6 138.3
    14 0.309 39.52 0.206 2.58 2.37 1.079 8.16 2.29 23.9 8.99 43.23 10.61 124.43 27.59 267.67 0.1 0.7 36.4
    15 0.738 39.26 0.291 3.78 4.03 1.67 11.79 3.13 31.95 11.39 52.82 12.61 143.56 30.63 317.02 0.1 0.7 20.4
    16 0.031 58.38 0.105 1.58 1.8 0.891 6.34 1.98 20.64 7.79 38.02 9.36 110.64 24.28 257.56 0.09 0.7 150.4
    17 0.053 39.49 0.107 1.3 1.74 0.804 5.93 1.609 16.63 5.92 27.4 6.78 77.7 17.2 185.46 0.09 0.7 93.3
    18 0.101 45.99 0.107 1.23 1.53 0.623 4.73 1.353 14 5.3 25.13 6.37 73.11 16.33 179.57 0.09 0.7 94.6
    19 1.5 52.21 0.38 3.12 3.03 1.176 9.53 2.63 27.3 10.14 48.4 11.55 136.63 29.92 307.6 0.1 0.6 16.3
    20 0.707 40.91 0.213 2.06 1.94 0.926 7.24 1.96 21.19 7.78 37.69 9.37 110.74 24.07 242.73 0.1 0.7 25.2
    21 3.67 45.28 0.298 1.94 1.69 0.657 5.3 1.499 15.22 5.2 23.87 5.54 65.36 13.71 175.52 0.08 0.6 7.9
    22 15.84 78.53 1.432 6.57 4.14 1.50 13.18 3.42 32.29 10.53 44.33 9.8 105.79 21.52 327.35 0.07 0.6 3.1
    23 0.443 57.28 0.34 3.92 4.28 1.77 14.44 4.09 41.95 15.56 75.54 18.5 218.07 47.1 456.18 0.1 0.6 33.6
    24 1.02 91.32 0.632 6.27 6.07 2.51 18.92 5.08 52.6 19.32 94.54 22.76 271.34 60.19 592.38 0.1 0.7 26.7
    25 0.042 41.73 0.1 1.3 1.51 0.724 5.05 1.445 15.21 5.43 26 6.21 75.73 16.37 180.48 0.09 0.7 108.1
    26 0.081 49.97 0.374 4.7 4.81 2.00 15.22 4.07 40.96 14.18 64.99 14.99 174.83 37.69 391.18 0.1 0.7 37.2
    27 0.933 38 0.218 1.93 1.64 0.763 5.66 1.533 16.02 6.00 28.34 6.97 83.49 18.49 191.5 0.1 0.7 19.6
    28 0.056 57.87 0.13 1.47 1.87 0.777 6.5 1.74 17.76 6.63 31.83 7.7 91.5 20.57 225.83 0.09 0.6 114.9
    29 1.38 47.47 0.208 1.56 1.6 0.656 5.45 1.567 15.65 5.76 28.03 7.02 83.66 18.55 200.01 0.09 0.6 19.1
    下载: 导出CSV

    表  1   泉水沟组火山岩样品(PM007-13)LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table  1   LA-ICP-MS zircon U-Th-Pb isotopic analyses of Quanshuigou Formation volcanic rocks(PM007-13)

    测点编号 元素含量/10-6 Th/U 同位素比值 表面年龄/Ma
    Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    PM007-13-1 0.283 974 814 1.20 0.0473 0.0075 0.00375 0.00059 0.000570 0.000010 344 315 4.3 0.6 3.70 0.09
    PM007-13-2 0.848 1913 2134 0.90 0.0674 0.0062 0.00531 0.00048 0.000570 0.000010 685 182 5.0 0.4 3.70 0.08
    PM007-13-3 3.43 933 715 1.31 0.107 0.026 0.00492 0.00043 0.000570 0.000010 1741 384 8.5 2.0 3.70 0.25
    PM007-13-4 0.44 1099 805 1.37 0.101 0.010 0.0085 0.0019 0.000580 0.000040 1647 180 8.3 0.8 3.80 0.11
    PM007-13-5 0.409 1337 1156 1.16 0.0398 0.0063 0.00817 0.00080 0.000590 0.000020 0 0 3.2 0.5 3.70 0.09
    PM007-13-6 0.838 1179 939 1.26 0.103 0.018 0.00319 0.00049 0.000580 0.000010 1680 294 8.5 1.4 3.80 0.20
    PM007-13-7 0.469 1200 961 1.25 0.097 0.019 0.0084 0.0014 0.000590 0.000030 1565 325 8.0 1.5 3.80 0.20
    PM007-13-8 0.723 1328 1205 1.10 0.046 0.011 0.00787 0.0015 0.000590 0.000030 7 493 3.9 0.9 3.90 0.17
    PM007-13-9 0.304 976 785 1.24 0.0560 0.0083 0.00383 0.00090 0.000600 0.000030 453 300 4.1 0.6 3.40 0.09
    PM007-13-10 2.674 1028 757 1.36 0.477 0.017 0.00406 0.00059 0.000530 0.000010 4172 52 77.9 2.0 7.80 0.15
    PM007-13-11 0.597 1565 1255 1.25 0.0946 0.0079 0.07980 0.0021 0.001200 0.000020 1520 150 7.9 0.6 3.90 0.09
    PM007-13-12 1.212 1272 1215 1.05 0.081 0.012 0.00782 0.00061 0.000600 0.000010 1229 269 6.6 1.0 3.80 0.14
    PM007-13-13 0.325 1281 880 1.46 0.055 0.011 0.00653 0.00094 0.000580 0.000020 422 397 4.4 0.9 3.60 0.16
    PM007-13-14 0.28 864 650 1.33 0.070 0.010 0.00431 0.00085 0.000570 0.000020 940 277 5.8 0.8 3.80 0.12
    PM007-13-15 0.494 800 781 1.03 0.083 0.018 0.00576 0.00083 0.000590 0.000020 1268 381 6.5 1.4 3.60 0.18
    PM007-13-16 0.271 1216 738 1.65 0.0464 0.0075 0.0065 0.0014 0.000570 0.000030 17 348 3.6 0.6 3.60 0.10
    PM007-13-17 0.337 864 684 1.26 0.0559 0.017 0.00359 0.00057 0.000560 0.000020 448 553 4.6 1.4 3.80 0.21
    PM007-13-18 0.427 999 709 1.41 0.051 0.010 0.0046 0.0013 0.000590 0.000030 256 408 4.3 0.9 3.80 0.13
    PM007-13-19 0.342 1119 918 1.22 0.0470 0.0075 0.00422 0.00084 0.000600 0.000020 47 342 3.8 0.6 3.70 0.10
    PM007-13-20 0.605 855 638 1.34 0.113 0.018 0.00371 0.00058 0.000570 0.000020 1849 263 9.0 1.4 3.70 0.16
    PM007-13-21 2.288 921 675 1.36 0.5039 0.0235 0.0090 0.0014 0.000570 0.000030 4253 67 99.4 3.4 9.50 0.25
    PM007-13-22 3.74 1040 818 1.27 0.526 0.018 0.1029 0.0037 0.001500 0.000040 4316 48 110.0 2.5 10.20 0.19
    PM007-13-23 0.673 1447 1077 1.34 0.105 0.013 0.1144 0.0027 0.001600 0.000030 1707 206 8.6 1.0 3.80 0.13
    PM007-13-24 7.47 2104 1611 1.31 0.531 0.027 0.00852 0.00097 0.000590 0.000020 4329 71 107.8 3.9 9.90 0.28
    PM007-13-25 0.379 993 704 1.41 0.0634 0.0090 0.1121 0.0043 0.00150 0.000040 723 274 5.2 0.7 3.80 0.11
    PM007-13-26 0.478 1234 1163 1.06 0.0509 0.0090 0.00511 0.00070 0.000580 0.000020 237 364 4.2 0.7 3.80 0.12
    PM007-13-27 0.739 781 594 1.31 0.077 0.024 0.00418 0.00073 0.000600 0.000020 1113 517 6.2 1.8 3.70 0.28
    PM007-13-28 0.344 1366 1020 1.34 0.0510 0.0071 0.0061 0.0018 0.000580 0.000040 239 292 4.0 0.5 3.60 0.10
    PM007-13-29 1.484 964 664 1.45 0.524 0.024 0.00395 0.00053 0.000560 0.000020 4309 65 106.8 3.5 9.90 0.25
    下载: 导出CSV

    表  3   泉水沟组火山岩岩石化学成分

    Table  3   Chemical compostion of Quanshuigou Formation volcanic rocks

    样品号 PM007-1 PM007-4 PM007-5 PM007-6 PM007-7 PM007-8 PM007-9 PM007-10 PM007-11 PM007-12 PM007-13 PM007-14 PM007-15
    岩性 辉石安 辉石安 辉石安 辉石安 辉石安 辉石安 辉石安 黑云母 黑云母 黑云母 黑云母 黑云母 黑云母
    山岩 山岩 山岩 山岩 粗岩 粗岩 粗岩 粗面岩 粗面岩 粗面岩 粗面岩 粗面岩 粗面岩
    SiO2 53.72 53.75 55.73 54.55 57.27 58.12 58.40 60.50 61.71 61.16 61.07 61.41 60.6
    TiO2 1.36 1.43 1.39 1.43 1.16 1.17 1.14 1.12 1.08 1.12 1.10 1.13 1.13
    Al2O3 13.26 13.55 13.71 13.54 13.31 13.41 13.88 14.15 13.72 14.03 14.16 13.88 13.85
    Fe2O3 5.02 6.09 4.82 5.10 3.94 3.96 3.78 3.48 4.06 3.55 3.36 3.45 4.49
    FeO 1.95 1.05 2.30 2.40 1.61 1.44 1.55 1.46 0.76 1.16 1.57 1.53 0.48
    MgO 4.72 4.90 4.49 4.66 3.38 3.35 3.28 2.97 2.65 2.80 2.76 2.82 2.61
    MnO 0.09 0.09 0.09 0.10 0.08 0.08 0.08 0.07 0.07 0.06 0.07 0.07 0.07
    CaO 6.61 7.03 6.10 6.84 5.47 5.34 5.36 4.55 4.34 4.44 4.63 4.65 5.08
    Na2O 3.81 3.81 4.03 3.77 4.25 4.04 4.05 4.22 4.25 4.31 4.21 4.02 4.14
    K2O 4.53 4.32 4.84 4.47 5.19 5.30 5.34 5.54 5.69 5.74 5.41 5.41 5.67
    P2O5 0.89 0.92 0.90 0.95 0.77 0.72 0.76 0.76 0.71 0.77 0.74 0.77 0.73
    烧失量 3.05 2.08 1.13 1.48 2.54 1.89 1.37 0.83 0.42 0.45 0.47 0.49 0.71
    总量 99.01 99.02 99.53 99.29 98.97 98.82 98.99 99.65 99.46 99.59 99.55 99.63 99.56
    Mg# 55.38 55.38 53.71 53.33 52.75 53.14 53.04 52.47 49.89 52.06 50.74 50.97 48.58
    K2O+Na2O 8.69 8.39 9.01 8.42 9.79 9.64 9.62 9.88 10.04 10.14 9.71 9.51 9.92
    La 119 119 122 121 130 128 125 131 136 130 137 127 143
    Ce 258 261 258 263 272 271 267 277 281 274 282 271 286
    Pr 28.6 29.6 29.1 29.7 29.1 29.4 28.7 29.4 29.6 28.9 30.8 29.3 31.2
    Nd 104 108 105 108 103 104 102 105 103 102 108 105 110
    Sm 15.1 16.4 15.4 15.8 15.2 15.0 14.9 15.7 14.8 15.3 15.6 15.0 15.5
    Eu 2.9 2.9 3.0 3.0 2.7 2.9 2.7 2.7 2.6 2.6 2.7 2.7 2.7
    Gd 13.1 13.6 13.7 13.2 13.1 13.0 12.8 13.0 13.0 12.5 13.6 12.8 13.8
    Tb 1.09 1.12 1.13 1.12 1.03 1.01 1.00 1.04 1.04 0.99 1.09 1.05 1.06
    Dy 4.7 5.2 4.9 5.0 4.3 4.5 4.4 4.4 4.2 4.2 4.6 4.2 4.2
    Ho 0.66 0.74 0.66 0.71 0.63 0.65 0.61 0.57 0.56 0.61 0.64 0.57 0.60
    Er 2.04 2.33 2.21 2.11 2.01 1.95 2.06 1.86 1.80 1.83 1.92 1.92 1.75
    Tm 0.21 0.22 0.21 0.21 0.20 0.21 0.18 0.18 0.15 0.18 0.18 0.18 0.16
    Yb 1.32 1.55 1.39 1.30 1.38 1.28 1.23 1.32 1.05 1.20 1.28 1.26 1.07
    Lu 0.17 0.19 0.18 0.16 0.16 0.16 0.16 0.16 0.13 0.16 0.15 0.17 0.12
    Y 19.8 20.9 20.1 21.1 19.3 18.8 18.4 18.4 17.2 17.8 18.9 18.1 17.8
    Cu 23.5 26.6 21.4 25.1 35.2 29.3 16.7 16.7 12.6 13.7 17.7 17.9 11.3
    Pb 49.2 47.4 38.5 37.4 77.9 80.1 48.2 57.0 28.7 37.8 39.7 67.9 27.9
    Zn 82.0 127 64.9 64.7 175 99.5 92.0 123 65.3 50.2 60.6 96.9 64.8
    Co 23.4 23.5 21.4 21.8 13.3 23.2 14.0 13.6 12.4 12.2 14.2 12.5 11.3
    Ni 85.2 85.0 77.9 77.6 61.7 86.0 65.0 67.0 57.2 59.8 71.4 61.2 54.0
    Cr 86.4 86.1 91.2 99.5 77.3 101 74.7 71.0 65.8 58.1 67.7 71.7 53.1
    V 78.7 74.9 91.8 86.6 64.6 102 61.0 62.0 60.7 55.6 59.7 68.4 47.1
    Ga 20.9 20.7 19.1 17.8 20.6 20.1 18.9 19.4 20.1 19.8 21.2 20.6 18.9
    Sr 1701 1686 1440 1514 1520 1732 1354 1398 1363 1360 1374 1383 1343
    Ba 2141 2057 2259 2333 2083 2415 2287 2328 2274 2246 2239 2233 2236
    Rb 127 124 146 134 185 122 205 216 211 220 209 211 211
    Nb 22.5 27.2 26.8 20.4 22.7 22.2 21.3 19.3 24.1 20.9 23.1 16.5 25.0
    Ta 1.64 1.64 1.84 1.63 2.03 1.31 1.08 0.98 1.60 1.38 1.55 0.86 1.33
    Zr 461 460 435 431 507 486 487 514 494 487 507 521 447
    U 9.3 9.3 10.2 9.3 11.4 9.5 11.8 14.1 11.0 12.5 12.5 12.2 10.4
    Th 28.0 33.1 36.4 33.2 40.0 31.5 38.2 47.6 36.2 41.7 41.9 39.6 31.1
    Ag 1.46 1.53 1.43 1.39 1.50 1.61 1.45 1.37 0.50 0.93 1.94 1.10 0.17
    Au 0.50 0.42 1.13 0.43 1.20 0.35 0.43 0.70 0.45 0.83 0.88 0.91 0.76
    ∑REE 550 561 556 564 575 573 563 584 589 574 600 572 612
    LREE 527 537 531 541 552 550 540 561 567 553 576 550 589
    HREE 23.3 25.0 24.4 23.8 22.8 22.8 22.4 22.5 21.9 21.7 23.5 22.2 22.8
    δEu 0.61 0.57 0.61 0.63 0.57 0.62 0.59 0.57 0.55 0.56 0.55 0.59 0.56
    δCe 1.03 1.03 1.01 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.00 1.03 0.99
      注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV
  • 邓万明.西藏阿里北部的新生代火山岩[J].岩石学报, 1989, 5(3): 1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198903000.htm
    邓万明.中昆仑造山带钾玄质火山岩的地质地球化学和时代[J].地质科学, 1991, (3): 193-206. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199103000.htm
    邓万明.青藏高原北部新生代板内火山岩[M].北京:地质出版社, 1998: 86-150.
    赖绍聪.青藏高原新生代埃达克质岩的厘定及其意义[J].地学前缘, 2003, 10(4): 407-415. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200304012.htm
    迟效国, 董春艳, 刘建峰, 等.青藏高原高Mg#和低Mg#两类钾质-超钾质火山岩及其源区性质[J].岩石学报, 2006, 3: 595-602. doi: 10.3321/j.issn:1000-0569.2006.03.008
    刘嘉麒.中国火山[M].北京:科学出版社, 1999: 42-77.

    Arnaud N O, Vidal P H, Tapponnier P, et al. The high K2O volcanism of northwestern Tibet:Geochemistry and tectonic implications [J]. Earth and Planetary Science Letters, 1992, 111: 351-367. doi: 10.1016/0012-821X(92)90189-3

    丁林, 张进江, 周勇, 等.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征[J].岩石学报, 1999, 15 (1): 408-421. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199903008.htm
    朱弟成, 潘桂棠, 莫宣学, 等.青藏高原及邻区新生代火山岩SrNd-Pb同位素特征[J].沉积与特提斯地质, 2003, 23(3): 1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200303001.htm
    宁维坤, 迟效国, 刘建峰, 等.青藏高原北部黑石北湖新生代钾质火山岩的成因[J].地质通报, 2009, 9: 1355-1360. doi: 10.3969/j.issn.1671-2552.2009.09.027
    李光明.藏北羌塘地区新生代火山岩岩石特征及其成因探讨[J].地质地球化学, 2000, 28(2): 38-44. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200002005.htm
    谭富文, 潘桂棠, 徐强, 等.羌塘腹地新生代火山岩的地球化学特征与青藏高原隆升[J].岩石矿物学杂志, 2000, 19(2): 121-130. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200002003.htm

    Miller C, Schuster R, Klotzli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-NdPb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 1999, 40: 1399-1424. doi: 10.1093/petroj/40.9.1399

    Li X H, Zhou H W, Chung S L, et al. Geochemical and Sr-Nd isotopic characteristics of late Paleogene ultrapotassic magmatism in SE Tibet[J]. Int. Geol. Rev., 2002, 44: 559-574. doi: 10.2747/0020-6814.44.6.559

    Ding L, Kapp P, Zhong D L, et al. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44(10): 1833-1865. doi: 10.1093/petrology/egg061

    Lai S C, Liu C Y, Yi H S. Geochemistry and petrogenesis of Cenozoic andesite-dacite association from the Hoh Xil Region, Tibeltan Plateau[J]. Int. Geol. Rev., 2003, 45(11): 998-1019. doi: 10.2747/0020-6814.45.11.998

    Wang Q, McDcermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6): 465-468. doi: 10.1130/G21522.1

    陈建林, 许继峰, 康志强, 等.青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因[J].岩石学报, 2006, (3): 585-594. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603007.htm
    刘栋, 赵志丹, 朱弟成, 等.青藏高原拉萨地块西部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学[J].岩石学报, 2011, 7: 2045-2059. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107014.htm

    Turner S, Arnaud N. Post collision, shoshonitic volcanism on the plateau: Implications for convective thinning of the lithosphere and the spurce of ocean island basalts[J]. J. Petrol., 1996, 37(1): 45-71. doi: 10.1093/petrology/37.1.45

    Anderson T. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemcal Geology, 2002, 192(1/2): 59-79. https://www.researchgate.net/publication/286174363_Correction_of_common_pb_in_u-pb_analysis_that_do_not_report_254pb

    Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/ggr.2004.28.issue-3

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

    Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. J. Petrol., 1986, 27(3): 745-750. doi: 10.1093/petrology/27.3.745

    Peccerillo A, Taylor S R. Chemistry of eocene calc-alka line rocks from the Kasta-monu area, Northern Turkey[J]. Contr. Miner. Petr., 1976, 58: 63-81. doi: 10.1007/BF00384745

    王碧香.国际火成岩分类命名研究现状[J].地质科技情报, 1990, 4: 30-47. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199004006.htm
    邓晋福, 刘翠, 冯艳芳, 等.关于火成岩常用图解的正确使用:讨论与建议[J].地质论评, 2015, 4: 717-734. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201504002.htm
    邓晋福, 罗照华, 苏尚国, 等.岩石成因、构造环境与成矿作用[M].北京:地质出版社, 2004: 1-381.

    Turner S, Arnaud N, Liu J, et al. Post-Collision, shoshonitic volcanism on the Tibetan plateau:Implication for convective thinning of the lithosphere and source of ocean island basalts[J]. J. Petrol., 1996, 37(1): 45-71. doi: 10.1093/petrology/37.1.45

    Wilson M, Bianchini G. Tertiary-Quaternary magmatism within the Mediterranean and sorrounding regions[J]. Geological Society, London. Special Publications, 1999, 156: 141-168. http://adsabs.harvard.edu/abs/1999GSLSP.156..141W

    Gill R C O, Aparicio A, Azzouzi M E, et al. Depleted arc volcanism in the Alboran Sea and shoshonitic volcanism in Morocco: geochemical and isotopic constraints on Neogene tectonic processes[J]. Lithos, 2004, 78: 363-388. doi: 10.1016/j.lithos.2004.07.002

    Duggen S, Hoevnle K, Bogaard P V D, et al. Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Me-terranean: Evidence for continental edge delamination of subconti-nental lithosphere[J]. J. Petrol., 2005, 46(6): 1155-1201. http://petrology.oxfordjournals.org/content/46/6/1155.full

    赵振明, 计文化, 李荣社, 等.青藏高原北部巴颜喀拉与东昆仑地区新近纪以来火山岩的地球化学特征及其成因[J].地球化学, 2009, 38(3): 205 -230. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200903003.htm
    王保弟, 陈陵康, 许继峰, 等.拉萨地块麻江地区具有"超钾质"成分的钾质火山岩的识别及成因[J].岩石学报, 2011, 6: 1662-1674. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106008.htm

    Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise on Geochemistry, 2003, 3: 1-64. https://www.deepdyve.com/lp/elsevier/the-composition-of-the-continental-crust-b6Dpwl24Ik

    邓晋福, 莫宣学, 罗照华, 等.火成岩构造组合与壳-幔成矿系统[J].地学前缘, 1999, 6(2): 259-270. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY902.005.htm

    Fitton J G, James D, Kempton P D, et al. The role of lithospheric mantle in the generation of Late Cenozoic basic magmas in the Western Unite State[J]. J. Petrol., 1988, Special lithosphere issue: 331-349. http://petrology.oxfordjournals.org/content/Special_Volume/1/331.short

    Temel A, Gondogdu M N. Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 1998, 85: 327-354. doi: 10.1016/S0377-0273(98)00062-6

    Rittmann A. Stable mineral assemllaqes of iqueous rocks[M]. New York, 1973.

    Pearce T H, Gorman B E, Birkett T C. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks[J]. Earth Planet. Sci. Lett., 1977, 36: 121-132. doi: 10.1016/0012-821X(77)90193-5

    赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学, 2007, 1: 92-103. doi: 10.3969/j.issn.1001-1552.2007.01.011

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. J. Petrol., 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956

    孙书勤, 汪云亮, 张成江.玄武岩类岩石大地构造环境的Th、Nb、Zr判别[J].地质论评, 2003, 49(1): 40-47. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200301005.htm

    Defant M J, Drummond M S. Derivation of some modern are magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    Kay R W, Kay S M. Delamination and delamination magmatism[J]. Tectonophysics, 1993, 219(1/3): 177-189. https://www.researchgate.net/profile/Suzanne_Kay/publication/257656451_Delamination_and_magmatism/links/549334a40cf286fe31268c1f/Delamination-and-magmatism.pdf

    Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the An dean Austral Volcanic Zone[J]. Contrib. Mineral. Petrol., 1996, 123: 263-281. doi: 10.1007/s004100050155

    Conticelli S, Pecerillo A. Petrology and geochemistry of potassic and ultrapo tassic volcanism in Central Italy petrogenesis and inference on the evolution of the mantle source[J]. Lithos, 1992, 28(3): 221-240. http://www.sciencedirect.com/science/article/pii/002449379290008M

    Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-146. doi: 10.1038/362144a0

    Muir R J, Weaver S D, Bradshaw J D, et al. The Cretaceous Separation Point batholith, New Zenland: Granitoid magmas fored by melting of matic lithosphere[J]. J. Geol. Soc., 1995, 152(4): 689-701. doi: 10.1144/gsjgs.152.4.0689

    张雪梅, 孙若昧, 滕吉文.青藏高原及其邻区地壳、岩石圈和软流层厚度研究[J].科学通报, 2007, 3: 332-338. doi: 10.3321/j.issn:0023-074X.2007.03.014

    French W J, Cameron E P. Calculation of the tempera-ture of crystallization of silicates from basaltic melts[J]. Mineral, 1981, 44: 19-26. http://www.minersoc.org/pages/Archive-MM/Volume_44/44-333-19.htm

    Yorder H S, Tilley C E. Origin of basalt magmas: an experiment study of natural and synthetic rock systems[J]. J. Petrol., 1962, 3: 342-532. doi: 10.1093/petrology/3.3.342

    Ninkovich D P, Hays J D. Mediterranean island arcs and origin of high potash volcanoes[J]. Earth and Planetary Science Letters, 1972, 16: 331-345. doi: 10.1016/0012-821X(72)90151-3

    Chung S L, Chu M F, Ji J Q, et al. The nature and timing of crustal thickening in Sourthern Tibet:Geochemical and zircon Hf isotopic constraints from post-collisional adakites[J]. Tectonophysics, 2009, 477(1/2): 36-48. http://www.sciencedirect.com/science/article/pii/S0040195109007045

    吴福元, 黄宝春, 叶凯, 等.青藏高原造山带的垮塌与高原隆升[J].岩石学报, 2008, 1: 1-30. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801002.htm

    Mo X X, Zhao Z D, Zhou S. Evidence for timing of the intiation of India-Asia collision from igneous rocks in Tibet[J]. Eos Transactions.American Geophysical Union, 2002, 83(47): F1003. http://www.researchgate.net/publication/253135671_Evidence_for_timing_of_the_initiation_of_India_Asia_collision_from_igneous_rocks_in_Tibet

    陈正乐, 万景林, 王小凤, 等.阿尔金断裂带8Ma左右的快速走滑及其地质意义[J].地球学报, 2002, 8: 295-300. doi: 10.3321/j.issn:1006-3021.2002.04.002

    Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Provinee, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Seience Letters, 2007, 258: 293-306. doi: 10.1016/j.epsl.2007.03.042

    李海兵, 许志琴, 杨经绥, 等.阿尔金断裂带最大累积走滑位移量——900km?[J].地质通报, 2007, 26(10): 1288-1298. doi: 10.3969/j.issn.1671-2552.2007.10.007
    肖爱芳, 黎敦朋.新藏公路奇台达坂晚中新世火山岩的发现及40Ar-39Ar定年[J].地质通报, 2010, 21: 237-242. doi: 10.3969/j.issn.1671-2552.2010.02.007

    Zheng H, Powell C, An Z, et al. Pliocene uPlift of the northern Tibetan Plateau[J]. Geology, 2007, 28(8): 715-718. http://connection.ebscohost.com/c/articles/3435721/pliocene-uplift-northern-tibetan-plateau

    黎敦朋, 赵越, 胡健民, 等.青藏高原西北缘高原面与陡坡地貌形成过程的裂变径迹热年代学约束[J].岩石学报, 2007, 23(5): 900-910. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705005.htm

    Sun J M, Liu T S. The Age of the Taklimakan Desert[J]. Science, 2006, 312: 1621. doi: 10.1126/science.1124616

    万渝生, 罗照华, 李莉. 3.8Ma:青藏高原年轻碱性玄武岩错石离子探针U-Pb年龄测定[J].地球化学, 2004, 33(5): 442-446. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405001.htm
    王权, 杨五宝, 张振福, 等.藏西北黑石北湖一带新近纪火山岩的特征及构造意义[J].地质通报, 2005, 1: 80-86. doi: 10.3969/j.issn.1671-2552.2005.01.012
    李金冬, 柏道远, 王先辉.藏北蚕眉山地区火山岩和夷平面的时代[J].地质通报, 2004, 7: 670-675. doi: 10.3969/j.issn.1671-2552.2004.07.006
    陕西省地质调查院. 新疆1: 25万阿克萨依湖幅I44C001002区域地质调查项目报告. 2006.
    陕西省地质调查院. 新疆1: 5万I44E002006等4幅区域地质调查报告. 2015.
图(15)  /  表(3)
计量
  • 文章访问数:  2577
  • HTML全文浏览量:  472
  • PDF下载量:  2900
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-30
  • 修回日期:  2017-05-16
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2017-06-30

目录

    /

    返回文章
    返回