A study of the ore-forming age of the Hutouya deposit and its geological significance:Geochemistry and U-Pb zircon ages of biotite monzonitic granite in Qimantag, East Kunlun Mountains
-
摘要:
虎头崖铅锌多金属矿床位于东昆仑祁漫塔格地区,矿区内中酸性侵入岩体广泛发育,且与成矿关系密切。通过高精度LA-ICP-MS锆石微区原位U-Pb同位素测年,获得与矿化、矽卡岩化关系密切的黑云二长花岗岩锆石的206Pb/238U年龄加权平均值为234.2±1.5 Ma。地球化学分析表明,黑云二长花岗岩具有高Al2O3、K2O,低TiO2、Na2O的特征,稀土和微量元素显示其富集轻稀土元素、Rb、Th和部分高场强元素,Nb、Sr、Zr相对亏损,稀土元素表现为LREE/HREE明显分离的配分模式,总体表现为I型花岗岩的特征。在(Y+Nb)-Rb图解中落入后碰撞花岗岩区,在R1-R2因子判别图上落入造山晚期和同碰撞花岗岩重叠区,显示其可能形成于碰撞-后碰撞构造阶段。虎头崖铅锌多金属矿区Ⅵ矿带具有强烈的矽卡岩化,结合矿石组构、脉石矿物、围岩蚀变等特征,认为其具有矽卡岩型矿床的特征,形成于234.2±1.5 Ma(中—晚三叠世)。
-
关键词:
- LA-ICP-MS锆石U-Pb测年 /
- 黑云二长花岗岩 /
- 构造环境 /
- 虎头崖铅锌多金属矿 /
- 矽卡岩型矿床
Abstract:The Hutouya Pb-Zn polymetallic ore deposit is located in Qimantag, East Kunlun Mountains.Intermediate-acid intru-sive rocks occur widely in this area, and are closely related to iron polymetallic mineralization.The 206Pb/238U weighted average age is 234.2±1.5 Ma, which was obtained by in-situ LA-ICP-MS zircon dating of biotite monzonitic granite that was closely related to mineralization and skarn.The results of geochemical analysis show that the biotite monzonitic granite is characterized by high Al2O3, K2O and low TiO2, Na2O.The I-type granites are characterized by rich LREE, Rb, Th and some of HFSE, but poor Nb, Sr and Zr, and clear separation of LREE from HREE.In diagram of(Y+Nb)-Rb, all samples fall into post-collision granite area, and in R1-R2 diagram, all samples fall into the superimpositon of post-collision granite area and collision granite area, indicating that the gran-ites probably formed in a collision-post-collision structural phase.The Ⅵ belt of the Hutouya Pb-Zn polymetallic ore deposit expe-riended strong skarnization.The authors hold that the deposit has characteristics of skarn deposit, as shown by its ore fabric, gangue minerals, wall rock alteration, and it was formed at 234.2±1.5 Ma (Middle-Late Triassic).
-
致谢: 在论文完成过程中,中国地质调查局西安地质调查中心计文化研究员、陈守建教授级高工给予了大力的支持和鼓励;镜下鉴定过程中得到中国地质调查局西安地质调查中心叶芳研究员、张汉文研究员的帮助;数据测试过程中得到西北大学柳小明教授的有益帮助,在此一并表示衷心的谢意。
-
图 1 虎头崖铅锌多金属矿区地质简图(据参考文献[11]修改)
1—蓟县系狼牙山组;2—奥陶系-志留系滩间山群;3—下石炭统大干沟组;4—上石炭统缔敖苏组;5—上三叠统鄂拉山组;6—第四系;7—二长花岗岩;8—钾长花岗岩;9—花岗闪长岩;10—闪长岩;11——辉绿岩脉;12—矽卡岩化带;13—断层;14—采样位置及编号;Ⅰ—塔里木陆块;Ⅱ—阿北-敦煌地块;Ⅲ—阿尔金造山带;Ⅲ-1—红柳沟-拉配泉蛇绿构造混杂岩带;Ⅲ-2—阿中地块;Ⅲ-3—阿帕-茫崖早古生代蛇绿构造混杂岩带;Ⅳ—昆仑造山带;Ⅳ-1—北昆仑(祁漫塔格)岩浆弧带;Ⅳ-2—中昆仑微地块;Ⅳ-3—昆南增生楔杂岩带;Ⅴ—巴颜喀拉褶皱带;Ⅵ—柴达木陆块;Ⅵ-1—柴达木盆地北缘;Ⅵ-2—柴达木盆地;Ⅶ—祁连造山带;①—阿尔金北缘断裂;②—阿尔金南缘断裂;③—昆北断裂带;④—黑山-那陵格勒断裂;⑤—白干湖断裂;⑥—昆中断裂带;⑦—昆南断裂带;⑧—柴北缘断裂
Figure 1. Geological sketch map of the Hutouya Pb-Zn polymetallic ore deposit
图 5 虎头崖铅锌多金属矿黑云二长花岗岩的Harker图解(图例同图 4)
Figure 5. Harker diagram of biotite monzonitic granite in the Hutouya Pb-Zn polymetallic ore deposit
图 6 黑云二长花岗岩稀土元素球粒陨标准化配分图解(a)和微量元素原始地幔标准化蛛网图(b)[22]
Figure 6. Chondrite-normalized REE patterns(a) and primitive-mantle normalised spidergram (b)for biotite monzonitic granite
表 2 黑云二长花岗岩主量元素含量
Table 2 Major element composition of biotite monzonitic granite
% 样品编号 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO 14H-2 74.88 0.17 12.96 0.49 1.38 0.05 0.53 1.38 14H-3 75.40 0.12 13.15 0.58 1.05 0.05 0.23 1.04 14H-4 76.35 0.11 12.75 0.36 0.97 0.04 0.20 0.93 14H-5 76.36 0.11 12.69 0.55 0.82 0.05 0.17 0.92 14H-6 76.33 0.10 12.83 0.34 0.97 0.04 0.15 0.91 14H-7 73.26 0.25 13.85 0.36 1.85 0.06 0.51 1.80 样品编号 Na2O K2O P2O5 TFeO 里特曼指数 TFeO/MgO AR A/CNK 14H-2 3.40 4.70 0.05 1.82 2.06 3.45 3.60 0.98 14H-3 3.67 4.66 0.05 1.57 2.14 6.75 3.84 1.01 14H-4 3.44 4.80 0.04 1.30 2.04 6.42 4.03 1.02 14H-5 3.50 4.79 0.04 1.32 2.06 7.68 4.11 1.01 14H-6 3.47 4.82 0.04 1.28 2.06 8.44 4.04 1.02 14H-7 3.46 4.50 0.09 2.18 2.10 4.31 3.07 1.00 表 1 虎头崖铜多金属矿区黑云二长花岗岩(14H-1) LA-ICP-MS单颗粒锆石U-Th-Pb同位素测年结果
Table 1 LA-ICP-MS zircon U-Th-Pb isotopic dating of biotite monzonitic granite (14H-1) of the copper polymetallic ore district in Hutouya area
测点编号 同位素含量/10-6 同位素比值 年龄/Ma Th/U 谐和度 Th U Pb* 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 比值 1σ 比值 1σ 比值 1σ 比值 1σ 年龄 1σ 年龄 1σ 年龄 1σ 年龄 1σ 1 161 439 18 0.0546 0.0027 0.283 0.014 0.0376 0.0003 0.0117 0.0002 397 115 253 11 238 2 236 3 0.37 106.30 2 195 452 18 0.0514 0.0014 0.264 0.007 0.0372 0.0003 0.0120 0.0002 258 44 238 5 235 2 241 4 0.43 101.28 3 254 504 21 0.0533 0.0014 0.266 0.006 0.0362 0.0003 0.0120 0.0002 342 41 240 5 229 2 241 3 0.50 104.80 4 208 314 14 0.0534 0.0020 0.266 0.010 0.0361 0.0004 0.0121 0.0002 347 63 239 8 228 2 244 4 0.66 104.82 5 193 489 20 0.0509 0.0014 0.263 0.006 0.0374 0.0003 0.0122 0.0002 235 43 237 5 237 2 246 4 0.39 100.00 6 140 278 11 0.0512 0.0017 0.263 0.008 0.0373 0.0003 0.0111 0.0002 248 55 237 6 236 2 223 4 0.50 100.42 7 405 786 33 0.0502 0.0023 0.262 0.011 0.0378 0.0004 0.0125 0.0003 204 79 236 9 239 3 250 6 0.52 98.74 8 254 472 20 0.0536 0.0013 0.267 0.006 0.0361 0.0003 0.0114 0.0001 353 38 240 5 229 2 230 3 0.54 104.80 9 168 384 16 0.0505 0.0017 0.261 0.008 0.0376 0.0003 0.0120 0.0002 218 57 236 7 238 2 240 5 0.44 99.16 10 280 496 21 0.0506 0.0014 0.262 0.006 0.0376 0.0003 0.0126 0.0002 224 43 237 5 238 2 252 3 0.56 99.58 11 238 476 21 0.0520 0.0017 0.263 0.008 0.0367 0.0003 0.0130 0.0002 286 54 237 6 232 2 262 4 0.50 102.16 12 208 382 16 0.0513 0.0010 0.259 0.005 0.0367 0.0002 0.0115 0.0001 252 29 234 4 232 1 231 2 0.54 100.86 13 217 352 15 0.0509 0.0014 0.262 0.007 0.0373 0.0003 0.0123 0.0002 237 46 236 6 236 2 247 3 0.62 100.00 14 166 366 15 0.0512 0.0018 0.262 0.009 0.0372 0.0003 0.0121 0.0002 248 58 236 7 235 2 243 5 0.45 100.43 15 309 748 30 0.0512 0.0010 0.263 0.005 0.0373 0.0002 0.0124 0.0001 250 29 237 4 236 1 249 3 0.41 100.42 16 210 423 18 0.0514 0.0011 0.264 0.005 0.0373 0.0002 0.0123 0.0001 261 33 238 4 236 1 247 3 0.50 100.85 17 224 354 17 0.0513 0.0027 0.257 0.014 0.0364 0.0003 0.0115 0.0001 253 125 232 11 230 2 230 2 0.63 100.87 18 447 1015 43 0.0530 0.0020 0.267 0.010 0.0365 0.0004 0.0129 0.0003 327 63 240 8 231 2 259 6 0.44 103.90 注:Pb*=0.241* 206Pb+0.221* 207Pb+0.524* 208Pb 表 3 黑云二长花岗岩稀土和微量元素含量
Table 3 REE and trace elements composition of biotite monzonitic granite
10-6 样品编号 10H-2 10H-3 10H-4 10H-5 10H-6 10H-7 La 22.80 27.50 26.20 28.30 28.20 33.30 Ce 42.10 49.10 48.80 53.20 51.10 57.30 Pr 4.88 5.75 5.36 5.77 5.78 6.61 Nd 15.90 18.40 17.20 18.60 18.60 22.10 Sm 3.25 3.62 3.26 3.48 3.58 3.88 Eu 0.34 0.32 0.31 0.26 0.29 0.70 Gd 2.97 3.50 3.08 3.22 3.14 3.31 Tb 0.49 0.56 0.50 0.52 0.54 0.52 Dy 3.35 3.75 3.14 3.53 3.54 3.27 Ho 0.74 0.81 0.72 0.75 0.74 0.71 Er 2.25 2.50 2.22 2.34 2.31 2.10 Tm 0.36 0.41 0.37 0.40 0.38 0.31 Yb 2.67 3.05 2.58 2.90 2.83 2.33 Lu 0.42 0.47 0.40 0.48 0.46 0.34 ΣREE 102.52 119.74 114.14 123.75 121.49 136.78 LREE 89.27 104.69 101.13 109.61 107.55 123.89 HREE 13.25 15.05 13.01 14.14 13.94 12.89 LREE/HREE 6.74 6.96 7.77 7.75 7.72 9.61 (La/Yb)N 5.76 6.08 6.85 6.58 6.72 9.64 δEu 0.33 0.27 0.29 0.23 0.26 0.58 Ba 156.00 142.00 176.00 143.00 152.00 529.00 Rb 316.00 343.00 314.00 330.00 329.00 249.00 Sr 67.40 75.30 59.60 61.50 62.40 146.00 Co 3.14 1.57 1.18 1.06 0.94 3.10 V 13.30 6.23 4.64 4.42 3.75 14.20 Cr 2.61 2.00 1.56 1.88 3.28 1.43 Ni 2.34 0.93 1.74 0.44 1.50 0.77 Nb 16.10 19.30 14.80 17.10 15.90 14.80 Ta 4.52 5.41 4.44 4.90 4.85 3.27 Zr 96.00 105.00 95.20 102.00 94.80 151.00 Hf 3.51 4.06 3.66 3.96 3.47 4.49 Y 22.00 24.10 21.40 23.90 23.10 20.80 Th 32.90 35.70 34.50 37.30 36.50 26.50 Sc 2.28 1.40 1.30 1.19 1.19 2.76 Rb/Ba 2.03 2.42 1.78 2.31 2.16 0.47 Nb/Ta 3.56 3.57 3.33 3.49 3.28 4.53 -
李荣社, 计文化, 潘晓萍, 等. 1:100万昆仑山及邻区地质图及说明书[M].北京:地质出版社, 2009. 张爱奎, 莫宣学, 李云平, 等.青海西部祁漫塔格成矿带找矿新进展及其意义[J].地质通报, 2010, 29(7):1062-1074. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100713&journal_id=gbc 刘云华, 莫宣学, 张雪亭, 等.东昆仑野马泉地区矽卡岩矿床地质特征及控矿条件[J].华南地质与矿产, 2005, (3):18-23. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200503003.htm 张爱奎, 李云平, 刘光莲, 等.虎头崖铜铅锌矿床类型新认识及其意义[J].青海国土经略, 2008, (4):25-27. http://www.cnki.com.cn/Article/CJFDTOTAL-GTJL200804013.htm 胡杏花, 朱谷昌, 刘欢, 等.祁漫塔格矿带虎头崖多金属矿矿床特征和成矿作用分析[J].地质与勘探, 2011, 47(2):216-221. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201102012.htm 古凤宝, 吴向农, 姜常义.东昆仑华力西期-印支期花岗岩组合及构造环境[J].青海地质, 1996, 5(1):18-26. http://www.cnki.com.cn/Article/CJFDTOTAL-GTJL199601001.htm 袁万明, 莫宣学, 喻学惠, 等.东昆仑印支期区域构造背景的花岗岩记录[J].地质论评, 2000, 46(2):203-221. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200002012.htm 李光明, 沈远超.东昆仑祁漫塔格地区华力西期花岗岩地质地球化学特征[J].地质与勘探, 2001, (1):73-78. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200101016.htm 罗照华, 柯珊, 曹永清, 等.东昆仑印支晚期幔源岩浆活动[J].地质通报, 2002, 21(6):292-297. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20020677&journal_id=gbc 王松, 丰成友, 李世金, 等.青海祁曼塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].中国地质, 2009, 36(1):74-84. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901008.htm 李侃, 高永宝, 钱兵, 等.东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J].中国地质, 2015, 42(3):630-645. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201503017.htm Gao S, Liu X M, Yuan H L, et al. Analysis of forty-two major and trace elements of USGS and NIST SRM Glasses by LA-ICPMS[J]. Geostand Newsl., 2002, 22:181-195. https://www.researchgate.net/publication/252188504_Analysis_of_forty-two_major_and_trace_elements_in_USGS_and_NIST_SRM_glasses_by_LA-ICPMS
刘小明, 高山, 袁洪林, 等. 193nm LA-ICPMS对国际地质标准参考物中42种主元素和微量元素的分析[J].岩石学报, 2002, 18(3):408-418. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200203016&dbname=CJFD&dbcode=CJFQ 袁洪林, 吴福元, 高山, 等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报, 2003, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 Anderson T. Correction of common lead in U-Pb analyses that do not report 204 Pb[J]. Chemical Geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X
Ludwig K R. 3.0-A geochronology cal toolkit for Micro-soft Excel[J]. Berkeley Geochronology Center, Special Publication, 2003, (4):1-70.
Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18:423-439. https://www.researchgate.net/publication/229968849_Metamorphic_zircon_formation_by_solid-state_recrystallization_of_protolith_igneous_zircon
Turner S P, Foden J D, Morrison R S. Derivation of some A-type magmas by fractionation of basaltic agama:an example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28:151-179. doi: 10.1016/0024-4937(92)90029-X
Chappell B W, White A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8:173-174. http://geoscienceworld.org/georef/1975-030452
Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. GSA Bull., 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Richwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4):247-263. doi: 10.1016/0024-4937(89)90028-5
Sun S S, Mc Donoungh W F. Chemical and isotopic systematics of oceanic basalt:implication for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geol. Soc. London Spec. Pub., 1989, 42:313-345.
Pearce J A. Sources and setting of granitic rocks[J]. Episodes, 1996, 19(4):120-125. https://www.researchgate.net/publication/262099137_Sources_and_Settings_of_Granitic_Rocks
Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[J]. Geological Society of London, Special Publication, 1986, 19:67-81. doi: 10.1144/GSL.SP.1986.019.01.04
Williamson B J, Shaw A, Downes H, et al. Geochemical constraints on the genesis of Hercynian two-micaleucogranites from the Massive Central[J]. Chemical Geology, 1996, 127:25-42. doi: 10.1016/0009-2541(95)00105-0
Pitcher W S. Granite type and tectonic environment[M]. Mountain Building Processes, London:Academic Press, 1983:19-40.
Forster H J, Tischendorf G, Gottesmann B, et al. Late-collisional granites in the Variscan Erzgebirge[J]. Journal of Petrology, 1999, 40:1613-1645. doi: 10.1093/petroj/40.11.1613
Kalsbeek F, J epsen H, Nutman A. From source migmatitesto to plutons:tracking the origin of ca. 435 Ma S-type granites in the East Greenland Caledonian orogen[J]. Lithos, 2001, 57:1-21. doi: 10.1016/S0024-4937(00)00071-2
肖庆辉, 邓晋福, 马大诠, 等.花岗岩研究思维与方法[M].北京:地质出版社, 2002. Liegeois G P, Navez J, Hertongen J, et al. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids:the use of sliding normalization[J]. Lithos, 1998, 45:1-28. doi: 10.1016/S0024-4937(98)00023-1
韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘, 2007, 14(3):64-72. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200703007.htm 任继舜, 姜春发, 张正坤, 等.中国大地构造及其演化[M].北京:科学出版社, 1980:1-124. 殷鸿福, 张克信.中央造山带的演化及其特点[J].地球科学, 1998, 23(5):437-442. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX805.000.htm 袁万明, 莫宣学, 喻学惠, 等.东昆仑印支期区域构造背景的花岗岩记录[J].地质论评, 2000, 46(2):203-211. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200002012.htm 莫宣学, 罗照华, 邓晋福, 等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报, 2007, 13(3):403-414. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm 校培喜, 高晓峰, 胡云绪, 等.阿尔金-东昆仑西段成矿带地质背景研究[M].北京:地质出版社, 2014:1-261. 罗照华, 邓晋福, 曹永清, 等.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化[J].现代地质, 1999, 13(1):51-56. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ901.007.htm Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Petrol, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956
Batchelor R A, Bowden P. Petrogentic interpretation of granitoid rocks series using multicationic[J]. Chemical Geology, 1985, 48:43-45. doi: 10.1016/0009-2541(85)90034-8
Zhao X X, Coe R S, Gilder S A, et al. Palaeomagnetic constraints on the palaeogeography of China:implications for Gondwanaland[J]. Australian Journal of Earth Sciences, 1996, 43(6):643-672. doi: 10.1080/08120099608728285
Liegeois J P, Navez J, Hertogen J, et al. Contrasting origin of postcollisional high-K calc-alkaline and shoshonitic versus alkaline and per alkaline granitoids[J]. Lithos, 1998, 45(1):1-28. https://www.researchgate.net/publication/222483323_Contrasting_origin_of_post-collisional_high-K_calc-alkaline_and_shoshonitic_versus_alkaline_and_peralkaline_granitoids_The_use_of_sliding_normalization
刘成东, 张文秦, 莫宣学, 等.东昆仑约格鲁岩体暗色微粒包体特征及成因[J].地质通报, 2002, 21(11):739-744. doi: 10.3969/j.issn.1671-2552.2002.11.009 佘宏全, 张德全, 景向阳, 等.青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J].中国地质, 2007, 34(2):306-314. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200702013.htm 李世金, 孙丰月, 丰成友, 等.青海东昆仑鸭子沟多金属矿的成矿年代学研究[J].地质学报, 2008, 82(7):949-955. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200807015.htm 吴祥珂, 孟繁聪, 许虹, 等.青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd-Hf同位素组成[J].岩石学报, 2011, 27(11):3380-3394. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111018.htm 高永宝, 李文渊, 马晓光, 等.东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J].兰州大学学报(自然科学版), 2012, 48(2):36-47. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201202008.htm 高永宝, 李文渊, 钱兵, 等.东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J].岩石学报, 2014, 30(6):1647-1665. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406009.htm 丰成友, 王松, 李国臣, 等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成因意义[J].岩石学报, 2012, 28(2):665-678. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202025.htm 高永宝, 李文渊, 李侃, 等.青海祁漫塔格虎头崖铅锌矿床流体包裹体、同位素地球化学及矿床成因[J].地质通报, 2013, 32(10):1631-1642. doi: 10.3969/j.issn.1671-2552.2013.10.015 马圣钞, 丰成友, 李国臣, 等.青海虎头崖铜铅锌多金属矿床硫、铅同位素组成及成因意义[J].地质与勘探, 2012, 48(2):321-331. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201202015.htm