Material sources and ore-forming mechanism of the Huayuan Pb-Zn ore deposit in Hu'nan Province:Evidence from S, Pb, Sr isotopes of sulfides
-
摘要:
湖南花垣铅锌矿床位于扬子地台东南缘,是湘西—黔东地区最典型的超大型铅锌矿床,已探明铅锌储量超过500×104t,其预测资源量逾1800×104t。报道了该矿床主要矿石硫化物的S、Pb同位素研究成果,结合前人的Sr同位素数据,分析了矿床的成矿物质来源,并探讨了成矿机制。硫化物的δ34S值变化范围较小,为24.5‰~34.7‰,平均值为30.2‰,硫来源于各时代碳酸盐地层中硫酸盐热化学还原作用(TSR),有机质在还原反应过程中发挥了重要作用;硫化物的206Pb/204Pb、207Pb/204Pb、208Pb/204Pb值分别为18.139~18.678、15.691~15.832、38.300~39.255,变化范围较小,具有上地壳来源的特点,赋矿地层下部具有高Pb-Zn含量的地层为成矿提供了大量的金属物质;闪锌矿的87Sr/86Sr值变化范围为0.70915~0.70996,高于赋矿地层清虚洞组灰岩的Sr同位素比值(0.70885~0.70909),表明成矿流体可能流经围岩及基底地层,从而引起Sr同位素比值因混染作用而升高;矿石矿物的沉淀机制为2种流体的混合,即含金属物质的成矿溶液与富含有机质、硫酸盐的热水溶液在合适的部位汇合,并发生反应。
Abstract:With proven reserves of more than 5Mt and predicted resources of 18Mt, the Huayuan Pb-Zn ore deposit located on the southeastern margin of the Yangtze Craton is one of the most famous giant Pb-Zn deposits in the Hu'nan-Guizhou metallogenic belt.This paper reports S, Pb, Sr isotopic compositions of ore minerals with the purpose of understanding the sources of ore metals and the genesis of the deposit.The ore sulfides have a narrow range of δ34S values (from 24.5‰ to 34.7‰ with an average value of 30.2‰), suggesting that the sulfur was derived from the carbonate sulfate by thermochemical reduction during which the organic mat-ters played an important role.The 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb ratios of sulfides range from 18.139 to 18.678, from 15.691 to 15.832, and from 38.300 to 39.255, respectively.The relatively homogeneous Pb isotopic ratios are similar to the data of the upper crust, indicating that the underlying strata with high Pb-Zn content probably provided a lot of metal materials for ore mineralization.The 87Sr/86Sr values (from 0.70915 to 0.70996) of sphalerite are higher than the 87Sr/86Sr ratios (from 0.70885 to 0.70909) of the host rock of the Lower Cambrian Qingxudong Formation, implying that the ore-forming fluids probably migrated through the basement rocks and induced the increase of Sr isotopes through water-rock reactions.Precipitation of ore minerals was attributed to the mix-ture of two types of fluids in appropriate structures, i.e., fluid enriched with metal materials and fluid with organic matter and sulfate.
-
龙木错-双湖-澜沧江碰撞结合带的存在与否一直存在争议[1-4],李才[1]认为,龙木错-双湖-澜沧江结合带是南羌塘地块与北羌塘-昌都地块之间的一条重要的碰撞结合带,但对该结合带形成时代的认识有较大的差异[1, 4-7]。澜沧江岩浆岩带沿澜沧江结合带呈带状分布,如临沧花岗岩、东达山花岗岩、纽多花岗岩和吉塘复式花岗岩。研究区大地构造位置处于羌北-昌都地块、双湖-澜沧江结合带和羌塘左贡地块的交会部位(图 1-a),区域大地构造位置独特,构造演化复杂。吉塘复式花岗岩体分布于昌都芒康盆地与类乌齐-左贡陆缘山盆之间,南东角与俄让-竹卡岩浆弧相邻,为北澜沧江结合带的重要组成部分(图 1-b)。北澜沧江结合带出露新元古界吉塘岩群(Pt3J)、下古生界酉西群(Pz1Y)、下石炭统卡贡组(C1kg)和卡贡岩组(C1k),被中—晚三叠世中酸性岩浆岩破坏严重,吉塘岩群多以残留体形式出现,两侧以上三叠统—侏罗系碎屑岩为主。吉塘复式花岗岩具有弱糜棱岩化、碎裂岩化,研究其成因及年代学,有助于解秘澜沧江花岗岩带的形成时代,分析澜沧江结合带的闭合时限。基于此,本文在对出露于澜沧江岩浆岩带北段的吉塘复式花岗岩进行野外地质调查的基础上,开展了吉塘复式花岗岩中黑云母二长花岗岩和花岗闪长岩的全岩组成、锆石U-Pb年龄研究,进而分析吉塘复式花岗岩的形成时代,为进一步研究澜沧江岩浆岩带和澜沧江结合带提供重要依据。
图 1 图 1 研究区大地构造位置图(a)和区域地质简图(b)1—上三叠统-侏罗系碎屑岩;2—上三叠统碎屑岩;3—上三叠统竹卡组安山岩、岩屑凝灰岩;4—下石炭统卡贡组变质砂岩、千枚岩;5—下石炭统卡贡岩组变质砂岩、千枚岩夹大理岩、玄武岩岩块;6—下石炭统邦达岩组+错绒沟口岩组变质砂岩、千枚岩;7—下古生界酉西群;8—新元古界吉塘岩群;9—古-中元古界卡穷岩群;10—晚白垩世二长花岗岩、似斑状二长花岗岩;11—早侏罗世二长花岗岩、似斑状钾长花岗岩;12—晚三叠世花岗闪长岩;13—晚三叠世二长花岗岩;14—中三叠世二长花岗岩;15—中奥陶世二长花岗岩;16—晚寒武世石英闪长岩;17—区域次级断裂;18—区域分区断裂Figure 1. Tectonic location of study area (a) and regional geological sketch map (b)1. 岩相学特征
吉塘复式花岗岩位于藏东察雅县吉塘镇以西约3km处,总体呈北西—南东向展布,侵位于新元古界吉塘岩群(Pt3J)变质岩系中,长约70km,宽2~ 10km,出露面积约340km2,该岩体为一复式岩体[7-8],主要由黑云母二长花岗岩和花岗闪长岩组成,在岩体边部,由于受到区域构造活动的影响,局部见碎裂岩化和糜棱岩化(图 2)。
黑云母二长花岗岩:灰白色,具细-中粒半自形粒状结构,花岗结构,块状构造。矿物组成为石英(25% ~35%)、斜长石(30% ~40%)、碱性长石(20%~35%)、黑云母(10%~15%),以及少量锆石、榍石、绿泥石、磁铁矿、磷灰石等。斜长石呈无色,略浑浊,半自形长板状产出,粒径集中在2~5mm,次为0.5~2mm,发育聚片双晶,具明显的绢云母化。碱性长石呈半自形-他形板状,粒径多为2~ 4mm,次为0.5~2mm,具弱粘土化,发育条纹构造及格子状双晶。石英呈他形粒状,粒径0.3~ 2.2mm,少量为0.05~0.1mm,呈彼此镶嵌状分布于裂隙中。黑云母呈黄绿色,粒径0.5~2.5mm,多发育绿泥石或完全交代呈假象产出,偶见解理缝中未蚀变完全的棕色黑云母残余。锆石、榍石、磷灰石等呈自形柱状产出,总含量约2%。
花岗闪长岩:灰白色,具细-中粒半自形粒状结构,块状构造。主要由石英(20%~25%)、斜长石(35% ~45%)、碱性长石(10% ~20%)、黑云母(10%~15%),以及少量锆石、榍石、绿泥石、磷灰石等组成。斜长石为更-中长石,粒径0.5~2mm;碱性长石主要为条纹长石,并出溶密集而狭窄的钠长石条带;黑云母呈棕色,绿泥石化,包含较多的副矿物包裹体。
区内断裂构造发育,靠近断裂带附近,部分矿物发生破碎,但相对位移较小,可完整拼接,裂隙中主要充填了绢云母、黑云母及小颗粒石英,具有较明显的碎裂结构,形成了碎裂岩化二长花岗岩或碎裂岩化花岗闪长岩;更靠近断裂带一侧,由于受到的区域动力作用加强,部分区域形成了碎斑和碎基,矿物也有了一定的定向排列,形成了糜棱岩化二长花岗岩和糜棱岩化花岗闪长岩。
2. 分析方法
吉塘复式花岗岩样品的主量、微量元素测试在川西北地质队检测中心完成。选取新鲜的具有代表性的岩石样品经薄片鉴定后送样,采用Optima 5300V等离子体发射光谱仪分析[9],分析精度优于5%,分析结果见表 1。
表 1 吉塘复式花岗岩主量、微量和稀土元素分析结果Table 1. Whole-rock major, trace and rare erath element data of the Jitang duplex granites元素 JT-1 JT-2 JT-3 JT-4 JT-5 JT-6 JT-7 JT-8 JT-9 JT-10 JT-11 JT-12 JT-13 JT-14 JT-15 JT-16 JT-17 JT-18 JT-19 JT-20 花岗闪长岩 糜棱岩化花岗闪长岩 碎裂岩化花岗闪长岩 黑云母二长花岗岩 糜棱岩化黑云母二长花岗岩 碎裂岩化黑云母二长花岗岩 SiO2 65.92 64.74 69.06 67.28 67.66 69.50 67.60 66.40 68.00 68.76 69.38 68.98 70.16 71.08 72.70 70.74 69.50 72.60 71.12 75.16 Al2O3 15.23 15.98 14.14 14.02 13.46 13.37 14.87 14.89 13.51 14.33 14.53 13.52 13.24 12.97 13.52 13.04 13.21 13.20 12.69 12.26 TFe2O3 4.69 4.71 4.03 4.51 4.48 4.88 5.07 4.77 5.09 3.84 2.96 4.01 2.93 4.27 3.70 4.52 4.98 3.39 3.73 2.37 Na2O 3.04 2.75 4.15 2.69 2.44 3.14 1.82 2.57 2.64 2.84 3.25 2.92 3.16 1.90 2.39 2.36 1.96 2.39 2.24 2.68 K2O 3.11 3.48 2.40 3.49 3.52 2.14 3.76 3.35 3.09 4.02 4.58 4.26 2.49 3.29 2.60 2.67 3.09 2.85 4.16 4.15 CaO 3.36 0.86 2.38 2.16 2.45 1.47 0.89 2.58 2.02 2.69 1.84 1.59 2.48 1.16 1.08 1.01 1.65 1.36 1.04 0.67 MgO 2.07 2.49 1.61 2.09 2.57 2.57 2.58 2.58 2.76 1.70 1.26 1.98 2.06 2.51 2.07 1.81 1.87 1.70 1.70 0.95 MnO 0.066 0.033 0.042 0.061 0.065 0.064 0.051 0.100 0.046 0.051 0.047 0.069 0.029 0.064 0.044 0.046 0.065 0.054 0.059 0.040 P2O5 0.28 0.51 0.20 0.21 0.19 0.14 0.25 0.27 0.17 0.11 0.19 0.12 0.11 0.10 0.10 0.19 0.10 0.082 0.093 0.10 TiO2 0.76 0.62 0.55 0.70 0.75 0.75 0.70 0.73 0.80 0.64 0.46 0.71 0.92 0.61 0.52 0.64 0.59 0.42 0.51 0.41 烧失量 1.78 3.15 1.98 3.15 2.34 2.56 2.38 1.78 2.35 1.97 1.89 2.45 2.89 2.18 1.89 3.56 3.09 2.01 2.98 1.69 H2O+ 1.62 3.06 1.86 2.96 2.22 2.38 2.28 1.54 2.10 1.78 1.76 2.28 2.64 2.08 1.78 3.46 2.80 1.80 2.66 1.66 Na2O+K2O 6.15 6.23 6.55 6.18 5.96 5.28 5.58 5.92 5.73 6.86 7.84 7.18 5.65 5.18 5.00 5.03 5.04 5.24 6.41 6.83 Na2O/K2O 0.98 0.79 1.73 0.77 0.69 1.47 0.48 0.77 0.85 0.71 0.71 0.69 1.27 0.58 0.92 0.89 0.63 0.84 0.54 0.65 A/NK 1.82 1.93 1.50 1.71 1.72 1.79 2.10 1.89 1.75 1.59 1.41 1.43 1.67 1.94 2.00 1.92 2.01 1.88 1.55 1.38 A/CNK 1.05 1.62 1.03 1.15 1.10 1.32 1.71 1.19 1.19 1.03 1.06 1.10 1.07 1.47 1.55 1.51 1.38 1.39 1.26 1.21 AR 1.99 2.17 2.31 2.23 2.20 2.10 2.10 2.03 2.17 2.35 2.84 2.81 2.12 2.16 2.04 2.12 2.03 2.12 2.75 3.24 Li 22.6 19.5 20.9 22.7 25.1 21.1 33.2 31.7 29.9 17.3 13.6 20.8 11.7 17.7 13.9 15.3 12.7 13.7 17.6 9.7 Be 0.96 2.15 3.56 3.21 3.94 5.22 4.20 3.36 2.02 3.02 3.49 2.69 2.56 3.23 8.13 2.37 4.15 5.14 8.42 2.11 Sc 10.3 11.0 9.3 10.8 11.5 10.7 14.9 17.8 13.8 11.0 9.2 12.0 14.4 14.4 10.1 11.6 12.8 12.1 9.7 5.8 V 86.5 89.0 58.5 72.1 78.1 86.7 94.4 96.7 94.8 70.1 43.6 72.1 79.5 71.5 55.6 63.0 71.6 55.9 62.5 19.4 Cr 37.7 36.4 26.6 43.2 82.3 69.6 80.9 52.6 90.3 33.0 24.5 53.2 61.6 75.8 50.0 61.6 73.7 48.5 49.0 11.3 Co 10.3 11.8 7.9 11.7 12.1 9.2 18.4 13.4 14.1 10.1 7.8 11.5 6.6 12.4 11.7 11.1 15.0 8.8 8.6 4.9 Ni 15.5 22.7 9.9 20.4 33.8 23.6 39.0 18.2 43.7 11.9 9.5 18.5 20.6 30.2 22.6 24.0 31.4 20.8 18.5 7.3 Cu 8.8 4.7 4.4 8.1 12.2 12.2 32.4 10.2 10.1 3.45 7.9 9.7 3.2 2.7 13.2 21.7 31.4 7.5 20.4 10.3 Zn 89.9 62.2 71.7 74.7 69.5 85.0 46.2 68.9 179 61.8 41.0 75.9 18.7 59.6 52.1 60.9 94.4 51.6 66.0 48.6 Ga 20.5 24.1 20.1 21.2 19.1 19.7 22.7 22.8 19.6 18.1 21.8 17.8 21.8 18.8 17.7 17.5 17.5 17.2 17.5 15.0 Rb 180 188 121 199 219 112 213 248 151 181 255 212 32 169 119 139 159 149 195 167 Sr 170 85 124 173 130 149 71 164 118 162 104 125 284 85 93 95 109 87 105 55 Zr 13.20 12.70 11.30 21.90 5.77 17.30 25.90 3.00 2.84 8.95 46.40 22.10 14.30 2.96 5.57 4.35 6.22 14.50 15.90 10.70 Nb 14.7 17.0 17.1 15.7 17.1 15.1 16.8 12.6 17.4 14.7 24.6 14.9 20.4 15.5 9.7 13.3 12.4 11.0 12.7 9.4 Mo 0.40 0.16 0.26 0.29 0.27 0.64 1.39 0.23 0.31 0.21 1.68 0.28 0.69 0.25 1.00 0.61 0.98 0.50 1.28 0.81 Ba 405 416 290 810 804 412 914 674 749 1136 509 821 76.4 664 524 577 698 543 912 430 Hf 0.57 0.17 0.51 1.07 0.53 0.50 0.59 0.13 0.12 0.23 1.02 0.83 0.37 0.12 0.14 0.12 0.20 0.15 0.62 0.18 Ta 2.14 2.02 1.57 1.80 1.16 1.10 1.39 1.44 1.23 0.78 1.86 0.84 1.12 0.82 0.86 0.98 0.74 0.93 1.01 0.68 Pb 47.7 19.8 41.5 56.2 22.4 29.4 18.1 30.8 76.2 17.2 27.6 39.5 9.13 14.3 22.8 22.7 11.1 28.5 32.6 31.2 Bi 0.40 0.62 0.20 0.15 0.27 0.33 0.46 0.35 2.04 0.03 0.47 0.20 0.08 0.16 0.67 0.16 0.13 0.29 0.29 0.02 Th 2.6 3.5 23.7 22.0 24.3 11.7 20.7 11.4 15.5 10.0 26.7 29.3 24.2 10.0 16.9 16.8 14.1 16.3 18.4 17.1 U 3.55 2.76 2.23 4.05 4.42 2.87 4.07 2.34 2.28 1.41 4.79 2.38 2.25 1.59 3.49 3.34 2.70 2.05 4.46 2.05 Y 32.5 44.3 33.2 85.9 46.1 17.5 21.2 20.6 17.6 37.8 72.2 40.5 56.3 30.8 17.6 19.7 51.6 20.3 36.0 27.7 La 46.4 53.8 46.4 106.0 54.1 37.8 41.6 41.3 38.2 48.6 101.0 50.8 66.8 44.8 38.3 40.9 56.7 41.1 48.0 43.4 Ce 78.2 106.0 85.5 188.0 101.0 75.6 79.3 81.1 75.7 90.2 140.0 100.0 117.0 83.0 72.4 76.4 115 79.3 89.3 83.3 Pr 2.57 3.74 8.83 11.00 11.10 8.78 9.32 6.21 9.36 8.77 9.85 13.40 15.20 5.73 8.16 9.06 8.96 8.88 9.94 6.20 Nd 11.2 15.9 34.4 43.1 45.2 34.7 38.9 25.1 34.0 34.6 40.9 50.1 56.6 22.6 32.9 35.8 34.9 33.9 35.4 22.5 Sm 2.63 4.33 6.46 11.00 7.95 6.35 6.60 3.83 6.73 6.24 8.33 8.99 10.20 4.18 5.80 6.25 6.42 6.16 6.59 4.81 Eu 1.11 0.71 1.01 1.42 1.31 1.39 1.26 1.02 1.51 1.29 0.76 1.12 2.11 0.83 0.90 1.09 1.23 0.83 1.06 0.57 Gd 2.54 4.55 6.14 11.90 7.10 5.23 5.50 3.37 5.54 5.53 8.24 7.00 9.11 3.58 4.54 4.83 5.61 4.78 5.74 4.25 Tb 0.56 1.14 1.10 2.43 1.18 0.80 0.77 0.56 0.84 0.97 1.71 1.14 1.53 0.66 0.64 0.76 1.09 0.61 1.01 0.86 Dy 4.53 8.98 7.28 17.00 7.93 6.33 4.44 3.46 4.54 6.69 11.30 6.96 10.70 4.33 3.21 5.47 7.80 3.52 6.72 5.82 Ho 0.90 1.67 1.27 3.12 1.43 0.65 0.76 0.58 0.71 1.16 2.03 1.28 1.97 0.83 0.51 0.71 1.53 0.62 1.15 1.03 Er 2.45 4.68 3.67 8.41 4.73 2.06 1.80 1.26 1.73 3.59 5.41 4.25 6.65 2.92 1.27 2.21 5.17 1.73 3.54 2.77 Tm 0.39 0.71 0.49 1.00 0.56 0.22 0.23 0.14 0.22 0.49 0.56 0.69 0.87 0.29 0.15 0.44 0.76 0.23 0.50 0.35 Yb 2.82 4.28 2.52 5.25 3.06 1.56 1.88 1.82 1.17 2.40 4.74 3.93 4.73 2.50 1.11 1.52 3.98 2.02 2.39 1.73 Lu 0.36 0.63 0.38 0.74 0.48 0.18 0.35 0.39 0.20 0.41 0.69 0.65 0.78 0.38 0.14 0.24 0.73 0.41 0.41 0.28 ΣREE 156.66 210.89 205.45 409.89 247.36 181.73 192.68 170.20 180.46 210.88 335.62 250.67 303.73 176.64 170.10 185.68 249.74 184.07 211.78 177.89 LREE 142.09 184.26 182.60 360.05 220.88 164.71 176.95 158.63 165.49 189.64 300.94 224.77 267.42 161.14 158.53 169.50 223.07 170.16 190.33 160.80 HREE 14.57 26.63 22.85 49.84 26.48 17.02 15.73 11.57 14.96 21.24 34.68 25.89 36.32 15.50 11.58 16.18 26.67 13.91 21.45 17.09 LREE/HREE 9.75 6.92 7.99 7.22 8.34 9.68 11.25 13.71 11.06 8.93 8.68 8.68 7.36 10.40 13.69 10.48 8.36 12.23 8.87 9.41 LaN/YbN 11.79 9.01 13.19 14.46 12.67 17.44 15.87 16.30 23.32 14.52 15.26 9.28 10.13 12.83 24.81 19.27 10.21 14.56 14.39 18.02 δEu 1.29 0.48 0.48 0.38 0.52 0.72 0.62 0.85 0.73 0.66 0.28 0.42 0.65 0.64 0.52 0.58 0.61 0.45 0.52 0.37 δCe 1.15 1.30 0.97 1.09 0.96 0.98 0.95 1.11 0.95 0.99 0.87 0.92 0.86 1.09 0.96 0.93 1.13 0.97 0.95 1.10 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 锆石单矿物挑选、阴极发光图像拍摄均由武汉上谱分析科技有限责任公司完成。本文所测锆石具有明显的生长环带,在确定打点位置后送至武汉上谱分析科技有限责任公司进行测试。测试仪器为Agilent 7700e,GeolasPro激光剥蚀系统由COMPexPro 102 ArF 193nm准分子激光器和MicroLas光学系统组成,激光束斑直径和频率分别为32μm和5Hz。采用锆石标准91500和玻璃标准物质NIST610为外标分别进行同位素和微量元素分馏校正。对分析数据的离线处理采用软件ICPMSDataCal完成[10]。锆石U-Pb年龄谐和图绘制和年龄加权平均计算采用Isoplot/Ex_ver3完成[11]。锆石定年数据见表 2。
表 2 吉塘复式花岗岩LA-ICP-MS锆石U-Th-Pb分析结果Table 2. LA-ICP-MS zircon U-Th-Pb analytical data of the Jitang duplex granites测点号 Pb Th U Th/U 同位素比值 年龄/Ma Ti/10-6 T/℃ 10-6 207Pb/206Pb 1σ 207Pb/235Pb 1σ 206Pb/238Pb 1σ 207Pb/206Pb 1σ 207Pb/235Pb 1σ 206Pb/238Pb 1σ D675花岗闪长岩 D675-01 22.01 724.2 593 0.29 0.0514 0.0018 0.2360 0.0079 0.0333 0.0003 257 84.2 215 6.5 211 2.1 4.74 724.2 D675-04 20.26 742.0 560 0.26 0.0503 0.0018 0.2304 0.0081 0.0333 0.0004 209 81.5 211 6.7 211 2.7 5.76 742.0 D675-07 28.39 733.0 724 0.41 0.0504 0.0015 0.2367 0.0073 0.0340 0.0004 213 70.4 216 6.0 215 2.5 5.22 733.0 D675-10 21.70 689.2 582 0.29 0.0505 0.0015 0.2331 0.0073 0.0333 0.0004 220 70.4 213 6.0 211 2.4 3.16 689.2 D675-17 12.06 784.6 314 0.36 0.0503 0.0024 0.2382 0.0114 0.0341 0.0004 209 114 217 9.4 216 2.8 8.92 784.6 D675-22 15.53 785.5 405 0.43 0.0504 0.0020 0.2351 0.0099 0.0337 0.0006 213 92.6 214 8.1 214 3.7 9.00 785.5 D675-24 19.96 738.1 559 0.17 0.0497 0.0017 0.2283 0.0078 0.0332 0.0004 189 79.6 209 6.5 211 2.4 5.51 738.1 D675-26 27.73 710.9 701 0.40 0.0494 0.0021 0.2334 0.0080 0.0338 0.0004 165 98.1 213 6.6 214 2.5 4.08 710.9 D675-02 12.34 797.8 329 0.28 0.0514 0.0021 0.2358 0.0094 0.0333 0.0004 257 94.4 215 7.7 211 2.3 10.15 797.8 D675-03 17.55 646.5 461 0.31 0.0519 0.0019 0.2446 0.0091 0.0341 0.0004 280 83.3 222 7.4 216 2.5 1.86 646.5 D675-05 6.57 804.0 166 0.55 0.0528 0.0036 0.2420 0.0150 0.0338 0.0005 320 158.3 220 12.3 214 3.3 10.77 804.0 D675-11 11.06 688.6 295 0.25 0.0491 0.0020 0.2294 0.0092 0.0339 0.0005 154 101.0 210 7.6 215 2.8 3.14 688.6 D675-21 22.66 701.0 622 0.18 0.0486 0.0015 0.2282 0.0070 0.0339 0.0004 128 72.2 209 5.8 215 2.6 3.64 701.0 D675-13 11.99 881.1 300 0.40 0.0521 0.0028 0.2462 0.0115 0.0340 0.0004 300 122.2 224 9.4 215 2.6 21.38 881.1 D675-09 14.84 790.2 382 0.41 0.0530 0.0020 0.2474 0.0091 0.0338 0.0004 332 85.2 224 7.4 214 2.6 9.42 790.2 D675-12 25.88 744.3 683 0.32 0.0528 0.0015 0.2451 0.0067 0.0335 0.0003 320 63.0 223 5.5 212 2.0 5.90 744.3 D675-08 9.06 786.2 232 0.48 0.0470 0.0024 0.2161 0.0107 0.0332 0.0004 50.1 115.0 199 9.0 211 2.5 9.06 786.2 D675-18 55.40 640.2 1407 0.45 0.0534 0.0015 0.2522 0.0064 0.0340 0.0003 346 61.1 228 5.2 215 2.2 1.71 640.2 D675-23 16.19 734.9 425 0.37 0.0530 0.0018 0.2455 0.0080 0.0334 0.0004 328 106.0 223 6.5 212 2.3 5.33 734.9 D675-06 38.06 689.2 985 0.28 0.0542 0.0015 0.2573 0.0068 0.0344 0.0003 389 60.2 233 5.5 218 1.8 3.16 689.2 D675-16 30.72 645.2 776 0.23 0.0534 0.0015 0.2826 0.0100 0.0378 0.0007 346 63.0 253 7.9 239 4.4 1.82 645.2 D675-25 79.37 731.7 454 0.08 0.1015 0.0020 2.5175 0.1379 0.1734 0.0080 1654 37.0 1277 39.8 1031 44.0 5.15 731.7 D675-19 27.44 786.9 615 0.35 0.0741 0.0021 0.3709 0.0108 0.0360 0.0004 1043 58.2 320 8.0 228 2.3 9.13 786.9 D675-20 47.28 744.9 423 0.09 0.1304 0.0042 2.0534 0.1418 0.1023 0.0051 2103 51.1 1133 47.2 628 30.1 5.93 744.9 D675-15 20.08 766.3 273 0.22 0.1096 0.0065 1.3013 0.1321 0.0668 0.0041 1792 108.0 846 58.3 417 24.8 7.42 766.3 PM13/ZR黑云母二长花岗岩 PM13/ZR-09 33.15 792.8 768 0.54 0.0511 0.0015 0.2531 0.0072 0.0361 0.0004 256 66.7 229 5.9 229 2.4 9.67 792.8 PM13/ZR-14 24.97 709.9 640 0.30 0.0512 0.0016 0.2436 0.0080 0.0349 0.0004 250 74.1 221 6.5 221 2.4 4.03 709.9 PM13/ZR-17 33.01 753.4 791 0.57 0.0505 0.0015 0.2407 0.0069 0.0347 0.0004 217 66.7 219 5.7 220 2.3 6.49 753.4 PM13/ZR-18 47.62 710.2 1200 0.25 0.0501 0.0021 0.2437 0.0099 0.0352 0.0003 198 99.1 221 8.1 223 2.1 4.04 710.2 PM13/ZR-20 30.56 761.3 731 0.47 0.0504 0.0015 0.2432 0.0072 0.0349 0.0004 213 68.5 221 5.9 221 2.5 7.05 761.3 PM13/ZR-21 76.22 685.5 1975 0.15 0.0499 0.0010 0.2434 0.0052 0.0351 0.0003 191 48.1 221 4.2 223 1.8 3.03 685.5 PM13/ZR-08 24.04 702.9 592 0.43 0.0497 0.0016 0.2424 0.0082 0.0354 0.0004 183 77.8 220 6.7 224 2.4 3.72 702.9 PM13/ZR-15 38.15 742.8 973 0.30 0.0499 0.0014 0.2366 0.0067 0.0346 0.0003 191 64.8 216 5.5 219 2.1 5.80 742.8 PM13/ZR-19 52.40 766.6 1158 0.72 0.0494 0.0014 0.2459 0.0071 0.0359 0.0003 165 68.5 223 5.8 228 2.2 7.44 766.6 PM13/ZR-23 37.16 708.0 932 0.20 0.0497 0.0014 0.2411 0.0067 0.0351 0.0003 189 66.7 219 5.5 222 1.8 3.94 708.0 PM13/ZR-02 52.72 616.0 1363 0.25 0.0490 0.0012 0.2380 0.0062 0.0352 0.0004 146 59.3 217 5.1 223 2.2 1.23 616.0 PM13/ZR-11 17.18 808.6 405 0.59 0.0538 0.0021 0.2553 0.0099 0.0348 0.0003 361 91.7 231 8.0 221 2.1 11.25 808.6 PM13/ZR-25 43.13 758.0 1044 0.46 0.0528 0.0016 0.2551 0.0082 0.0348 0.0004 317 65.7 231 6.6 221 2.3 6.82 758.0 PM13/ZR-24 68.40 759.3 1429 0.84 0.0538 0.0015 0.2643 0.0066 0.0356 0.0004 361 65.7 238 5.3 225 2.3 6.90 759.3 PM13/ZR-10 40.40 634.0 973 0.36 0.0550 0.0016 0.2701 0.0074 0.0360 0.0004 413 64.8 243 6.0 228 2.5 1.57 634.0 PM13/ZR-13 22.65 745.5 558 0.30 0.0568 0.0021 0.2730 0.0097 0.0356 0.0005 483 47.2 245 7.8 225 3.0 5.9 745.5 PM13/ZR-04 28.76 777.0 720 0.51 0.0494 0.0015 0.2295 0.0070 0.0337 0.0003 165 70.4 210 5.8 214 2.1 8.27 777.0 PM13/ZR-06 256.00 727.9 787 0.63 0.0959 0.0016 3.4074 0.0769 0.2565 0.0040 1546 31.5 1506 17.7 1472 20.6 4.93 727.9 PM13/ZR-12 67.68 781.2 365 0.29 0.0749 0.0020 1.6247 0.0419 0.1600 0.0017 1066 54.8 980 16.2 957 9.4 8.63 781.2 PM13/ZR-03 45.30 827.1 879 0.96 0.1507 0.0072 0.8650 0.0525 0.0392 0.0007 2353 81.0 633 28.6 248 4.3 13.36 827.1 D6082糜棱岩化花岗闪长岩 D6082-01 33.23 707.7 856 0.28 0.0517 0.0015 0.2423 0.0069 0.0331 0.0004 272 63.9 220 5.7 210 2.3 3.93 707.7 D6082-17 144.90 785.7 3701 0.22 0.0525 0.0011 0.2489 0.0057 0.0343 0.0004 309 54.6 226 4.7 217 2.3 9.02 785.7 D6082-02 39.78 866.5 952 0.40 0.0489 0.0014 0.2357 0.0065 0.0349 0.0004 143 66.7 215 5.4 221 2.4 18.90 866.5 D6082-03 18.55 777.5 439 0.44 0.0527 0.0018 0.2556 0.0084 0.0351 0.0004 322 75.9 231 6.8 222 2.4 8.32 777.5 D6082-04 29.18 743.2 764 0.15 0.0521 0.0016 0.2525 0.0086 0.0349 0.0006 300 72.2 229 7.0 221 3.5 5.83 743.2 D6082-05 28.36 745.7 716 0.29 0.0519 0.0017 0.2502 0.0083 0.0348 0.0004 280 71.3 227 6.7 221 2.7 5.99 745.7 D6082-06 39.50 772.1 937 0.58 0.0529 0.0016 0.2551 0.0082 0.0348 0.0005 324 68.5 231 6.6 220 2.9 7.88 772.1 D6082-07 17.73 806.0 414 0.50 0.0506 0.0021 0.2467 0.0093 0.0355 0.0004 233 96.3 224 7.6 225 2.5 10.98 806.0 D6082-09 44.09 693.3 1095 0.35 0.0504 0.0014 0.2445 0.0070 0.0351 0.0004 213 66.7 222 5.8 222 2.3 3.32 693.3 D6082-10 44.26 711.7 1058 0.47 0.0518 0.0012 0.2511 0.0060 0.0351 0.0004 276 53.7 227 4.9 222 2.2 4.12 711.7 D6082-11 38.78 730.6 960 0.37 0.0489 0.0015 0.2319 0.0068 0.0343 0.0003 146 70.4 212 5.6 217 2.1 5.09 730.6 D6082-15 53.90 791.3 1293 0.48 0.0507 0.0012 0.2401 0.0057 0.0344 0.0003 228 57.4 218 4.7 218 1.8 9.53 791.3 D6082-16 46.31 669.7 1085 0.40 0.0530 0.0013 0.2611 0.0067 0.0356 0.0003 332 57.4 236 5.4 226 2.2 2.50 669.7 D6082-18 25.29 780.3 574 0.61 0.0519 0.0016 0.2533 0.0084 0.0353 0.0004 280 72.2 229 6.8 223 2.7 8.55 780.3 D6082-19 49.99 666.9 1274 0.32 0.0509 0.0025 0.2438 0.0110 0.0350 0.0005 239 113.0 222 9.0 222 2.8 2.41 666.9 D6082-20 20.81 688.5 560 0.04 0.0510 0.0014 0.2456 0.0081 0.0349 0.0007 239 64.8 223 6.6 221 4.3 3.14 688.5 D6082-12 47.80 607.4 993 0.53 0.0511 0.0014 0.2788 0.0076 0.0395 0.0004 256 58.3 250 6.0 250 2.4 1.09 607.4 D6082-08 54.50 640.0 659 0.35 0.0584 0.0013 0.5767 0.0173 0.0714 0.0016 543 48.1 462 11.2 445 9.4 1.70 640.0 D6082-14 52.82 747.3 396 0.24 0.0741 0.0016 1.4245 0.0580 0.1378 0.0046 1043 43.7 899 24.3 832 26.0 6.09 747.3 D6082-13 48.80 682.9 204 0.96 0.0738 0.0018 1.8201 0.0458 0.1787 0.0017 1035 50.8 1053 16.5 1060 9.3 2.94 682.9 3. 分析结果
3.1 全岩地球化学特征
本次分析了20件吉塘岩体样品的全岩主量和微量元素组成,分析结果见表 1。晚三叠世黑云母二长花岗岩地球化学特征显示:① SiO2含量为68.98%~75.16%,平均为71.14%,属于酸性岩类;② Na2O为1.90% ~3.25%,平均为2.53%,K2O为2.49%~2.58%,平均为3.41%,全碱(Na2O+K2O)为5.00% ~7.84%,平均为5.94%,Na2O/K2O值介于0.54~1.27之间,平均为0.77,属钙碱性-高钾钙碱性系列,在SiO2-K2O图解(图 3-a)中,样品投影点大部分落入高钾钙碱性系列范围,少数落在钙碱性系列与高钾钙碱性系列界线附近,总体体现高钾的特点;③ Al2O3含量为12.26% ~14.53%,平均为13.22%,A/CNK(铝饱和指数)值为1.06~1.55,平均为1.30,为过铝质花岗岩(图 3-b);④MgO含量为0.95%~2.51%,平均1.79%,显示较低的Mg含量;⑤含有较低的P2O5含量,为0.08%~0.19%,平均为0.12%,TiO2含量为0.41%~0.92%,平均为0.58%。
晚三叠世花岗闪长岩地球化学特征显示:① SiO2含量为64.74%~69.50%,平均为67.49%,属于酸性岩类;② Na2O含量为1.82% ~4.15%,平均为2.81%,K2O为2.14%~4.02%,平均为3.24%,全碱(Na2O + K2O)为5.28% ~6.86%,平均为6.04%,Na2O/K2O值为0.48~1.73,平均为0.92,属钙碱性-高钾钙碱性系列,在SiO2-K2O图解(图 3-a)中,样品投影点大部分落入高钾钙碱性系列范围内,少数落在钙碱性系列与高钾钙碱性系列界线附近,总体体现高钾的特点,与黑云母二长花岗岩相比,花岗闪长岩相对富钠;③Al2O3为13.37%~15.98%,平均为14.38%,A/CNK(铝饱和指数)值为1.03~1.71,平均为1.24,为过铝质花岗岩(图 3-b);④MgO含量为1.61%~2.76%,平均为2.30%,Mg含量较低;⑤较低的P2O5含量,为0.11%~0.51%,平均为0.23%,TiO2含量为0.55%~0.80%,平均为0.70%。
根据上述2种岩石的地球化学特征可以得出,吉塘黑云母二长花岗岩和花岗闪长岩具有较一致的主量元素含量,其变化特征也具有一致性,间接反映这2类岩石可能为同一岩浆演化而来。
吉塘复式花岗岩样品微量元素测试结果表明(表 1),晚三叠世黑云母二长花岗岩稀土元素总量∑REE(不含Y)=170.10×10-6~335.62×10-6,平均为224.59×10-6;轻稀土元素(LREE)为158.53×10-6~ 300.94×10-6,重稀土元素(HREE)为11.58×10-6~ 36.32×10-6,LREE/HREE值为7.36~13.69,具有较高的(La/Yb)N值,为9.28~24.81,平均为14.88。晚三叠世花岗闪长岩∑REE(不含Y)=156.66×10-6~ 409.89 ×10-6,平均216.62 ×10-6;LREE为142.09 ×10-6~360.05 ×10-6,HREE为11.57 ×10-6~49.84 ×10-6,LREE/HREE值为6.92~13.71,具有较高的(La/Yb)N值,为9.01~23.32,平均为14.86。上述2类岩石微量元素特征显示,轻、重稀土元素分异明显,球粒陨石标准化稀土元素配分曲线(图 4-a、c)基本一致,表现为重稀土元素相对亏损、轻稀土元素强富集的右倾型,2类岩石样品均呈弱负Ce异常和强负Eu异常特征。微量元素原始地幔标准化蛛网图(图 4-b、d)显示,花岗闪长岩和黑云母二长花岗岩也具有明显的一致性,表现出相似的分布曲线,可能反映了同源岩浆的特点。总体上,Nb、Ta、Zr、Hf等高场强元素相对亏损,Rb、K、Th、U等元素明显富集,Ba、Sr元素明显呈负异常,表明花岗岩岩浆部分熔融或结晶分异过程中有斜长石的分离。
图 4 吉塘复式花岗岩稀土元素球粒陨石标准化配分图(a、c)和微量元素原始地幔标准化蛛网图(b、d)(标准化值据参考文献[12])Figure 4. Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized trace earth element patterns (b, d) of the Jitang duplex granites3.2 锆石U-Pb年龄
本文选取具有代表性的样品对吉塘复式岩体中的黑云母二长花岗岩、花岗闪长岩和糜棱岩化黑云母二长花岗岩进行LA-ICP-MS锆石U-Pb测年。用于分析测试的锆石颗粒自形程度高,形态多为长柱状,少量为短柱状,长轴150~300μm,长宽比为1.5:1~2.5:1。在阴极发光(CL)图像上,锆石颜色多数呈黑色或灰黑色,具有明显的生长环带,属于岩浆成因锆石。
3件样品锆石U-Pb测年数据见表 2。PM13/ZR样品锆石的U含量为365×10-6~1975×10-6,Pb含量为17.18×10-6~255.97×10-6,Th含量为107×10-6~ 1244×10-6,Th/U值为0.15~1.40;D675样品锆石的U含量为166×10-6~1407×10-6,Pb含量为6.57×10-6~79.37×10-6,Th含量为38×10-6~632×10-6,Th/U值为0.08~0.55;D6082样品锆石的U含量为160 ×10-6~3701 ×10-6,Pb含量为17.73 ×10-6~ 144.87×10-6,Th含量为20×10-6~828×10-6,Th/U值为0.12~0.96。3件样品除个别锆石外,Th、U含量及Th/U值均显示为岩浆成因锆石[13]。按照Hoskin[14]提出的锆石类型投图方法显示,所选锆石为岩浆锆石。
本次对PM13/ZR(黑云母二长花岗岩)样品的24颗锆石进行了24个测试点的LA-ICP-MS分析,分析结果见表 2。其中2个测点为继承锆石,分别与区域上吉塘岩群和酉西岩群中的碎屑锆石年龄一致;6个测点的普通Pb含量较高,置信度降低,故舍去;有16个测试点获得较一致的206Pb/238U年龄。206Pb/238U年龄在219~229Ma之间(表 2),在锆石U-Pb年龄谐和图(图 5)中,数据点分布较集中,反映了良好的谐和性,可以代表样品的结晶成岩年龄。16个测点的206Pb/238U年龄加权平均值为222.8±1.5Ma(MSWD=1.60,n=16),说明吉塘复式花岗岩中黑云母二长花岗岩的结晶年龄为222.8± 1.5Ma,属晚三叠世。
D675(花岗闪长岩)样品共分析了25个年龄测试点(表 2)。其中3个测点为继承锆石,分别与区域上吉塘岩群和酉西岩群中的碎屑锆石年龄一致;2个测试点的普通Pb含量较高且为高值点,故舍去;有20个测试点获得较一致的206Pb/238U年龄,206Pb/238U年龄在211~218Ma之间(表 2),在锆石U-Pb年龄谐和图(图 5)中,数据点分布较集中,反映了良好的谐和性,可以代表样品的结晶年龄。20个测点的206Pb/238U加权平均年龄值为213.6 ± 1.1Ma(MSWD=0.98,n=20),说明吉塘复式花岗岩中花岗闪长岩的结晶年龄为213.6±1.1Ma,属于晚三叠世。
D6082(糜棱岩化花岗闪长岩)样品共分析了20个年龄测试点(表 2)。其中3个测点为继承锆石,分别为1060±9.3Ma、832±26.0Ma和445±9.4Ma,与区域上吉塘岩群和酉西岩群中的碎屑锆石年龄一致;有15个测试点获得较一致的206Pb/238U年龄,206Pb/238U年龄在217~226Ma之间(表 2),在锆石U-Pb年龄谐和图(图 5)中,数据点分布较集中,反映了良好的谐和性,可以代表样品的结晶年龄。15个测点的206Pb/238U年龄加权平均值为221.1±1.5Ma(MSWD=1.30,n=15),说明吉塘复式花岗岩中糜棱岩化花岗闪长岩的结晶年龄为221.1±1.5Ma,属于晚三叠世。
4. 讨论
4.1 岩体形成时代
本文对吉塘复式花岗岩的3件样品进行了LAICP-MS锆石U-Pb测年。阴极发光图像显示锆石以自形晶为主,具有明显的生长环带,含有较高的Th/U值,可以代表所测样品的结晶年龄。锆石UPb测年结果显示,吉塘复式花岗岩形成于213.6± 1.1~222.8±1.5Ma之间,即形成于晚三叠世。结合前人对澜沧江北段相邻区域纽多岩体、东达山岩体、吉塘岩体的测年成果,如樊炳良等[9]在纽多岩体中获得黑云母二长花岗岩的LA-ICP-MS锆石UPb年龄为243.6±1.4Ma,陈福忠等[8]使用全岩Rb-Sr等时线测年法分别在东达山岩体、吉塘复式岩体中获得219.6Ma和220Ma年龄值,澜沧江南部测年数据集中于210~245Ma之间,发现澜沧江南北两侧具有较一致的岩浆结晶年龄,可能暗示其具有相近的大地构造演化过程。
4.2 岩体结晶温度
Watson等[15]提出利用锆石中Ti含量估算锆石结晶时的岩浆温度,认为可以近似代表岩浆的最高温度,其精度可达10℃左右,称之为“锆石Ti温度计”。锆石Ti温度计的准确度受控于岩浆体系中SiO2和TiO2的活度,对于压力的变化并不灵敏[16]。锆石的化学式为ZrSiO4,Ti可以进入锆石替换Si形成独立变化相ZrTiO4和TiZrO4[17],在一定的压力下具有如下的变化形式:
[lg(Ti−in−Zircon)+lgαSiO2−lgαTiO2]=A+B/T Ferry等[16]计算出常数A、B的值,并确定其计算公式为:
lg(Ti−in−Zircon)+lgαSiO2−lgαTiO2=(5.711±0.072)−(4800±86)/T(K) Ti和Si发生置换反应会导致晶体体积的变化,进而引起温度的变化,导致对锆石Ti温度计也有影响。Ferry等[16]认为,在中下地壳以上范围(压力小于1000MPa)内形成锆石时对其影响不大,可以忽略不计。本次研究测试样品为黑云母二长花岗岩和花岗闪长岩,均可明显见到石英存在,故取αSiO2≈1,典型的硅酸盐熔体中αTiO2活度一般为0.6,整理上述公式得出:
\begin{array}{l} T\left( {℃} \right) = \left\{ {\left( {4800 \pm 86} \right)/\left[ {\left( {5.711 \pm 0.072} \right) - {\rm{lg}}\left( {{\rm{Ti}} - {\rm{in}} - {\rm{Zircon}}} \right)} \right.} \right.\\ \left. {\left. { - {\rm{lg\alpha Si}}{{\rm{O}}_{\rm{2}}}{\rm{lg\alpha Ti}}{{\rm{O}}_{\rm{2}}}} \right]} \right\} - 273 \end{array} 吉塘复式花岗岩中黑云母二长花岗岩、花岗闪长岩和糜棱岩化花岗闪长岩均出现继承锆石,说明岩浆处于锆饱和状态,岩浆温度开始降低时就伴随着锆石的结晶,因此由上述公式计算出的温度可以代表岩浆的最高温度。吉塘复式花岗岩中黑云母二长花岗岩、花岗闪长岩和糜棱岩化花岗闪长岩的锆石Ti温度计计算结果见表 2。黑云母二长花岗岩中16颗锆石结晶温度在616.0~808.6℃之间,平均温度为742.9℃;花岗闪长岩中20颗锆石结晶温度在640.2~881.1℃之间,平均温度为755℃;糜棱岩化花岗闪长岩中15颗锆石结晶温度在666.9~ 866.5℃之间,平均温度为748.6℃。三者平均温度相差不大,可忽略不计,表明2类岩石具有相同或相近的熔融机制。
4.3 岩石成因及源区
吉塘复式花岗岩中黑云母二长花岗岩和花岗闪长岩的铝饱和指数较高,分别为1.06~1.55和1.03~1.71,总体大于1.05;Na2O/K2O值较低,平均值分别为0.77和0.92,Rb/Sr值较高,平均值分别为1.71和1.48,CaO平均含量分别为1.39%和2.09%,均小于3.7%;CIPW标准矿物含刚玉,平均值分别为3.14%和3.04%,均大于1%;根据20件样品主量和微量元素数据分析,均具有S型花岗岩的特征。在AC-F判别图(图 6)中,20件样品投影点均落入S型花岗岩区域。因此,吉塘复式花岗岩为过铝质高钾钙碱性S型花岗岩。
图 6 吉塘复式花岗岩ACF成因类型判别图(底图据参考文献[18])Figure 6. Plots of the Jitang duplex granites in ACF diagram for division of I- and S-type granites花岗岩中的部分微量元素在不同的矿物中含量存在较大的差异,Rb、Sr、Ba等微量元素多赋存于花岗岩类岩石的黑云母和长石中,因此,可以采用Rb-Sr-Ba系统判别岩石的源区成分[19]。在Al2O3/ TiO2-CaO/Na2O图解(图 7-a)中,吉塘复式花岗岩体中黑云母二长花岗岩和花岗闪长岩样品投点绝大多数落入变质杂砂岩熔融区;在Rb/Sr-Rb/Ba图解(图 7-b)中,吉塘复式花岗岩中黑云母二长花岗岩和花岗闪长岩样品投点均落入杂砂岩熔融区域,均暗示吉塘复式花岗岩的源岩可能变质杂砂岩。吉塘复式岩体中黑云母二长花岗岩和花岗闪长岩均强烈亏损Sr、Eu等元素,亏损Ba元素,指示岩体中斜长石、钾长石为熔融残留相矿物。此外,黑云母二长花岗岩和花岗闪长岩的Rb/Sr值分别为1.29~3.04(平均1.88)和0.75~3.00(平均1.48),Rb/Ba值分别为0.21~0.50(平均0.30)和0.16~0.45(平均0.31),指示吉塘复式岩体的源区为富斜长石的变质杂砂岩成分。
图 7 吉塘复式花岗岩Al2O3/TiO2-CaO/Na2O(a)和Rb/Sr-Rb/Ba(b)图解(底图据参考文献[19])Figure 7. Al2O3/TiO2-CaO/Na2O(a)and Rb/Sr-Rb/Ba(b)diagrams of the Jitang duplex granitesSylvester[19]认为,源区岩石的部分熔融与Al2O3/ TiO2值关系密切,认为Al2O3/TiO2>100时源区部分重熔温度小于875℃;当岩石中Al2O3/TiO2<100时,源区部分重熔温度大于875℃;且存在两者比值与温度呈负相关的特征。吉塘复式花岗岩中黑云母二长花岗岩和花岗闪长岩的Al2O3/TiO2值分别为14.39~31.63和16.97~25.83,均小于100,说明源区部分重熔的温度应大于875℃,这与吉塘复式花岗中不同岩石类型的锆石结晶温度介于616.0~ 881.1℃之间的结论吻合(表 2)。在推覆作用下, 地壳加厚均衡后的最高温度仅为750℃左右[7, 20],因此仅靠地壳加厚增温无法使源岩重熔,还需其他深部异常热流的作用才能发生部分重熔。结合区域构造演化过程,认为吉塘复式花岗岩的形成与碰撞造山导致地壳加厚增温有关,也与岩石圈剪切、伸展期有关的深熔作用相关。
4.4 构造意义
吉塘复式花岗岩中黑云母二长花岗岩和花岗闪长岩的岩石地球化学特征显示,吉塘复式花岗岩的形成与碰撞造山导致地壳加厚增温及与岩石圈剪切、伸展期有关的深熔作用有关,而与北澜沧江结合带的俯冲碰撞关系不大。在(Y+Nb)-Rb图解(图 8-a)和Hf-3Ta-Rb/30图解(图 8-b)中,黑云母二长花岗岩和花岗闪长岩样品投影点落入碰撞后-同碰撞或板内花岗岩环境,可能与元古宇吉塘岩群片麻岩有关[21]。England等[20]认为,地壳俯冲碰撞至地壳加厚直至部分熔融的演化过程持续时间较长,可以推测北澜沧江洋的闭合时间应早于211~ 229Ma。本文在吉塘复式花岗岩中获得的岩浆结晶年龄和岩石地球化学特征与临沧花岗岩特征基本一致,推测具有相近的大地构造演化过程,即存在统一的构造岩浆活动模式。王保弟等[4]明确指出,存在龙木错-双湖-澜沧江碰撞结合带,并以吉塘岩群中变质花岗岩为依据,获得246.3±0.8Ma的年龄,认为是北澜沧江结合带碰撞造山的产物,且在246Ma之前该带已经进入陆-陆碰撞阶段。陶琰等[7]在研究吉塘花岗岩的基础上提出澜沧江洋的闭合时间早于220Ma,可能为280Ma左右;祁生胜等[6]在吉塘岩群石榴子石白云母石英片岩中获得白云母Ar-Ar年龄为251.5±2.6Ma;笔者在吉塘岩群糜棱岩化片麻岩中获得一组LA-ICP-MS锆石U-Pb年龄介于252~273Ma之间(另文专述),认为与区域构造岩浆-变质变形事件有关。因此,笔者认为,北澜沧江洋的闭合时间可能在273Ma左右。此外,吉塘复式花岗岩侵位于吉塘岩群中,在吉塘岩群与吉塘复式花岗岩的接触部分发育大量的混染现象,指示吉塘复式花岗岩的源岩可能为吉塘岩群,且暗示其侵位深度较深。
5. 结论
(1)吉塘复式花岗岩属于过铝质S型花岗岩,与临沧花岗岩、纽多花岗岩具有一致的岩石地球化学特征,为澜沧江花岗岩带的重要组成部分,具有统一的构造岩浆活动模式。吉塘复式花岗岩的源岩为变质杂砂岩,指示其源岩可能为吉塘岩群。
(2)吉塘复式花岗岩的形成年龄介于213.6± 1.1~222.8±1.5Ma之间,为晚三叠世,与临沧花岗岩的主体形成时代一致,暗示具有统一的大地构造演化过程。
(3)吉塘复式花岗岩的成因与碰撞造山导致的地壳加厚增温及与岩石圈剪切、伸展期有关的深熔作用有关,澜沧江洋的闭合时间可能为273Ma左右。
致谢: 湖南省地勘局405队杨邵祥教授级高级工程师、张劲松工程师,湖南花垣太丰矿业集团吴学超经理在野外工作中给予了很大帮助,在此一并表示衷心的感谢。 -
图 1 花垣铅锌矿区地质简图(据参考文献①修改)
Ptbn—板溪群;Z—震旦系;∈2-3—中上寒武统;∈1q—下寒武统清虚洞组;∈1s—下寒武统石牌组;∈1n—下寒武统牛蹄塘组;O—奥陶系;F1—张家界—花垣断裂;F2—水田-松桃断裂;F3—麻栗场断裂
Figure 1. Sketch geological map of the Huayuan Pb-Zn ore district
图 2 花垣地区下寒武统地层柱状图(据参考文献[13]修改)
Figure 2. Stratigraphic column of lower Cambrian in Huayuan area
图 4 花垣铅锌矿床硫化物206Pb/204Pb-207Pb/204Pb和206Pb/204Pb-208Pb/204Pb构造环境演化图解(底图据参考文献[44])
Figure 4. 206Pb/204Pb-207Pb/204Pb and 206Pb/204Pb-208Pb/204Pb diagrams for sulfides of the Huayuan Pb-Zn ore deposit
图 5 花垣铅锌矿床硫化物Pb同位素Δβ-Δγ成因分类图解(底图据参考文献[45])
1—地幔源铅;2—上地壳源铅;3—上地壳与地幔混合的俯冲带铅(3a—岩浆作用;3b—沉积作用);4—化学沉积型铅;5—海底热水作用铅;6—中深变质作用铅;7—深变质作用下地壳铅;8—造山带铅;9—古老页岩上地壳铅;10—退变质作用铅
Figure 5. Δβ-Δγ genetic classification diagram of lead isotopic distribution for sulfides of the Huayuan Pb-Zn ore deposit
图 6 湘西北地区地层Pb、Zn含量分布(据参考文献[1]修改)
K—白垩系;S—志留系;O3—上奥陶统;O2—中奥陶统;O1—下奥陶统;∈3b—上寒武统比条组;∈3c—上寒武统车夫组;∈2h2—中寒武统花桥组上段;∈2h1—中寒武统花桥组下段;∈2a3—中寒武统敖溪组上段;∈2a2-中寒武统敖溪组中段;∈2a1—中寒武统敖溪组下段;∈1q2—下寒武统清虚洞组上段;∈1q1—下寒武统清虚洞组下段;∈1s—下寒武统石牌组;∈1n—下寒武统牛蹄塘组;Z2dn—震旦系上统灯影组;Z2d—震旦系上统陡山沱组;Z1n—震旦系下统南沱组;Z1d—震旦系下统大塘坡组;Z1g—震旦系下统古城组;Pt3bn—新元古界板溪群
Figure 6. Distribution of Pb and Zn values of strata in northwestern Hu'nan Province
表 1 花垣铅锌矿床S同位素组成
Table 1 Sulfur isotopic compositions of the Huayuan Pb-Zn ore deposit
序号 采样位置 样品编号 矿物 δ34S/‰ 来源 1 李
梅LM-51 闪锌矿 31.0 本文 2 LM-52 闪锌矿 28.9 本文 3 LM-53 闪锌矿 30.7 本文 4 LM-54 闪锌矿 30.7 本文 5 LM-55 闪锌矿 30.9 本文 6 LM-56 闪锌矿 31.1 本文 7 LM-57 闪锌矿 27.0 本文 8 LM-59 闪锌矿 28.4 本文 9 LM-61 闪锌矿 29.2 本文 10 LM4-5 闪锌矿 27.9 本文 11 LM4-7 方铅矿 30.6 本文 12 LM4-8 闪锌矿 27.8 本文 13 LM4-10A 闪锌矿 32.3 本文 14 LM4-10B 闪锌矿 32.4 本文 15 LM4-10C 闪锌矿 32.3 本文 16 LM4-11 闪锌矿 31.3 本文 17 LM8-06A 闪锌矿 28.9 本文 18 LM8-06B 闪锌矿 31.5 本文 19 LM-02 闪锌矿 30.3 [25] 20 LM-03 闪锌矿 32.4 [25] 21 LM-05 闪锌矿 31.9 [25] 22 LM-10 闪锌矿 31.5 [25] 23 LM-13 闪锌矿 28.8 [25] 24 LM-14 闪锌矿 29.3 [25] 25 LM-15 闪锌矿 30.9 [25] 26 LM-yB1 闪锌矿 33.1 [25] 27 LM-yB1 黄铁矿 34.7 [25] 28 LM-yB8 闪锌矿 32.9 [25] 29 LM-yB11 闪锌矿 32.2 [25] 30 大
石
沟DSG-51 闪锌矿 30.7 本文 31 DSG-52 闪锌矿 31.1 本文 32 DSG-53 方铅矿 27.7 本文 33 DSG-54 方铅矿 27.5 本文 34 DSG-55 闪锌矿 31.2 本文 35 DSG-58 闪锌矿 29.9 本文 36 DSG-60 闪锌矿 30.8 本文 37 DSG-61-1 闪锌矿 31.1 本文 38 DSG-61-2 方铅矿 27.1 本文 39 DSG-62 闪锌矿 33.0 本文 40 DSG-63-1 闪锌矿 33.1 本文 41 DSG-63-2 方铅矿 26.7 本文 42 DSG-64 方铅矿 24.5 本文 43 DSG-65 方铅矿 24.8 本文 44 DSG-66 闪锌矿 32.7 本文 45 DSG-10A 闪锌矿 31.5 本文 46 DSG-10B 闪锌矿 31.7 本文 47 DSG-12A 闪锌矿 31.5 本文 48 DSG-12B 方铅矿 26.5 本文 49 DSG20 闪锌矿 32.0 本文 50 DSG30 方铅矿 25.9 本文 51 DSG31A 闪锌矿 30.6 本文 52 DSG31B 闪锌矿 29.3 本文 53 DSG31C 闪锌矿 31.3 本文 54 DSG32A 闪锌矿 32.0 本文 55 DSG32B 闪锌矿 32.1 本文 56 DSG32C 闪锌矿 31.5 本文 57 DSG33B 方铅矿 27.3 本文 58 DSG33C 闪锌矿 28.6 本文 59 DSG33D 闪锌矿 30.5 本文 60 DSG34A 闪锌矿 30.0 本文 61 DSG34B 闪锌矿 31.3 本文 62 土
地
坪TD01A 方铅矿 25.2 本文 63 TD01B 闪锌矿 29.3 本文 64 TD01C 闪锌矿 31.4 本文 65 TD02A 闪锌矿 31.4 本文 66 TD02B 闪锌矿 32.2 本文 67 TD08 方铅矿 29.6 本文 68 TD12 方铅矿 25.9 本文 69 TD15 闪锌矿 32.0 本文 70 TD20A 闪锌矿 32.0 本文 71 TD20B 闪锌矿 31.2 本文 72 狮
子
山SZS-01 方铅矿 26.8 [25] 73 SZS-02 闪锌矿 31.3 [25] 74 SZS-05 闪锌矿 31.7 [25] 75 SZS-08 闪锌矿 31.8 [25] 76 SZS-10 闪锌矿 34.1 [25] 77 SZS-15-2 黄铁矿 32.8 [25] 78 SZS-15-2 方铅矿 26.3 [25] 79 SZS-15-3 黄铁矿 33.0 [25] 80 SZS-16 闪锌矿 33.5 [25] 81 SZS-16 方铅矿 26.5 [25] 82 SZS-25 方铅矿 27.2 [25] 83 SZS-26 闪锌矿 33.4 [25] 84 SZS-26 方铅矿 27.6 [25] 85 SZS-27 闪锌矿 31.8 [25] 86 SZS-27 方铅矿 27.2 [25] 87 SZS-B1 闪锌矿 33.3 [26] 88 SZS-B1 方铅矿 24.9 [26] 89 SZS-B4 闪锌矿 33.5 [26] 90 SZS-B5 方铅矿 27.4 [26] 表 2 花垣铅锌矿床Pb同位素组成及相关参数
Table 2 Lead isotopic compositions of the Huayuan Pb-Zn ore deposit
序号 位置 样号 矿物 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb μ ω Th/U △α △β △γ 1 李
梅LM-51 闪锌矿 18.199 15.746 38.452 9.78 39.17 3.88 87.20 29.24 47.80 2 LM-52 闪锌矿 18.153 15.699 38.305 9.69 38.34 3.83 82.66 26.04 42.83 3 LM-53 闪锌矿 18.213 15.721 38.424 9.73 38.72 3.85 84.84 27.38 45.32 4 LM-54 闪锌矿 18.178 15.719 38.380 9.73 38.72 3.85 84.61 27.38 45.12 5 LM-55 闪锌矿 18.191 15.716 38.391 9.72 38.66 3.85 84.33 27.11 44.85 6 LM-56 闪锌矿 18.180 15.710 38.357 9.71 38.52 3.84 83.75 26.73 43.97 7 LM-57 闪锌矿 18.214 15.741 38.489 9.77 39.19 3.88 86.74 28.82 48.08 8 LM-59 闪锌矿 18.170 15.713 38.354 9.72 38.59 3.84 84.02 26.98 44.35 9 LM-61 闪锌矿 18.174 15.717 38.372 9.72 38.69 3.85 84.41 27.26 44.92 10 大石沟 DSG-51 闪锌矿 18.173 15.725 38.365 9.74 38.74 3.85 85.17 27.84 45.17 11 DSG-53 方铅矿 18.157 15.729 38.403 9.75 39.04 3.88 85.53 28.19 46.92 12 DSG-54 方铅矿 18.139 15.691 38.300 9.68 38.33 3.83 81.87 25.52 42.72 13 DSG-55 闪锌矿 18.200 15.776 38.556 9.84 39.91 3.93 90.06 31.41 52.14 14 DSG-58 闪锌矿 18.183 15.728 38.380 9.75 38.77 3.85 85.47 28.01 45.42 15 DSG-60 闪锌矿 18.158 15.725 38.383 9.74 38.91 3.87 85.15 27.90 46.14 16 DSG-61-1 闪锌矿 18.573 15.800 39.238 9.84 40.83 4.02 93.03 31.69 60.19 17 DSG-61-2 方铅矿 18.221 15.764 38.499 9.81 39.42 3.89 88.95 30.45 49.32 18 DSG-62 闪锌矿 18.511 15.751 39.071 9.75 40.01 3.97 88.22 28.41 55.03 19 DSG-63-1 闪锌矿 18.678 15.785 39.255 9.80 40.13 3.96 91.84 30.27 56.54 20 DSG-63-2 方铅矿 18.253 15.784 38.658 9.85 40.11 3.94 90.90 31.76 53.67 21 DSG-64 方铅矿 18.224 15.742 38.537 9.77 39.35 3.90 86.86 28.85 49.13 22 DSG-65 方铅矿 18.292 15.832 38.822 9.94 41.07 4.00 95.50 35.06 59.36 23 DSG-66 闪锌矿 18.540 15.821 39.237 9.89 41.23 4.03 94.95 33.30 62.31 表 3 花垣铅锌矿床闪锌矿与寒武系地层87Sr/86Sr同位素组成
Table 3 Sr isotopic compositions of Huayuan Pb-Zn ore deposits and the Cambrian strata
样品编号 样品描述 采样位置 87Sr/86Sr 来源 SZ-5 闪锌矿 花垣狮子山 0.70987 [46] SZ-6 闪锌矿 花垣狮子山 0.70933 [46] SZ-7 闪锌矿 花垣狮子山 0.70915 [46] SZ-8 闪锌矿 花垣狮子山 0.70954 [46] SZ-9 闪锌矿 花垣狮子山 0.70970 [46] SZ-12 闪锌矿 花垣狮子山 0.70942 [46] SZ-13 闪锌矿 花垣狮子山 0.70955 [46] SZ-5-1 闪锌矿 花垣狮子山 0.70996 [46] 97c87 下寒武统牛蹄塘组黑色页岩 湖南凤凰 0.71823 [47] 97c5 下寒武统石牌组页岩 花垣麻栗场 0.82733 [47] 97c65 下寒武统清虚洞组灰岩 花垣半坡 0.70909 [47] 97c51 下寒武统清虚洞组含矿灰岩 花垣 0.70885 [47] 97c57 下寒武统清虚洞组白云岩 花垣 0.71076 [47] 97c11 下寒武统清虚洞组白云岩 花垣麻栗场 0.71845 [47] 中上寒武统白云岩 重庆秀山 0.70918 [48] 下寒武统灰岩 重庆秀山 0.70884 [48] 寒武系海相碳酸盐 0.70900 [49] -
杨绍祥, 劳可通.湘西北铅锌矿床的地质特征及找矿标志[J].地质通报, 2007, 26(7):899-908. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=200707147&journal_id=gbc 芮宗瑶, 叶锦华, 张立生, 等.扬子克拉通周边及其隆起边缘的铅锌矿床[J].中国地质, 2004, 31(4):337-346. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200404000.htm 李堃, 刘凯, 汤朝阳, 等.湘西黔东地区Zn地球化学块体特征及锌资源潜力估算[J].中国地质, 2013, 40(4):1270-1277. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201304024.htm 李宗发.湘西黔东地区铅锌矿成因初步探讨[J].贵州地质, 1991, 29(4):363-371. http://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199104010.htm 包正相.湘西黔东汞铅锌矿床的成矿作用与形成机理[J].桂林冶金地质学院学报, 1987, 7(3):159-170. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX198703001.htm 夏新阶, 舒见闻.李梅锌矿床地质特征及其成因[J].大地构造与成矿学, 1995, 19(3):197-204. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK503.001.htm 罗卫, 尹展, 孔令, 等.花垣李梅铅锌矿集区地质特征及矿床成因探讨[J].地质调查与研究, 2009, 33(3):194-202. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200903011.htm 陈明辉, 胡祥昭, 鲍振襄, 等.湖南渔塘铅锌矿集中区地质特征及成矿问题讨论[J].地质与勘探, 2011, 47(2):251-260. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201102017.htm 王华云.黔东铅锌矿的成矿规律及成矿模式[J].贵州地质, 1996, 1(13):7-23. http://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ601.002.htm 杨绍祥, 劳可通.湘西北铅锌矿床碳氢氧同位素特征及成矿环境分析[J].矿床地质, 2007, 26(3):330-340. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200703009.htm 刘文均, 郑荣才.花垣铅锌矿床成矿流体特征及动态[J].矿床地质, 2000, 2(19):173-181. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201705014.htm 钟九思, 毛昌明.湘西北密西西比河谷型铅锌矿床特征及成矿机制探讨[J].国土资源导刊, 2007, 4(6):52-56. http://www.cnki.com.cn/Article/CJFDTOTAL-GTDK200706041.htm 李堃, 吴昌雄, 汤朝阳, 等.湘西黔东地区铅锌矿床C、O同位素地球化学特征及其对成矿过程的指示[J].中国地质, 2014, 41(5):1608-1619. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201405016.htm Ohmoto H. Systematics of sulfur and carbon isotopes in hydrother-mal ore deposits[J]. Econ. Geol., 1972, 67:551-579. doi: 10.2113/gsecongeo.67.5.551
Zheng Y F, Hoefs J C. Effects of Mineral Precipitation on the Sul-fur Isotope Composition of Hydrothermal Solutions[J]. Chem. Ge-ol., 1993, 105(4):259-269. doi: 10.1016/0009-2541(93)90130-B
Stacey J S, Hedlund D C. Lead-isotopic compositions of diverse ig-neous rocks and ore deposits from southwestern New Mexico and their implications for early Proterozoic crustal evolution in the western United States[J]. Geological Society of America Bulletin, 1983, 94(1):43-57. doi: 10.1130/0016-7606(1983)94<43:LCODIR>2.0.CO;2
张乾, 潘家永, 邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释[J].地球化学, 2000, 29(3):231-238. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200003003.htm 吴开兴, 胡瑞宗, 毕献武, 等.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学, 2002, 30(3):73-81. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200203012.htm 张攀华.论江南地轴北西缘在湖南的边界[J].湖南地质, 1984, 3(2):57-64. http://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ198402006.htm 杜远生, 徐亚军.华南加里东运动初探[J].地质科技情报, 2012, 31(5):43-49. http://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201211012.htm 刘文均.湘黔断裂带的演化及其成矿作用特点[J].地质论评, 1985, 31(3):224-231. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198503004.htm 杨志坚.横贯中国东南部的一条古断裂带[J].地质科学, 1987, (3):221-230. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198703002.htm 汤朝阳, 邓峰, 李堃, 等.湘西-黔东地区寒武系清虚洞组地层特征与铅锌矿成矿关系[J].中国地质, 2012, 39(4):1034-1041. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201204020.htm 杨绍祥, 余沛然, 劳可通.湘西北地区铅锌矿床成矿规律及找矿方向[J].国土资源导刊, 2006, 3(3):92-98. http://www.cnki.com.cn/Article/CJFDTOTAL-GTDK200603025.htm 蔡应雄, 杨红梅, 段瑞春, 等.湘西-黔东下寒武统铅锌矿床流体包裹体和硫铅碳同位素地球化学特征[J].现代地质, 2014, 28(1):29-41. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201401004.htm 段其发. 湘西-鄂西地区震旦系-寒武系层控铅锌矿成矿规律研究[D]. 中国地质大学(武汉)博士学位论文, 2014: 118-119. 路远发. GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学, 2004, 33(5):56-63. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm Ohmoto H, Rye R O. Isotopes of sulfur and carbon[C]//Barnes H L. Geochemistry of Hydrothermal Ore Deposits. 2nd Edition. New York:J. Wiley and Sons, Inc, 1979:1-798.
Dejonghe J, Boulegue J, Demaffe D, et al. Isotope geochemistry (S, C, O, Sr, Pb) of the Chaud-fontaine mineralization (Belgium)[J]. Mineral Deposita, 1989, 24:132-134. https://www.researchgate.net/publication/295632458_Isotope_geochemistry_S_C_O_Sr_Pb_of_the_Chaudfontaine_mineralization_Belgium
Seal Robert Ⅱ. Sulfur isotope geochemistry of sulfide minerals[J]. R. Mineral & Geochem., 2006, 61:633-677. https://ar.scribd.com/document/84132132/Sulfur-Isotope-Geochemistry-of-Sulfide-Minerals
Basuki N I, Taylor B E, Spooner E T C. Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi val-ley type zinc-lead mineralization, Bongara area, northern Peru[J]. Econ. Geol., 2008, 103:183-799. https://pubs.geoscienceworld.org/economicgeology/article-abstract/103/4/783/127991/sulfur-isotope-evidence-for-thermochemical
张长青. 中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型[D]. 中国地质科学院博士学位论文, 2008: 70-80. Hoser W T, Kaplan I R. Isotope geochemistry of sedimentary sul-fates[J]. Chem. Geol., 1966, 1:93-135. doi: 10.1016/0009-2541(66)90011-8
Ottaway T L, Wicks F J, Bryndzia L T, et al. Formation of the Mu-zo hydrothermal deposit in Colombia[J]. Nature, 1994, 369:552-554. doi: 10.1038/369552a0
Cheilletz A, Giuliani G. The genesis of Colombian emeralds:A re-statement[J]. Minetal Deposita, 1996, 31:359-364. doi: 10.1007/BF00189183
刘文均, 郑荣才.硫酸盐热化学还原反应与花垣铅锌矿床[J].中国科学(D辑), 2000, 30(5):456-464. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200005001.htm Machel H G. Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis, hydrocarbon ac-cumulations, salt domes, and metal sulphide deposits[J]. Carbonates Evaporites, 1989, 4:137-151. doi: 10.1007/BF03175104
Jorgenson B B, Isaksen M F, Jannasch H W. Bacterial sulfate reduc-tion above 100℃ in deep sea hydrothermal vent sediments[J]. Sci-ence, 1992, 258:1756-1757. doi: 10.1126/science.258.5089.1756
Dixon G, Davidson G J. Stable isotope evidence for thermochemi-cal sulfate reduction in the Dugald River (Australia) strata-bound shale-hosted zinc-lead deposit[J]. Chemical Geology, 1996, 129:227-246. doi: 10.1016/0009-2541(95)00177-8
Worden R H, Smalley P C, Oxtoby N H. Gas souring by thermo-chemical sulfate reduction at 140℃[J]. American Association of Pe-troleum Geologists Bulletin, 1995, 79(6):854-863.
周云, 段其发, 唐菊兴, 等.湘西地区铅锌矿的大范围低温流体成矿作用-流体包裹体研究[J].地质与勘探, 2014, 50(3):515-532. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201403012.htm 王奖臻, 李朝阳, 李泽琴, 等.川、滇、黔交界地区密西西比河谷型铅锌矿床与美国同类矿床的对比[J].矿物岩石地球化学通报, 2002, 21(2):127-132. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200202011.htm 郑永飞, 陈江峰.稳定同位素地球化学[M].北京:科学出版社, 2000:1-236. Zartman R E, Doe B R. Plumbotectonics-The model[J]. Tectono-physics, 1981, 75(1):135-162.
朱炳泉.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化[M].北京:科学出版社, 1998:216-230. 段其发, 曹亮, 曾健康, 等.湘西花垣矿集区狮子山铅锌矿床闪锌矿Rb-Sr定年及地质意义[J].地球科学, 2014, 39(8):977-986. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408004.htm Jens S, Maria B, Fabio L, et al. Carbonate-hosted zinc-lead depos-its in the lower Cambrian of Hunan, south China:A radiogenic (Pb, Sr) isotope study[J]. Economic Geology, 2002, 97:1815-1827. doi: 10.2113/gsecongeo.97.8.1815
黄思静, 石和, 毛晓东, 等.重庆秀山寒武系锶同位素演化曲线及全球对比[J].地质论评, 2002, 48(5):509-516. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200205010.htm Denison R E, Koepnick R B, Burke W H, et al. Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve[J]. Chem. Geol., 1998, 152:325-340. doi: 10.1016/S0009-2541(98)00119-3
李宗发.湘黔边境铅锌矿带硫铅同位素组成特征[J].贵州地质, 1992, 9(3):246-254. http://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199203006.htm 李胜荣, 高振敏.湘黔寒武系底部黑色岩系贵金属元素来源示踪[J].中国科学(D辑), 2000, 30(2):169-174. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200002008.htm 王康年.湘黔下寒武统黑色岩系"多元素富集层"地质特征及成因探讨[J].贵州地质, 2009, 26(2):106-111. http://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200902009.htm 刘劲松, 邹先武, 汤朝阳, 等.湘西黔东地区铅锌矿床与古油藏关系初探[J].华南地质与矿床, 2012, 28(3):220-225. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201203005.htm McArthur J M, Kennedy W J, Gale A S, et al. Strontium-isotope stratigraphy in the Late Cretaceous, intercontinental correlation of the Campanian/Maastrichtian boundary[J]. Terra Nova, 1992, 4:385-393. doi: 10.1111/ter.1992.4.issue-3
Burke W H, Denison R E, Hetherington E A, et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time[J]. Geology, 1982, 10:516-519. doi: 10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2
黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报, 1997, 71(1):45-53. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199701005.htm 陈衍景, Pirajno F, 赖勇, 等.胶东矿集区大规模成矿时间和构造环境[J].岩石学报, 2004, 20(4):907-922. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200605001.htm 李延元.金属硫化物的溶度积[J].化学通报, 1962, 5:59-61. http://www.cnki.com.cn/Article/CJFDTOTAL-HXTB196205011.htm 张长青, 余金杰, 毛景文, 等.密西西比型(MVT)铅锌矿床研究进展[J].矿床地质, 2009, 28(2):195-210. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200902009.htm 陈旭, 戎嘉余, 周志毅, 等.上扬子区奥陶-志留纪的黔中隆起和宜昌上升[J].科学通报, 2001, 46(12):1052-1056. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200112020.htm 邓新, 杨坤光, 刘彦良, 等.黔中隆起性质及其构造演化[J].地学前缘, 2010, 17(3):79-89. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003009.htm 湖南省地质调查院吉首矿产地质研究. 湖南龙山-保靖铅锌矿评价成果报告. 2009. -
期刊类型引用(5)
1. 张力文,罗拉次旺,樊炳良,布嘎次仁,周新,冯德新,郭伟康. 藏东吉塘群黑云二长片麻岩锆石U-Pb年龄及其变质时代的厘定. 地质通报. 2022(11): 1927-1941 . 本站查看
2. 于涛,周新,樊炳良. 藏东吉塘地区吉塘岩群斜长角闪岩的时间序列:来自锆石LA-ICP-MS U-Pb年龄的证据. 高原科学研究. 2021(02): 13-26 . 百度学术
3. 徐长昊,任飞,陆彪. 澜沧江结合带北段纽多细粒二长花岗岩成因与构造意义. 矿物学报. 2020(03): 237-247 . 百度学术
4. 于涛,徐佳丽,高强,樊炳良,徐长昊. 藏东卡贡地区早侏罗世似斑状钾长花岗岩LA-ICP-MS锆石U-Pb年龄及地球化学特征. 地质通报. 2020(05): 621-630 . 本站查看
5. 胡志宇,王新然,樊炳良,白涛. 藏东地区中奥陶世浪拉山糜棱岩化二长花岗岩LA-ICP-MS锆石U-Pb年代学及地质意义. 矿物岩石. 2019(03): 60-68 . 百度学术
其他类型引用(3)