• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

大兴安岭中段索伦地区白音高老组火山岩锆石U-Pb年龄、地球化学特征及构造意义

谭皓元, 和钟铧, 陈飞, 杜岳丹, 任子慧

谭皓元, 和钟铧, 陈飞, 杜岳丹, 任子慧. 2017: 大兴安岭中段索伦地区白音高老组火山岩锆石U-Pb年龄、地球化学特征及构造意义. 地质通报, 36(5): 893-908. DOI: 10.12097/gbc.dztb-36-5-893
引用本文: 谭皓元, 和钟铧, 陈飞, 杜岳丹, 任子慧. 2017: 大兴安岭中段索伦地区白音高老组火山岩锆石U-Pb年龄、地球化学特征及构造意义. 地质通报, 36(5): 893-908. DOI: 10.12097/gbc.dztb-36-5-893
TAN Haoyuan, HE Zhonghua, CHEN Fei, DU Yuedan, REN Zihui. 2017: Zircon U-Pb ages and geochemical characteristics of volcanic rocks in Baiyin-gaolao Formation of Suolun area within central Da Hinggan Mountains and their tectonic implications. Geological Bulletin of China, 36(5): 893-908. DOI: 10.12097/gbc.dztb-36-5-893
Citation: TAN Haoyuan, HE Zhonghua, CHEN Fei, DU Yuedan, REN Zihui. 2017: Zircon U-Pb ages and geochemical characteristics of volcanic rocks in Baiyin-gaolao Formation of Suolun area within central Da Hinggan Mountains and their tectonic implications. Geological Bulletin of China, 36(5): 893-908. DOI: 10.12097/gbc.dztb-36-5-893

大兴安岭中段索伦地区白音高老组火山岩锆石U-Pb年龄、地球化学特征及构造意义

基金项目: 

中国地质调查局项目《内蒙古兴安盟科右前旗索伦地区1:5万马家沟、阿林一合、平安屯幅区域地质调查》 12120114012901

详细信息
    作者简介:

    谭皓元(1990-), 男, 在读硕士生, 构造地质学专业。E-mail:523727718@qq.com

  • 中图分类号: P534.53;P597+.3

Zircon U-Pb ages and geochemical characteristics of volcanic rocks in Baiyin-gaolao Formation of Suolun area within central Da Hinggan Mountains and their tectonic implications

  • 摘要:

    白音高老组火山岩位于大兴安岭中段科右前旗索伦地区,主要岩性为流纹岩和流纹质晶屑凝灰岩。LA-ICP-MS锆石U-Pb同位素分析表明,3组样品的锆石U-Pb年龄分别为127±2Ma、133±2Ma和123±1Ma,即白音高老组火山岩形成于133~123Ma,为早白垩世岩浆活动的产物。岩石学和岩石地球化学特征显示,白音高老组火山岩类似于高分异的Ⅰ型花岗岩,有斜长石和少量角闪石部分熔融残留。锆石的176Hf/177Hf值介于0.282854~0.283026之间,εHft)为较高的正值,变化于+5.5~+11.5之间,Hf二阶段模式年龄(TDM2)为828~439Ma,表明兴安地块地壳的主体增生年代为新元古代—显生宙。通过对比东北地区(以邻区为主)同时代岩浆-构造活动,研究区内白音高老组火山岩形成于伸展构造环境,这种伸展构造环境的形成可能与古太平洋板块俯冲于欧亚大陆之下的弧后伸展环境有关。

    Abstract:

    The volcanic rocks in Baiyingaolao Formation are located in Suolun area of Horqin Right Wing Front Banner within central Da Hinggan Mountains.Lithologically, the Baiyingaolao Formation is composed mainly of rhyolites and rhyolitic tuffs.Three groups of zircon samples yielded U-Pb ages of 127±2Ma, 133±2Ma and 123±1Ma respectively.The results of LA-ICP-MS zircon U-Pb dating indicate that the volcanic rocks in the Baiyingaolao Formation of the study area were formed during the Early Cretaceous period with ag-es of 133~123Ma.Petrological and geochemical characteristics of these volcanic rocks suggest that they are all highly fractionated rocks similar to I-type granite rocks, and their parental magmas were likely derived from the partial melting of lower crustal materials with pla-gioclase and a little hornblende as the residual phases.In addition, the volcanic rocks sampled in this paper, tectonically located in the Xing'an terrain, have high initial 176Hf/177Hf ratios (0.282854~0.283026) and positive εHf(t) values (+5.5~+11.5).These data, combined with young Hf two-stage model ages of 828~439Ma, suggest that the crustal growth of the Xing'an terrain occurred during Neopro-terozoic and Phanerozoic periods.The above results, combined with previous studies of the contemporaneous magma-tectonic activi-ties in Northeast China, imply that the generation of the Early Cretaceous volcanic rocks in the central Da Hinggan Mountains was relat-ed to the extensional environment caused by the subduction of the Paleo-Pacific plate beneath the Eurasian continent.

  • 徐淮推覆-褶皱带位于华北板块东南缘、郯庐断裂西侧(图 1),为该区重要的陆内变形带。区域内徐淮断裂-褶皱系统由北向南走向由NNE—近NS—NW变化,也称为徐淮弧。弧顶位于萧县—淮北市一带, 与华北板块的其余构造形态具有明显差别(图 1)。早在20世纪90年代,徐树桐等[3]将其称为半圆形造山带或大型褶皱逆冲推覆体;王桂梁等[4]提出区域构造表现为弧形双冲-叠瓦状逆断层特点;彭凌日等[5]与Shu等[1]认为,区域构造属于挤压背景下的薄皮构造模型,表现为区域上普遍存在一系列弧形的斜歪褶皱、逆冲推覆构造。以上均为该区构造样式成因的研究,取得较多成果,而对于区域广泛存在的滑脱层研究不足[1, 1-5]

    图  1  研究区构造位置图[1-2]
    Figure  1.  Structural location of the study area

    滑脱层的存在影响盖层与基底间界面的剪切强度,使褶皱-冲断带构造传播方式及构造样式发生变化[6]。通常滑脱层能使构造变形传播距离更远,并且不同厚度滑脱层影响后冲断层的发育数量及构造的对称性,形成隔挡隔槽式褶皱、等间距逆冲断层、反冲断层等典型构造[7-9];滑脱层深度及强弱性质的改变将影响构造变形的传播特征及褶皱、断层构造的样式和间距变化[10-13]

    随着构造物理模拟手段的不断完善,它已成为地质学家认识构造变形过程、分析构造成因机制的重要手段[14-19]。本文选取徐淮推覆-褶皱带为研究对象,结合前人研究资料,采取物理模拟手段对区域滑脱层深度变化、滑脱层摩擦系数的控制作用进行探索,进而对区域构造样式的控制因素和形成机制进行研究。

    研究区沉积盖层在东西向剖面上表现为东侧盖层厚度大于西侧(图 2-b),基底为太古宇泰山群变质岩,盖层分为3个亚层,即青白口系—震旦系、寒武系—奥陶系、石炭系—二叠系,相应亚层的分布表现为下部的青白口系—震旦系多为碎屑岩-碳酸盐岩沉积,岩石组成多为叠层石灰岩与白云岩,中部的寒武系—奥陶系主要为浅海碳酸盐岩,石炭系—二叠系以滨海相灰岩及滨海湖泊-三角洲体系陆源碎屑岩沉积为主,其中山西组和上、下石盒子组是主要的含煤层系[21-22]。结合前人野外调查,区域上滑脱层普遍发育,主要为页岩、膏岩泥灰岩及煤层,分别为青白口系泥灰岩、寒武系猴家山组与馒头组页岩、奥陶系贾汪组页岩与马家沟组膏岩、石炭系—二叠系页岩及煤层(图 3[1, 23]。其中,青白口系泥灰岩、寒武系页岩、石炭系—二叠系页岩及煤层作为主要拆离层控制区域主要构造变形[24]

    图  2  徐淮地区构造简图(a)及典型剖面示意图(b)[1-2, 20]
    Figure  2.  Structural sketch map(a)and typical cross-section(b) of Xu-Huai area
    图  3  研究区主要滑脱层分布[1]
    Figure  3.  Distribution of main decollement in the study area

    研究区以逆冲推覆构造为主,未卷入结晶基底,属于典型的薄皮构造(图 2-a),平面上逆冲推覆构造为一系列走向由北向南、由NNE—近NS—NW变化的逆断层及伴生斜歪褶皱[5],如白土镇东斜歪褶皱的轴面产状为144°∠75°,高角度逆断层的产状为137°∠71°,低角度逆断层的产状为124°∠41°(图 4),表明该区受到从南东向北西的挤压应力场作用。

    图  4  白土镇斜歪褶皱和逆断层
    Figure  4.  Inclined fold and thrust of Baitu Town

    结合前人在该区域进行的构造应力场研究[1, 25-26],区域受2期应力场作用,分别是早燕山期SE—NW向挤压及晚燕山期NNE—SSW向挤压力。本次研究通过61个野外共轭节理、断面擦痕求应力场,并利用赤平投影求得最大主应力轴(σ1)优势方位,2个极密点方位为200°∠6°、133°∠6°,表明该2期应力场方位与前人研究一致(图 5)。虽然晚燕山期受NNE向挤压,导致该区侏罗纪—白垩纪盆地发育,但仍以早燕山期SE—NW向挤压作用形成的构造格局为主[4, 27]

    图  5  区域最大应力场统计极密图
    (A与B代表研究区最大主应力轴机密点)
    Figure  5.  Statistics of the region's maximum stress field

    以皇藏峪背斜为界将研究区构造划分为东部构造带与西部构造带(图 2-b),东部构造带主要为一系列斜歪褶皱,少量叠瓦状分支断层;西部构造带表现为强烈变形,发育一系列逆冲断层。总体构造具明显东西分带的特点[3, 20]

    构造物理模拟实验遵循相似原则,即几何学相似、动力学相似、运动学相似,实验材料物性、模型尺寸等需要与自然界中实际的相应参数保持一定比值[28-29]。本次实验中所用材料为石英砂、微玻璃珠及硅胶。

    干燥石英砂用于模拟脆性的上覆岩层,其物理性质为脆性且遵循库伦-莫尔破坏准则,内摩擦角为31°左右,内聚力极小[30],变形过程中铺设的石英砂颗粒将出现从应变硬化-应变软化的过渡,导致影响断层角度的内摩擦系数稍小于未变形前岩石的内摩擦系数[31-32]。石英砂颗粒直径为200~300μm,根据不同的铺沙方式(筛或直接倒入模型中),密度会有差别,总体密度在1.3~1.6g/cm3之间。人工烧结的彩色石英砂颗粒一般物性不发生改变,铺设1mm厚彩色石英砂于模型中作为观察构造变形的标志层[33]

    微玻璃珠通常用于模拟强滑脱层,表面光滑且磨圆度好,玻璃珠内聚力几乎为零,内摩擦角为25°左右[34-35],应变软化幅度很小,变形前后内摩擦角变化不大。本次实验使用直径为300μm的微玻璃珠充当强滑脱层,铺设于模型最底部[36]

    硅胶为透明高粘度的材料,用于模拟上地壳的塑性变形,在低应变速率下具有牛顿流体性质且具有非常低的屈服强度[37]。测得室温下本实验材料粘度为1.2×104Pa.s, 密度为0.926g/cm3, 铺设2~3mm于基底之上,作为弱滑脱层,控制变形传播距离,产生各类褶皱-冲断构造[7, 38-39]

    根据相似原理,模型与地质原型长度的相似因子L*为1×10-5(即实验室中模型1cm代表自然界中1km的长度);地质原型中沉积岩的平均密度为2.6g/cm3, 模型中石英砂与微玻璃珠的平均密度为1.4g/cm3, 所以实验设定的密度相似因子为0.5[40];模型与地质原型的重力加速度相同,为9.8m/s2, 重力加速度相似因子为1;关于硅胶滑脱层,粘度一般为1×104Pa.s, 而地质原型相应地层的粘度为1×1019Pa.s, 粘度相似因子为1×10-15*代表相应模型参数与地质原型参数的比值)。

    根据前人对徐淮地区变形的年代学数据及缩短率的研究[23, 25],推算出地质原型变形速率为1~10mm/a,因而设置实验室计步器推挤速率为0.005mm/s,结合速度相似因子v*=5×104,实验中模拟地质原型的挤压速率为3.2mm/a,与推算变形速率(1~10mm/a)大小为同一数量级,符合构造模拟相似条件。

    根据控制变量法来改变滑脱层深度及滑脱层物理性质[6, 17],设计2组实验。第一组实验设计2个模型分别为模型1与模型2,初始尺寸均为600mm×400mm×24mm,且底板水平。模型1使用4mm厚微玻璃珠作为强滑脱层,20mm厚的石英砂作为盖层,而模型2则用一层厚4mm的硅胶层为弱滑脱层,盖层材料与厚度均与模型1相同(图 6-ab)。模型两侧为钢化玻璃,为减少边界效应的影响,在实验前用无水酒精将其擦拭干净。

    图  6  徐淮推覆-褶皱构造带物理模拟
    Figure  6.  Physical modeling of Xu-Huai thrust-fold belt

    第二组实验设计2个模型分别为模型3和模型4,尺寸均为600mm×400mm×24mm, 模型底板均保持水平,考虑到滑脱层深度变化的影响,模型中均设计有先存的台阶式隆起,模型3距离活动端430mm处设置有5mm高的台阶状基底隆起,而模型4则在距活动端430mm处设置为10mm高的台阶状隆起。模型3、4底部均有一层厚4mm的硅胶层作为滑脱层,盖层为石英砂,两模型材料厚度均为24mm(图 6-cd)。

    4个模型均从右侧施加挤压力,活动端推板运动速度均为0.005mm/s,根据前人对区域平衡剖面恢复所得缩短率[1, 25],本文模型缩短率取30%,每组实验过程通过照相机定时,每隔5min照相记录。

    实验过程分为4个阶段。阶段一,缩短率为2.00%时,在靠近活动端出现前冲断层1及断层相关褶皱,形成构造单元Ⅰ;阶段二,缩短率为13.50%时,构造单元Ⅰ中发育1号断层的分支断层2,以及从微玻璃珠滑脱层逐渐向地表延伸的断层3、4,此时该单元具逆冲叠瓦构造特点,位于构造单元Ⅰ前方1.6cm处发育受前冲断层5控制的构造单元Ⅱ;阶段三,缩短率为20.50%时,构造单元Ⅱ形成与构造单元Ⅰ相同的构造样式,其中断层6为断层5的分支断层,调节断层运动,位于构造单元Ⅱ前方3.8cm处(相比前者间距更远)发育受前冲断层7控制的构造单元Ⅲ;阶段四,缩短率为30.00%时,构造单元Ⅲ形成构造与前者相同,其中断层9为分支断层(图 7)。

    图  7  物理模拟模型1演化图
    a~d—缩短率分别为2.00%、13.50%、20.50%、30.00%;e—缩短率为30.00%时沿挤压方向的横切剖面图;
    1~9代表相应断层发育顺序;Ⅰ~Ⅲ代表相应构造单元发育顺序
    Figure  7.  The sequential photographs showing deformation evolution of model 1

    实验所切剖面见3个间距明显不同的构造单元。构造单元Ⅰ主要受1~4前冲断层控制,形成堆垛式逆冲叠瓦构造及断层相关褶皱;构造单元Ⅱ与构造单元Ⅲ构造样式与构造单元Ⅰ相同,各个构造单元内断层间距变化均表现为朝固定端(前陆)逐渐增大,与前人研究结果一致[14, 41]图 7-e图 8-f)。

    图  8  徐淮推覆-褶皱带物理模拟中模型1(a)、模型2(b)的断层角度/缩短率关系图(1~9代表相应断层编号)、模型1与2楔长/缩短率(c)、楔高/缩短率(d)、楔角/缩短率(e)对比图及最终剖面上断层间距/断层顺序(f)对比图
    (断层顺序1~8代表活动端向固定端测量断层间距的顺序)
    Figure  8.  Model 1(a), model 2(b) fault angle/shortening ratio diagram, model 1 and 2 wedge long/short ratio(c), wedge high/ short ratio(d), wedge angle/short ratio(e) contrast diagram and the final section on fault distance/order(f) contrast diagram

    随着缩短率逐渐增加,楔长变化表现为增长至逐渐稳定的特点,楔长增加代表构造变形向固定端(前陆)传播,直至近稳定状态,最前端的断层前方未出现新构造使楔长不变或小幅减小;楔高则随缩短率增加逐渐增加,但增高速率逐渐减小(图 8-cd),与前人观点一致[42]。组成构造单元Ⅰ的断层1、2、3、4角度变化具有较好的相关性,表现为晚出现的断层角度变化均会对早出现的断层角度产生影响;组成构造单元Ⅱ的断层5、6中,断层6角度逐渐小幅度增加,而断层5角度先增大后稳定,随后按该变化趋势发生变化;组成构造单元Ⅲ的断层7、8、9断层角度变化速率最慢,断层角度缓慢增加直至稳定,可见断层越远离力源,角度变化越容易达到稳定状态,并受晚期新构造影响越小(图 8-a)。

    地表楔形隆起主要受到基底滑脱面性质及上覆材料强度的影响[14, 43]。随缩短率增加,活动端产生的楔状隆起角度达到临界角度之后,由于前缘未出现新断层,使角度继续增大向超临界角发展,直至前缘出现新断层,楔形隆起角度将减小,并向着次临界角值发展,达到相应次临界角后将再次增大(图 8-e),可见楔体达到临界角度后仍处于非稳定状态,而不是保持该状态向固定端方向稳定传播。模型1中,缩短率为8.75%时,楔角增大至相应超临界角,随后向一定次临界角值减小,缩短率为13.75%、23.75%时,相应状态下相应次临界角值再增大,符合前人观点[44-46]

    按构造单元将实验过程分为5个阶段。阶段一,缩短率为2.00%时,形成由前冲断层1与断层相关褶皱组成的构造单元Ⅰ;阶段二,缩短率为13.00%时,构造单元Ⅰ中发育后冲断层,此时断层相关褶皱形态为不对称箱状,位于构造单元Ⅰ前方,构造单元Ⅱ出现,主要由一对前后冲断层及断层相关褶皱组成;阶段三,缩短率为18.25%时,构造单元Ⅰ、Ⅱ继续发育,构造单元Ⅲ前方出现由只受前冲断层控制的构造单元Ⅲ;阶段四,缩短率为23.25%时,构造单元Ⅲ未出现后冲断层,断层相关褶皱形态为尖棱斜歪,并在其前方出现由前冲断层组成的构造单元Ⅳ;阶段五,缩短率为30.00%时,构造单元Ⅳ继续发育,表现为宽阔斜歪褶皱(图 9)。

    图  9  物理模拟模型2演化图
    a~e—缩短率分别为2.00%、13.00%、18.25%、23.25%、30.00%;
    f—缩短率为30.00%时沿挤压方向的切片图;1~5代表相应断层发育顺序;
    Ⅰ—Ⅴ代表相应构造单元发育顺序(1’、2’、4’、5’代表与1、2、4、5同时生成的断层)
    Figure  9.  The sequential photographs showing deformation evolution of model 2

    实验所切剖面见5个明显构造单元。构造单元Ⅰ、Ⅱ、Ⅳ、Ⅴ均由前、后冲断层及断层相关褶皱组成,其中褶皱为不对称箱状;构造单元Ⅲ由前冲断层及断层相关褶皱组成,其中褶皱表现为尖棱斜歪特点。断层间距均大于模型1,表现为先减小后增大的特点(图 8-f图 9-f)。

    实验过程中楔长变化主要为增长-稳定交替变化特点,其中稳定阶段时间略小于模型1,但模型2楔长普遍大于模型1,表明模型2构造变形传播的更远;楔高逐渐增大,至缩短率13.75%达到近稳定状态,随后楔高小幅度变化;活动端地表隆起楔角在缩短率为6.25%时,达到相应超临界角后,楔角下降,随缩短率增加,楔角减小速率逐渐变小,直至楔角趋于近稳定状态,达到临界值。实验过程中模型2楔角值均小于模型1,符合Davis等关于基底摩擦系数对库伦楔角影响的认识(图 8-cde)[45]。各断层角度变化趋势相似,均表现为增大-稳定(图 8-b)的变化趋势。

    实验过程分为6个阶段。阶段一,缩短率为2.00%时,最先在活动端处出现构造单元Ⅰ,表现为一对前冲后冲断层,地表微微隆起;阶段二,缩短率为11.50%时,构造单元Ⅰ断层持续活动,断层相关褶皱表现为不对称箱状特点,在构造单元Ⅰ前方出现受前冲断层控制的构造单元Ⅱ;阶段三,缩短率为16.50%时,构造单元Ⅱ出现后冲断层,使断层相关褶皱表现为箱状特点,并在前方构造单元Ⅲ开始发育受前冲断层控制的断层相关褶皱,同时滑脱层深浅变化处发育构造单元Ⅲ’的断层转折褶皱;阶段四,缩短率为25.50%时,构造单元Ⅰ、Ⅱ持续活动,与Ⅰ、Ⅱ构造演化特点相同,在构造单元Ⅲ与Ⅲ’之间发育构造单元Ⅳ的受前冲断层控制的断层相关褶皱,褶皱形态宽缓;阶段五,缩短率为29.50%时,在构造单元Ⅲ’前方发育构造单元Ⅴ的前冲断层及断层相关褶皱,褶皱波长较小;阶段六,缩短率为31.70%时,构造单元Ⅳ持续活动,但未见后冲断层,构造单元Ⅴ的褶皱高度明显增加,相应断层延伸至地表(图 10)。

    图  10  物理模拟模型3演化图
    a~f—缩短率分别为2.00%、11.50%、16.50%、25.50%、31.70%;
    g—缩短率为31.70%时沿挤压方向的切片图;Ⅰ—Ⅵ—代表相应构造单元发育顺序(其中Ⅲ’代表与Ⅲ同时生成的构造单元)
    Figure  10.  The sequential photographs showing deformation evolution of model 3

    实验所切剖面见7个明显的构造单元,构造单元Ⅰ、Ⅱ、Ⅲ主要受前冲断层及伴生的后冲断层控制,形成箱状褶皱;构造单元Ⅳ只受前冲断层控制,断层相关褶皱为宽缓斜歪褶皱,具明显不对称性;构造单元Ⅲ’、Ⅴ、Ⅵ受前冲断层控制,其中构造单元Ⅱ、Ⅰ’表现为断层转折褶皱,构造单元Ⅴ、Ⅵ组成逆冲叠瓦构造。深滑脱层区域各构造单元间距较大,平均间距为6.5cm,发育4个构造单元;浅滑脱层区域构造单元间距较小,从构造单元Ⅲ’至Ⅵ间距为先增大后减小;滑脱层深度变化处则对应剖面中波长最大的向斜(图 10-g图 11-c)。

    图  11  徐淮推覆-褶皱构造带物理模拟中模型3(a)、模型4(b)相应构造单元隆起高度/缩短率关系图和相邻构造单元间距/次序关系图(c)
    (次序1~6代表从活动端向固定端测量断层间距的顺序;Ⅰ~Ⅴ代表构造单元先后顺序)
    Figure  11.  Model 3 (a) and model 4 (b) uplift height of the corresponding tectonic units/shortening rate diagram and adjacent structural unit spacing/sequence diagram (c)

    实验中随着缩短率逐渐增大,构造单元Ⅰ、Ⅱ、Ⅲ隆起高度变化为增大-稳定不断循环的特点,证明模型中导致构造活动的应力集中过程是不稳定的,使得相应构造单元的活动具有乱序性,但处于滑脱层深浅变化附近的构造单元Ⅲ’与Ⅳ的隆起高度持续增加,未表现明显的稳定期,其中晚期出现的Ⅲ’构造单元最终隆起高度甚至超过了构造单元Ⅱ、Ⅲ(图 11-a)。

    实验过程主要划分为5个阶段。阶段一,缩短率为1.75%时,构造单元Ⅰ发育由后冲断层控制的断层相关褶皱;阶段二,缩短率为8.75%时,构造单元Ⅰ持续活动,形成明显斜歪褶皱,位于滑脱层深浅变化处见构造单元Ⅱ的断层转折褶皱;阶段三,缩短率为15.00%时,在构造单元Ⅰ与Ⅱ前方同时发育构造单元Ⅲ、Ⅲ’,两者均表现为受前冲断层控制的断层相关褶皱,构造单元Ⅰ出现2条不同深度的前冲断层,表现出叠加褶皱的特点;阶段四,缩短率为21.75%时,构造单元Ⅱ与Ⅲ’之间出现构造单元Ⅳ,表现为断层相关褶皱;阶段五,缩短率为30.00%时,在构造单元Ⅲ前方出现构造单元Ⅴ,该构造受前后冲断层控制属于冲起构造,构造单元Ⅳ进一步发育,表现为尖棱斜歪的断层相关褶皱(图 12)。

    图  12  物理模拟模型4演化图
    a~e—缩短率分别为1.75%、8.75%、15.00%、21.75%、30.00%;f—缩短率为30.00%时沿挤压方向的切片图,
    Ⅰ~Ⅴ代表相应构造单元发育顺序(其中Ⅲ’代表与Ⅲ同时生成的构造单元)
    Figure  12.  The sequential photographs showing deformation evolution of model 4

    实验所切剖面见6个明显的构造单元,构造单元Ⅰ中晚期低角度前冲断层将早期一对前后冲逆断层切断,最终表现褶皱为共轴叠加褶皱;构造单元Ⅲ’与Ⅳ主要受前冲断层控制,其中构造单元Ⅲ’为尖棱斜歪褶皱,Ⅳ为箱状斜歪褶皱;构造单元Ⅱ、Ⅲ受前冲断层控制,其构造单元Ⅱ主要表现为断层转折褶皱,构造单元Ⅲ为逆冲叠瓦构造及断层相关褶皱;构造单元Ⅴ受前后冲断层控制,属于冲起构造。深滑脱层区域各构造单元间距较大,向固定端间距逐渐增加,发育3个构造单元;浅滑脱层区域构造单元间距较小,且向固定端逐渐减小;滑脱层深度变化处也对应剖面中明显波长最大的向斜(图 11-c图 12-f)。

    随着缩短率的增加,构造单元Ⅰ、Ⅱ、Ⅲ及Ⅲ’隆起高度先增大后趋于稳定,相应构造单元高度达到稳定状态后将不会改变,构造单元Ⅳ隆起高度增长最快,最终高度超过早于其出现的构造单元Ⅲ与Ⅲ’(图 11-b)。

    模型1基底之上为强滑脱层(微玻璃珠),随着缩短率增加,构造样式为逆冲叠瓦构造,表现为前展式传播形式,最终传播距离16.5cm,而模型2基底之上为弱滑脱层(硅胶),构造主要表现为不对称箱状褶皱及尖棱褶皱,构造传播方式与模型1相同,但变形向前缘方向传递距离明显大于模型1(图 7图 9)。可见,滑脱层强弱差异控制着不同的构造样式。

    模型3、4所设置装置底部不同高度台阶式抬升,使滑脱层深度发生变化,从而改变上覆盖层厚度与脆性层强度,使构造变形传播不再是传统的前展式,而呈乱序式,且在滑脱层深浅变化处容易应力集中而较早发生变形[17],变形传播距离相较于模型2更远。对于模型3与4,由于基底隆起高度大小差异,模型3(低基底隆起条件)在深滑脱层区域将出现更多的构造单元;模型3在深滑脱层区域普遍出现受前后冲断层控制的箱状断层相关褶皱,模型4除构造单元Ⅰ发育共轴叠加褶皱外,均表现为受前冲断层控制的斜歪褶皱特点,在浅滑脱层区域两者构造样式基本相同,主要为断层相关褶皱与逆冲断层(图 10图 12)。因此,滑脱层深度变化对盖层相关构造变形具有明显影响。

    徐淮地区构造变形属于典型挤压背景下的薄皮构造,发育于早燕山期的滑脱构造,具有明显东西分带的特点,由东向西变形强度逐渐增强。以皇藏屿背斜为界,该界以西构造变形涉及盖层主要为寒武系—奥陶系与石炭系—二叠系,盖层厚度较小,发育一系列逆冲断层;该界以东构造变形涉及盖层主要为震旦系—奥陶系,盖层较厚,广泛发育轴面向SE方向倾斜的斜歪褶皱,叠瓦状分支断层较少[1]

    通过4个模型所切剖面与实际构造变形对比,认为实验模型4与区域上剖面具有较好的相似性,模型基底抬升处产生的背斜与皇藏峪背斜位置相当,虽然区域上变形含有多层滑脱层,但结合构造变形变化特点与物理模拟实验结果,认为区域上构造变形主要受2层不同深度滑脱层控制,分别是青白口系泥灰岩与寒武系页岩。以滑脱层抬升处(皇藏屿背斜)为界线,出现的褶皱间距及构造强弱的变化在模型4中有良好表现。滑脱层深度小,出现较密集的逆断层;滑脱层深度大,则构造形态以大波长的斜歪褶皱为主,断层未延伸至地表(图 13)。

    图  13  物理模拟模型4(b)与徐淮地区构造剖面(a)对比图
    Figure  13.  comparison diagram of model 4 (b) and the construction section (a) of the Xu-Hai area

    本文对徐淮地区构造地质原型设计了2组实验,通过改变模型的材料及边界条件,研究了滑脱层性质及滑脱层深度变化对构造变形的控制作用,取得了与地质原型相似的模拟结果。然而自然界构造变形复杂,如多期构造叠加、沉积与剥蚀作用、多层滑脱层等。本次研究从主要控制因素入手,对地质原型进行模型化与理想化。该区存在多层滑脱层,滑脱层平面展布未能考虑,因而对于盖层变形控制不全面,有待进一步探讨滑脱层平面展布等因素对区域构造的影响。

    (1) 滑脱层控制徐淮地区薄皮构造的形成,滑脱层的存在使得变形向前传播距离更远,是形成徐淮地区构造样式的主控因素,缺少滑脱层构造变形则表现出一系列堆垛式逆冲断层特点。

    (2) 徐淮地区存在多套滑脱层,模拟实验表明,控制区域上东西构造样式变化的滑脱层主要有2套,分别为青白口系泥灰岩(深滑脱层)和寒武系页岩(浅滑脱层)。以皇藏屿背斜为界线,界线以西,滑脱层深度较浅,构造变形强烈,构造间距密集,逆冲断层普遍发育;界线以东,滑脱层深度较深,构造间距较大,主要发育斜歪褶皱,断层未能延伸至地表。

    致谢: 成文过程中得到吉林大学杨德明和马瑞教授的帮助,修改过程中得到吉林大学葛文春教授和吉林农业大学隋振民教授的指导,吉林大学杨浩、董玉、王智慧博士和杜岳丹硕士提出宝贵的修改意见,在此一并致以衷心的感谢。
  • 图  1   东北地区构造简图(a)和研究区地质简图(b)

    Figure  1.   Tectonic sketch map of Northeast China (a) and simplified geological map of the study area (b)

    图版Ⅰ  

    a、b.分别为样品P23-26-2流纹岩野外露头照片和薄片镜下照片;c、d.分别为样品P18-3-1流纹质晶屑凝灰岩野外露头照片和薄片镜下照片;e、f.分别为样品AB7112英安质岩屑晶屑角砾凝灰岩野外露头照片和薄片镜下照片。Af—酸性斜长石;Pl—斜长石;Q—石英

    图版Ⅰ.  

    图  2   白音高老组火山岩代表性锆石的阴极发光(CL)图像

    (图中圆圈为点位,数字为点号,年龄值为206Pb/238U年龄)

    Figure  2.   CL images of representative zircons for volcanic rocks of Baiyingaolao Formation

    图  3   LA-ICP-MS锆石U-Pb谐和图

    Figure  3.   Zircon U-Pb concordia diagram measured by LA-ICP-MS

    图  4   白音高老组火山岩TAS(a)、SiO2-K2O(b)和A/CNK-A/NK图解(c)

    Figure  4.   Diagrams of TAS (a), SiO2-K2O (b) and A/CNKA/NK (c) for volcanic rocks from Baiyingaolao Formation

    图  5   球粒陨石标准化稀土元素配分曲线(a)[20]和原始地幔标准化微量元素蛛网图(b)[21]

    Figure  5.   Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b)

    图  6   白音高老组火山岩SiO2-P2O5 (a)、SiO2-Al2O3 (b)、Rb-Th (c)和Rb-Y (d)图解

    Figure  6.   SiO2-P2O5(a), SiO2-Al2O3 (b), Rb-Th (c) and Rb-Y (d) discrimination diagrams for volcanic rocks from Baiyingaolao Formation

    图  7   白音高老组火山岩Sr-Ba图解(a)和锆石t-εHf(t)图解(b)

    Figure  7.   Diagrams of Sr-Ba for volcanic rocks (a) and t-εHf(t) (b)for zircons of volcanic rocks from the Baiyingaolao Formation

    图  8   白音高老组火山岩Y-Nb(a)和(Y+Nb)-Rb(b)图解

    Figure  8.   Diagrams of Y-Nb(a) and (Y+Nb)-Rb(b) for volcanic rocks from the Baiyingaolao Formation

    表  1   白音高老组火山岩LA-ICP-MS锆石U-Th-Pb分析结果

    Table  1   LA-ICP-MS zircon U-Th-Pb data for volcanic rocks of Baiyingaolao Formation

    样品编号PbThU Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
    /10-6比值比值比值年龄/Ma年龄/Ma
    P23-26-2 样品岩性为流纹岩
    024.481011810.560.04830.00300.1320.00800.01970.0005812671264
    035.941082530.430.04830.00320.1320.00840.01980.0006112681274
    043.7997.61550.630.05140.00530.1360.0140.01920.00075130121235
    054.311171660.710.04770.00320.1320.00860.02020.0006112681294
    064.4885.71780.480.04570.00260.1300.00730.02070.0005912571324
    0712.65474361.260.04700.00160.1300.00460.02010.0005112441283
    0811.82904630.630.04650.00170.1310.00490.02040.0005212541303
    0921.25256160.850.05560.00710.1520.0190.01980.00060143161264
    108.352373100.760.04620.00260.1310.00720.02060.0005912561314
    116.531441980.730.05520.00590.1650.0170.02170.00063155151384
    129.314043041.330.04620.00250.1320.00700.02070.0005812661324
    136.51712620.650.04830.00320.1310.00860.01980.0006112581264
    145.871662240.740.04780.00350.1330.00950.02030.0006412781294
    159.984593561.290.05380.00270.1410.00700.01910.0005313461223
    169.863603660.980.05030.00220.1350.00610.01950.0005212851243
    176.191192000.590.04770.00490.1460.0140.02230.00067139131424
    184.861331860.720.05000.00310.1380.00840.02000.0005913171274
    1911.15263781.390.05020.00180.1360.00500.01960.0005012941253
    2012.14934281.150.05000.00190.1380.00530.02000.0005213151283
    2113.95834661.250.04760.00220.1320.00600.02010.0005412651283
    2210.72754400.630.05290.00250.1390.00670.01910.0005313261223
    2318.44977180.690.04720.00160.1290.00460.01990.0005012341273
    245.322161941.110.04870.00250.1310.00670.01950.0005312561243
    2511.26533701.760.05480.00200.1400.00530.01850.0004813351183
    P18-3-1 样品岩性为流纹质凝灰岩
    012.7048.71080.450.04770.00360.1420.0110.02170.00068135101384
    024.731051840.570.04900.00230.1460.00690.02160.0005913861384
    032.7646.81130.420.04810.00380.1430.0110.02160.00071136101384
    042.7251.11140.450.04980.00320.1400.00880.02050.0006113381314
    0514.83835910.650.05100.00150.1430.00460.02030.0005213541303
    064.4351.11440.360.05120.00300.1880.0110.02660.0007817591695
    076.531542620.590.04850.00260.1380.00740.02070.0005913271324
    086.551312610.50.05030.00200.1460.00590.02100.0005613851344
    095.451012130.480.05070.00230.1500.00700.02150.0005914261374
    104.231191310.90.05300.00710.1630.0210.02230.00073153181425
    115.851342270.590.05180.00220.1500.00660.02090.0005614161344
    126.861522850.530.05100.00280.1400.00770.01990.0005713371274
    136.862132370.90.05270.00370.1530.0110.02110.0006714591354
    141.0831.241.60.750.05500.0100.1550.0290.02050.0011146251307
    155.421062240.470.05470.00250.1510.00700.02010.0005414361283
    164.411111770.630.05480.00320.1490.00860.01980.0005814181264
    174.9290.91880.480.04880.00260.1450.00770.02160.0005913771384
    189.944603011.530.05120.00200.1490.00590.02110.0005414151353
    193.3555.21290.430.04850.00370.1460.0110.02190.00067139101404
    204.6396.61810.530.05220.00250.1480.00720.02060.0005514061313
    214.491461610.910.05210.00270.1480.00770.02060.0005614071324
    226.72892461.170.05680.00360.1450.00910.01850.0005613781184
    235.621352170.620.05010.00300.1410.00830.02040.0005713471304
    241.9537.974.80.510.05420.00430.1540.0120.02070.00064146111324
    255.891932310.840.05360.00380.1420.00980.01920.0005913491224
    AB7112 样品岩性为英安质岩屑晶屑角砾凝灰岩
    015.4876.62210.350.04930.00160.1290.00380.01890.0003112331212
    027.052052570.80.04850.00120.1310.00270.01960.0003012521252
    037.8252.82420.220.04980.00240.1280.00580.01860.0003712251192
    044.9670.81950.360.05170.00160.1340.00360.01890.0003012831202
    056.611122760.410.04920.00120.1250.00260.01840.0002811921182
    067.5282.33060.270.04880.00120.1300.00260.01940.0002912421242
    075.8195.32380.40.04830.00120.1260.00270.01890.0002912021212
    084.9385.81920.450.06100.00240.1630.00580.01940.0003115351242
    098.4791.73470.260.04740.00110.1270.00250.01950.0003012221242
    106.511232550.480.04840.00110.1260.00230.01890.0002812121212
    114.8681.41920.420.04710.00120.1260.00280.01940.0003012121242
    126.3481.52460.330.05020.00110.1320.00250.01910.0002912621222
    136.791052770.380.05210.00120.1390.00250.01940.0002913221242
    146.211092480.440.04810.00120.1280.00280.01930.0003012231232
    156.5985.42770.310.04980.00120.1320.00270.01930.0003012621232
    164.25661700.390.04790.00240.1200.00560.01810.0003111551162
    176.5762.52700.230.04770.00120.1300.00270.01980.0003112421262
    184.9489.11950.460.04890.00130.1330.00300.01980.0003112731262
    194.941011750.580.04670.00110.1310.00260.02040.0003112521302
    207.672082730.760.04980.00110.1350.00250.01970.0003012921262
    217.19972780.350.04960.00110.1350.00240.01970.0003012821262
    228.42243150.710.04980.00120.1330.00290.01940.0003112731242
    下载: 导出CSV

    表  2   白音高老组火山岩主量、微量和稀土元素分析结果

    Table  2   Major, trace and REEs data for volcanic rocks of Baiyingaolao Formation

    样品号P23-26-1P23-26-2P24-4-2P24-5-1P18-3-1P15-17-1P2-1-1PB3073AB9145-3PB9012PB4061
    岩石名称流纹岩流纹岩流纹岩流纹岩流纹质凝灰岩流纹岩流纹质熔结凝灰岩流纹岩流纹质晶屑熔岩流纹质晶屑凝灰岩流纹岩
    SiO277.1579.9475.9675.0574.7269.6372.8875.2876.1976.6074.84
    TiO20.080.050.120.150.200.440.230.140.140.140.1
    Al2O311.8310.4913.0013.4913.0615.2613.7713.6113.1812.4913.96
    Fe2O30.561.011.061.361.261.602.651.151.071.061.14
    FeO0.080.130.290.170.551.150.750.690.080.170.55
    MnO0.030.070.030.020.050.080.050.040.050.030.01
    MgO0.100.170.400.230.310.360.200.190.160.080.17
    CaO0.110.170.310.361.770.690.330.170.190.220.15
    Na2O1.031.603.382.933.904.784.593.663.252.823.64
    K2O8.294.823.934.602.934.574.614.364.445.424.67
    P2O50.020.020.040.060.080.090.050.040.030.020.03
    烧失量0.601.321.351.421.071.200.631.321.030.881.27
    总量99.8999.7699.7599.7799.8899.79100.65100.6799.7799.87100.49
    A/CNK1.091.281.251.291.021.081.051.231.251.141.23
    A/NK1.111.331.321.381.361.191.101.271.301.191.26
    Ba5481480637705494749961783767236971
    Rb51515111211965.699.595.7102149180118
    Sr125115120123291195488117116155107
    Y1525.615.115.712.934.726.115.214.817.315
    Zr38.59612712086.6272329147122162155
    Nb5.629.397.486.666.8813.38.857.008.3421.87.09
    Th9.7311.1109.937.106.056.9511.26.9011.111.7
    Pb6324.922.419.718.921.113.114.420.920.717.7
    Ga10.99.081412.815.818.120.213.515.115.415.6
    Zn83.437.757.928.533.768.210191.832.440.613.4
    Cu1.762.312.212.023.133.1310.72.213.589.552.69
    Ni0.562.862.230.992.540.862.881.790.570.481.06
    V1.210.467.045.3825.83.9885.55.111314.53.75
    Cr3.513.621.932.555.292.932.962.105.587.581.95
    Hf1.573.464.003.653.076.907.974.274.146.174.96
    Cs8.204.373.934.502.804.16113.246.274.682.16
    Sc2.032.212.222.123.705.9211.82.052.293.153.14
    Ta0.480.650.700.630.510.800.500.750.831.510.63
    Co0.320.331.470.972.850.998.500.480.530.280.13
    U3.904.022.892.412.102.141.812.935.454.103.2
    La9.2226.32627.22337.732.527.824.444.128.5
    Ce25.351.150.249.542.582.768.346.64465.855.3
    Pr3.156.716.156.375.2410.99.046.054.988.296.23
    Nd11.723.721.222.118.64338.42217.828.922.4
    Sm2.614.173.723.793.338.497.513.622.874.603.54
    Eu0.290.450.470.500.551.621.690.500.540.350.25
    Gd2.063.422.933.062.576.625.882.893.265.422.86
    Tb0.430.620.500.510.431.211.090.450.450.690.48
    Dy2.363.422.512.562.226.185.032.502.233.132.57
    Ho0.500.740.500.510.441.260.960.480.460.630.48
    Er1.412.131.411.441.183.382.461.451.452.051.54
    Tm0.280.410.290.280.220.600.450.250.260.350.32
    Yb1.742.581.881.841.383.792.501.951.772.242.02
    Lu0.410.510.430.430.310.940.360.300.340.440.31
    Eu/Eu*0.370.350.420.440.550.640.750.450.540.210.24
     注:主量元素含量单位为%,微量和稀土元素为 10-6
    下载: 导出CSV

    表  3   白音高老组火山岩锆石Hf同位素分析结果

    Table  3   Zircon Hf isotopic data for volcanic rocks of Baiyingaolao Formation

    样品编号年龄/Ma176Yb/177Hf176Lu/177Hf176Hf/177Hf±2σ176Hf/177HfεHf(0)εHf(t)±2GTDM1/MaTDM2 /MafLu/Hf
    AB7112英安质岩屑晶屑角砾凝灰岩
    011210.0395280.0011800.2829150.0000210.28248157.60.8481693-0.96
    021250.0243340.0006960.2829530.0000270.2826976.49.11420600-0.98
    031190.0438310.0013310.2829860.0000310.2824967.610.11.1380532-0.96
    041200.0212440.0006900.2829200.0000280.2826665.27.81467679-0.98
    051180.0260170.0008600.2830260.0000360.282710911.51.3319439-0.97
    061240.0459120.0014930.2829310.0000320.2823825.68.21.1461655-0.96
    071210.0242700.0007590.2829330.0000280.2826535.78.31450650-0.98
    081240.0488490.0015990.2830080.0000360.2824208.310.91.3351481-0.95
    091240.0374600.0011800.2828540.0000250.2824202.95.50.9567828-0.96
    101210.0383280.0011650.2829110.0000260.2824824.97.50.9486702-0.96
    111240.0609430.0019840.2829380.0000330.2822085.98.41.2458643-0.94
    121220.0581750.0018530.2829160.0000290.2822345.17.61488694-0.94
    131240.0233880.0006630.2829590.0000220.2827166.69.30.8411587-0.98
    141230.0447540.0012940.2828930.0000250.2824174.36.90.9514742-0.96
    151230.0395680.0011500.2829280.0000240.2825055.58.10.9461661-0.97
    161160.0386940.0011930.2829300.0000270.2824915.681460662-0.96
    171260.0389900.0014050.2829230.0000370.2824065.381.3472672-0.96
    181260.0472450.0017000.2828990.0000350.2822734.57.11.2511729-0.95
    191300.0251290.0008240.2829360.0000280.2826325.88.61447638-0.98
    201260.0272420.0008000.2829620.0000230.2826686.79.40.8409580-0.98
    下载: 导出CSV

    表  4   大兴安岭中段索伦地区中生代地层划分对比

    Table  4   Division and correlation of Mesozoic strata inSuolun area of central Da Hinggan Mountains

    内蒙古地质志[7] 内蒙古自治区岩石地层[24] 本文
    伊列克得组 J3y 梅勒图组 K1m 梅勒图组 K1m
    上库力组三段 J3s3 白音高老组 J3b 白音高老组 K1b
    上库力组二段 J3s2 玛尼吐组 J3mn 玛尼吐组 K1 mn
    上库力组一段 J3s1
    木瑞组 J3m 满克头鄂博组 J3m 满克头鄂博组 J3m
    吉祥峰组 J3j
    塔木兰沟组 J2tm 塔木兰沟组 J2tm 塔木兰沟组 J2tm
    下载: 导出CSV
  • 蒋国源, 权恒.大兴安岭根河、海拉尔盆地中生代火山岩[J].中国地质科学院沈阳地质矿产研究所文集, 1988, 3:23-100. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198800019003.htm
    赵国龙, 杨桂林, 王忠, 等.中南部中生代火山岩[M].北京:北京科学技术出版社, 1989.
    林强, 葛文春, 孙德有, 等.东北地区中生代火山岩的大地构造意义[J].地质科学, 1998, 33(2):129-139. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.000.htm
    葛文春, 林强, 孙德有, 等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报, 1999, 15(3):396-406. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199903007.htm
    张吉衡. 大兴安岭地区中生代火山岩的年代学格架[D]. 吉林大学硕士学位论文, 2006.
    张吉衡. 大兴安岭中生代火山岩年代学及地球化学研究[D]. 中国地质大学博士学位论文, 2009.
    内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社, 1991:1-725.

    Wang F, Zhou X H, Zhang L C, et al.Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and Implications for the Dynamic Setting of NE Asia[J].Earth and Planetary Science Let-ters, 2006, 251(1):179-198. https://www.researchgate.net/profile/Xin-Hua_Zhou/publication/222410896_Late_Mesozoic_volcanism_in_the_Great_Xing%27an_Range_NE_China_Timing_and_implications_for_the_dynamic_setting_of_NE_Asia/links/02e7e522537cc420ca000000/Late-Mesozoic-volcanism-in-the-Great-Xingan-Range-NE-China-Timing-and-implications-for-the-dynamic-setting-of-NE-Asia.pdf

    Zhang J H, Ge W C, Wu F Y, et al.Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, northeastern China[J]. Lithos, 2008, 102(1):138-157.

    Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Im-plications for subduction-induced delamination[J]. Chemical Geolo-gy, 2010, 276(3):144-165. http://www.academia.edu/13671242/Destruction_of_the_North_China_Craton_Induced_by_Ridge_Subductions

    Wu F Y, Walker R J, Ren X, et al.Osmium Isotopic Constraints on the Age of Lithospheric Mantle Beneath Northeastern China[J]. Chemical Geology, 2003, 196(1):107-129. https://www.researchgate.net/publication/223399827_Osmium_isotopic_constraints_on_the_age_of_lithospheric_mantle_beneath_northeastern_China

    Wu F Y, Lin J Q, Wilde S A, et al.Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China[J].Earth and Planetary Science Letters, 2005, 233(1):103-119. https://www.researchgate.net/publication/222992706_Nature_and_significance_of_the_Early_Cretaceous_giant_igneous_event_in_eastern_China

    Wu F Y, Sun D Y, Ge W C, et al.Geochronology of the Phanerozo-ic Granitoids in Northeastern China[J]. Journal of Asian Earth Sci-ences, 2011, 41(1):1-30. doi: 10.1016/j.jseaes.2010.11.014

    Koschek G.Origin and significance of the SEM cathodolumines-cence from zircon[J].Journal of Microscopy, 1993, 171(3):223-232. doi: 10.1111/jmi.1993.171.issue-3

    Belousova E, Griffin W L, O'Reilly S Y, et al.Igneous Zircon:Trace Element Composition as An Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622. doi: 10.1007/s00410-002-0364-7

    Anderson T.Correction of Common Lead in U-Pb Analyses that Do Not Report 204Pb[J].Chemical Geology, 2003, 192:59-79. https://www.researchgate.net/publication/222924679_Correction_of_common_lead_in_U-Pb_analyses_that_do_not_report_204Pb

    Yang J H, Wu F Y, Wilde S A, et al.Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton:Geochronological, geochemical and Nd-Hf isotopic evi-dence[J]. Precambrian Research, 2008, 167:125-149. doi: 10.1016/j.precamres.2008.07.004

    Blichert-Toft J, Albarède F.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-crust System[J].Earth and Planetary Science Letters, 1997, 148(1):243-258. https://www.researchgate.net/publication/260885945_The_Lu-Hf_isotope_geochemistry_of_chondrites_and_the_evolution_of_the_mantle-crust_systemEarth_Planet_Sci_Lett_148_1997_243-258

    Veevers J J, Saeed A, Belousova E A, et al.U-Pb Ages and Source Composition by Hf-isotope and Trace-element Analysis of Detri-tal Zircons in Permian Sandstone and Modern Sand from South-western Australia and A Review of the Paleogeographical and De-nudational History of the Yilgarn Craton[J]. Earth-Science Re-views, 2005, 68(3):245-279.

    Boynton W V, Cosmochemisty of the rare earth element:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. New York:Elsevier, 1984:63-114.

    Sun S S, McDongough W F. Chemical and isotopic systematics of oce-anic basalts:implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in Ocean Basins. Geological Society of Special Publication, London, 1989, 42:313-345.

    Kinny P D, Maas R. Lu-Hf and Sm-Nd Isotope Systems in Zir-con[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):327-341. doi: 10.2113/0530327

    许文良, 葛文春, 裴福萍, 等.东北地区中生代火山作用的年代学格架及构造意义[J].矿物岩石地球化通报, 2008, 27(增刊):286-287. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016089738.htm
    内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1996:1-344.
    葛文春, 李献华, 林强, 等.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学, 2001, 36(2):176-183. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200102005.htm
    苟军, 孙德有, 赵忠华, 等.满洲里南部白音高老组流纹岩锆石UPb定年及岩石成因[J].岩石学报, 2010, 26(1):333-344. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001038.htm
    王建国, 和钟铧, 许文良.大兴安岭南部钠闪石流纹岩的岩石成因:年代学和地球化学证据[J].岩石学报, 2013, 29(3):853-863. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303010.htm

    Dong Y, Ge W C, Yang H, et al.Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Forma-tion in the central Great Xing' an Range, NE China, and its tecton-ic implications[J].Lithos, 2014, 205:168-184. doi: 10.1016/j.lithos.2014.07.004

    Kong Y M, Ma R, He Z H, et al.Characteristics and tectonic setting of volcanic rocks in Early Cretaceous Baiyingaolao Formation of Keyouzhongqi area, Inner Mongolia[J].Global Geology, 2014, 17(2):78-85.

    赵书跃, 韩彦东, 朱春燕, 等.大兴安岭火山喷发带北段中性、中酸性火山岩地球化学特征及其地质意义[J].地质力学学报, 2004, 10(3):276-287. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200403009.htm
    林强, 葛文春, 孙德有, 等.大兴安岭中生代两类流纹岩与玄武岩的成因联系[J].长春科技大学学报, 2000, 30(4):322-328. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200004002.htm
    林强, 葛文春, 曹林, 等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学, 2003, 32(3):208-222. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200303001.htm
    葛文春, 林强, 李献华, 等.大兴安岭北部伊列克得组玄武岩的地球化学特征[J].矿物岩石, 2000, 28(3):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200003002.htm
    葛文春, 林强, 孙德有, 等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学-中国地质大学学报, 2000, 25(2):172-178. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002012.htm
    张连昌, 陈志广, 周新华, 等.大兴安岭根河地区早白垩世火山岩深部源区与构造岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制约[J].岩石学报, 2007, 23(11):2823-2835. doi: 10.3969/j.issn.1000-0569.2007.11.013
    郭锋, 范蔚茗, 王岳军, 等.大兴安岭南段晚中生代双峰式火山作用[J].岩石学报, 2001, 17(1):161-168. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101016.htm

    McDonough W F, Sun S S.The Composition of the Earth[J]. Chemical geology, 1995, 120(3):223-253.

    Taylor S R, McLennan S M.The Continental Crust:Its Composi-tion and Evolution[M].Blackwell:Oxford Preess, 1985:1-312.

    Pearce J A.Role of the Sub-continental Lithosphere in Magma Genesis at Active Continental Margins[C]//Hawkesworth C J, Norry M J. Continental Basalts and Mantle Xenoliths, Nantwich, Cheshire:Shiva Publications, 1983:230-249.

    Tischendorf G, Paelchen W.Zur Klassifikation von Granitoiden[J]. Classification of Granitoids Zeitschrift Fuer Geologische Wissen-schaften, 1985, 13(5):615-627.

    Wilson M.Igneous Petrogenesis[M].London:Unwin Hywin Press, 1989:295-323.

    Bea F, Fershtater G, Corretgé L G.The Geochemistry of Phospho-rus in Granite Rocks and the Effect of Aluminium[J].Lithos, 1992, 29(1):43-56.

    Wu F, Jahn B, Wilde S, et al.Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China[J].Tectonophysics, 2000, 328(1):89-113. https://www.researchgate.net/publication/223576713_Phanerozoic_crustal_growth_U-Pb_and_Sr-Nd_isotopic_evidence_from_the_granites_in_northeastern_China

    Wu F, Sun D, Li H, et al.A-type Granites in Northeastern China:Age and Geochemical Constraints on their Petrogenesis[J].Chemi-cal Geology, 2002, 187(1):143-173. https://www.researchgate.net/publication/223536562_A-type_granites_in_Northeastern_China_Age_and_geochemical_constraints_on_their_petrogenesis

    Wu F, Jahn B, Wilde S A, et al.Highly Fractionated I-type Granites in NE China (I):Geochronology and Petrogenesis[J].Lithos, 2003, 66(3):241-273. https://www.researchgate.net/publication/222062598_Highly_fractionated_I-type_granites_in_NE_China_I_Geochronology_and_petrogenesis

    Jahn B, Wu F, Chen B.Massive Granitoid Generation in Central Asia:Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic[J].Episodes, 2000, 23(2):82-92. https://www.researchgate.net/publication/279887806_Massive_granitoid_generation_in_Central_Asia_Nd_isotope_evidence_and_implication_for_continental_growth_in_the_Phanerozoic

    Jahn B M, Wu F Y, Capdevila R, et al.Highly Evolved Juvenile Granites with Tetrad REE Patterns:the Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China[J].Lithos, 2001, 59(4):171-198. doi: 10.1016/S0024-4937(01)00066-4

    Jahn B, Capdevila R, Liu D, et al.Sources of Phanerozoic Granit-oids in the Transect Bayanhongor-Ulaan Baatar, Mongolia:Geo-chemical and Nd Isotopic Evidence, and Implications for Phanero-zoic Crustal Growth[J]. Journal of Asian Earth Sciences, 2004, 23(5):629-653. doi: 10.1016/S1367-9120(03)00125-1

    吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
    隋振民. 大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D]. 吉林大学博士学位论文, 2007.
    隋振民, 葛文春, 吴福元, 等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报, 2007, 23(2):461-480. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702024.htm
    周漪, 葛文春, 王清海.大兴安岭中部乌兰浩特地区中生代花岗岩的成因——地球化学及Sr-Nd-Hf同位素制约[J].岩石矿物学杂志, 2011, 30(5):901-923. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201105014.htm

    Lightfoot P C, Hawkesworth C J, Sethna S F.Petrogenesis of Rhyo-lites and Trachytes from the Deccan Trap:Sr, Nd and Pb Isotope and Trace Element Evidence[J].Contributions to Mineralogy and Petrology, 1987, 95(1):44-54. doi: 10.1007/BF00518029

    Green T H.Experimental Studies of Trace-element Partitioning Applicable to Igneous Petrogenesis-Sedona 16 years later[J].Chem-ical Geology, 1994, 117(1):1-36.

    张旗, 李承东.花岗岩:地球动力学意义[M].北京:海洋出版社, 2012:1-276.

    Shao J A, Zang S X, Mou B L, et al.Extensional tectonics and asthe-nospheric upwelling in the orogenic belt:a case study from Hing-gan-Mongolia Orogenic belt[J].Chinese Science Bulletin, 1994, 39:533-537.

    邵济安, 张履桥, 牟保磊.大兴安岭中南段中生代的构造热演化[J].中国科学(D辑), 1998, 28(3):193-200. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199803000.htm
    邵济安, 张履桥, 牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘, 1999, 6(4):339-346. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199904025.htm
    邵济安, 李献华, 张履桥, 等.南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约[J].地球化学, 2001, 30(6):517-524. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200106002.htm
    邵济安, 刘福田, 陈辉, 等.大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J].地质学报, 2001, 75(1):56-63. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200101010.htm
    邵济安, 张履桥, 贾文, 等.内蒙古喀喇沁变质核杂岩及其隆升机制探讨[J].岩石学报, 2001, 17(2):283-290. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102012.htm

    Fan W M, Guo F, Wang Y J, et al.Late Mesozoic Calc-alkaline Vol-canism of Post-orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China[J].Journal of Volcanology and Geo-thermal Research, 2003, 121(1):115-135. https://www.researchgate.net/profile/Feng_Guo8/publication/223489977_Late_Mesozoic_calc-alkaline_volcanism_of_post-orogenic_extension_in_the_northern_Da_Hinggan_Mountains_northeastern_China/links/0deec52856d217b3e9000000.pdf?disableCoverPage=true

    高晓峰, 郭锋, 范蔚茗, 等.南兴安岭晚中生代中酸性火山岩的岩石成因[J].岩石学报, 2005, 21(3):737-748. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503015.htm
    孟恩, 许文良, 杨德彬, 等.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J].岩石学报, 2011, 27(4):1209-1226. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104029.htm
    秦亚, 梁一鸿, 邢济麟, 等.内蒙古正镶白旗地区早白垩世A型花岗岩锆石LA-ICP-MS测年、地球化学特征及其地质意义[J].吉林大学学报(地球科学版), 2012, S3:154-165. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S3017.htm
    施璐, 郑常青, 姚文贵, 等.大兴安岭中段五岔沟地区蛤蟆沟林场A型花岗岩年代学、岩石地球化学及构造背景研究[J].地质学报, 2013, 87(9):1264-1276. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309006.htm
    张履桥, 邵济安, 郑广瑞.内蒙古甘珠尔庙变质核杂岩[J].地质科学, 1998, 33(2):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.001.htm
    张玉涛, 张连昌, 英基丰, 等.大兴安岭北部扎兰屯脉岩群的地球化学特征及其地质意义[J].岩石学报, 2006, 22(11):2733-2742. doi: 10.3969/j.issn.1000-0569.2006.11.011
    王涛.花岗岩研究与大陆动力学[J].地学前缘, 2000, (7):137-146. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2000S2020.htm
    刘宝山, 任凤和, 李仰春, 等.伊春地区晚印支期Ⅰ型花岗岩带特征及其构造背景[J].地质与勘探, 2007, 43(1):74-78. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200701014.htm
图(9)  /  表(4)
计量
  • 文章访问数:  2553
  • HTML全文浏览量:  293
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-25
  • 修回日期:  2017-01-19
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2017-04-30

目录

/

返回文章
返回