Processing math: 100%
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

南羌塘鄂斯玛地区早白垩世沥青地球化学特征及意义

陈文彬, 占王忠, 付修根, 曾胜强, 贺永忠

陈文彬, 占王忠, 付修根, 曾胜强, 贺永忠. 2017: 南羌塘鄂斯玛地区早白垩世沥青地球化学特征及意义. 地质通报, 36(4): 624-633. DOI: 10.12097/gbc.dztb-36-4-624
引用本文: 陈文彬, 占王忠, 付修根, 曾胜强, 贺永忠. 2017: 南羌塘鄂斯玛地区早白垩世沥青地球化学特征及意义. 地质通报, 36(4): 624-633. DOI: 10.12097/gbc.dztb-36-4-624
CHEN Wenbin, ZHAN Wangzhong, FU Xiugen, ZENG Shengqiang, HE Yongzhong. 2017: Geochemical characteristics and significance of Early Cretaceous bitumens in Esima area, southern Qiangtang Basin of Tibet. Geological Bulletin of China, 36(4): 624-633. DOI: 10.12097/gbc.dztb-36-4-624
Citation: CHEN Wenbin, ZHAN Wangzhong, FU Xiugen, ZENG Shengqiang, HE Yongzhong. 2017: Geochemical characteristics and significance of Early Cretaceous bitumens in Esima area, southern Qiangtang Basin of Tibet. Geological Bulletin of China, 36(4): 624-633. DOI: 10.12097/gbc.dztb-36-4-624

南羌塘鄂斯玛地区早白垩世沥青地球化学特征及意义

基金项目: 

中国地质调查局项目《羌塘盆地金星湖-隆鄂尼油气资源战略调查》 编号:DD20160159

《青南藏北冻土区天然气水合物资源勘查》 编号:GZH201400301

及国家自然科学基金项目《羌塘盆地海相油页岩:沉积古环境、古气候及源区》 批准号:41172098

详细信息
    作者简介:

    陈文彬 (1979-), 男, 硕士, 高级工程师, 从事沉积与油气地球化学研究。E-mail:cdcwenbin@qq.com

  • 中图分类号: P534.53

Geochemical characteristics and significance of Early Cretaceous bitumens in Esima area, southern Qiangtang Basin of Tibet

  • 摘要:

    首次在南羌塘安多县鄂斯玛地区早白垩世地层中发现沥青。从沥青有机碳含量、族组分及生物标志化合物方面综合研究了其有机地球化学特征,并进行了油源对比。研究结果表明,样品的有机碳含量为3.42%~75.01%,显示其有较高的沥青含量;族组成中重烃组分(非烃+沥青质)质量分数最高,其次为芳香烃,饱和烃质量分数最低。生物标志物研究表明,沥青的成熟度较高,沥青母岩的沉积环境为还原环境,其有机母质主要为混合来源,特别是藻类做出了重要贡献。运用生物标志化合物的相对含量指标进行油源对比研究表明,沥青可能来源于索瓦组泥岩。该研究成果对南羌塘的油气勘探具有一定意义。

    Abstract:

    Early Cretaceous bitumens were found for the first time in Esima area in southern Qiangtang Basin. The authors analyzed the organic geochemical characteristics from the bitumen content of organic carbon and group composition and biomarkers in this area and discussed the oil-source correlation. The result reveals that the total organic carbon content of the bituments samples varies in the range of 3.42%~75.01%, indicating abundant bitumens. The bitumen samples have the highest fraction of heavy hydrocarbons (nonhydrocarbon and asphaltene), followed by aromatics hydrocarbon, and the lowest fraction is saturated hydrocarbon. The maturity of bitumens are not in high maturity and are mainly in the mature stage. The source rock was deposited under reductive conditions, and the original organic matter was algae and high-grade plants, with especially important contribution made by algae. Oil-source correlations were studied by using the biomarkers, and the results show that the bitumens were derived from the Suowa Formation mudstones. The results obtained by the authors are important for oil and gas exploration in southern Qiangtang Basin.

  • 甘肃省龙首山地区是中国西北部重要的铀-多金属成矿带,区内铀成矿条件较优越,现已发现红石泉、新水井、芨岭等中小型铀矿床。芨岭铀矿床自发现以来有较多学者在矿床地质特征、控矿构造条件、元素地球化学等方面进行了研究[1-3],取得了一定的成果和认识,但是在矿床成矿流体的性质与演化、成矿机制等方面研究较少。为此,笔者在龙首山成矿带进行地质工作时,对该矿床进行了较系统的研究,通过主成矿阶段含矿碳酸盐脉流体包裹体岩相学、显微测温、群体包裹体成分、激光拉曼探针分析等研究,探讨成矿流体的性质,揭示芨岭地区的铀成矿机制。

    龙首山地区位于华北板块西南缘阿拉善地块的南缘,南接河西走廊过渡带,北邻潮水盆地。在漫长的地质历史中经历了多旋回地质构造演化。区内出露最老的地层为古元古界龙首山岩群,是在古裂谷环境下沉积的一套双峰式火山岩、碎屑岩及碳酸盐岩,经角闪岩相变质作用形成的强变质变形地体,其次为新元古界孩母山岩群。最新地层为山前坳陷沉积的古近系红色碎屑岩及新近系粘土、砂、砾。

    芨岭花岗岩体是该区最大的侵入体(图 1),在加里东期侵位于元古宙地层中,是由混合花岗岩、闪长岩、斑状闪长花岗岩、(似斑状)粗粒二长花岗岩、碱性岩组成的杂岩体;由陆壳重熔岩浆经结晶分异形成,岩浆演化成熟度高,后期出现碱性岩及碱性热液脉体,奠定了龙首山地区的铀矿物质基础[4-6]

    图  1  甘肃省芨岭地区地质图(据参考文献[4]修改)
    1—全新统;2—中新统;3—新元古界孩母山岩群;4—古元古界龙首山岩群;5—加里东期花岗岩;6—钠交代型铀矿床;7—断层及运动方向;8—逆断层;Ⅰ—阿拉善地块;Ⅰ1—龙首山断隆带;Ⅱ—祁连地块;Ⅱ1—河西走廊
    Figure  1.  Geological map of the Jiling area, Gansu Province

    矿体产于区域性断裂和与之呈锐角相交或近于平行的次级断裂带中,成群出现,产状基本与断裂一致。矿体以盲矿体为主,位于次级断裂下盘钠交代中粗粒(似斑状)二长花岗岩中,矿体产出与次级断裂一致,向南西倾伏,倾伏角为60°~80°。单个矿体一般呈筒状、透镜状、不规则状,宽度几米至几十米,长度可达数百米。品位一般变化于0.03%~ 0.25%之间,变化系数为60.2%。含矿岩石主要为碎裂中粗粒斑状钠交代岩及少量钠交代混染闪长岩。矿石具碎裂斑状、破碎角砾状和微粒胶结结构。主要矿物为钠长石、黄铁矿、方铅矿、雪花状方解石、鲕状(球粒状)绿泥石、赤铁矿、锐钛矿、磷灰石等。铀的存在形式主要为铀矿物,以沥青铀矿为主,有少量铀黑、硅钙铀矿;部分呈类质同象和分散吸附形式[7]。矿石具碎裂、碎斑和破碎角砾状结构,脉状、网脉状、浸染状或不规则团块状构造;围岩蚀变主要为钠长石化、赤铁矿化、绿泥石化和碳酸盐化(图 2)“四位一体”的碱交代热液蚀变,局部发育绢云母化、硅化、粘土化、褐铁矿化等。

    图  2  芨岭铀矿碳酸盐脉流体包裹体均一温度直方图
    Figure  2.  Histogram showing microthermometric measurements of fluid inclusions in carbonate from the Jiling uranium deposit
      图版Ⅰ 
    a~c.铀矿石岩心(U含量1255×10-6~1366×10-6);d~f.铀矿石显微照片,正交偏光。Cal—方解石;Hem—赤铁矿;Chl—绿泥石;Kfs (Ab)—钾长石钠长石化;Pl (Ab)—斜长石钠长石化;Ab—钠长石
      图版Ⅰ. 

    本次主要对主成矿阶段矿石中碳酸盐脉开展流体包裹体岩相学、显微测温、群体包裹体成分、激光拉曼探针分析,样品采自芨岭铀矿床Ⅴ、Ⅶ、Ⅷ号脉。将样品磨制成厚度为0.25mm双面抛光的包裹体薄片,进行流体包裹体岩相学观察,选择代表性样品进行均一温度、冰点、成分等分析[8-10]

    显微测温工作在西安地质矿产研究所流体实验室完成,使用的仪器为Linkam THMS-600型冷热台(-196~600℃)。测试前,应用国际标准样纯H2O及NaCleqv=25%的H2O-NaCl包裹体,对流体包裹体的参数进行系统矫正,误差为±0.1℃。测试期间,当温度小于30℃时升温速率为1℃/min;当温度大于200℃时,升温速率为10℃/min;在相变化及冰点附近,升温速率小于0.2℃/min。

    单个包裹体的激光拉曼分析在西安地质矿产研究所流体实验室(LABHR-VISLABRAMHR800型显微激光拉曼光谱仪)完成,实验条件为:波长为531nm,Yag晶体倍频,固体激光器,激光束斑大于等于1μm,扫描时间12s,扫描3次。

    流体包裹体群体成分分析在西安地质矿产研究所流体实验室完成。气相成分分析实验使用仪器为美国PerkinElmer公司clarus600气相色谱仪。实验条件为温度25℃,载气为氩气,载气气流25mL/min,载气压力100kPa,检测器TCD,柱箱温度120℃。热导检测器温度150℃,包裹体的爆裂温度为550℃。液相成分分析使用仪器为美国DION⁃ EX-500型离子色谱仪。

    流体包裹体岩相学研究显示,含矿碳酸盐脉内的流体包裹体较发育,包裹体类型简单。根据流体包裹体岩相学及冷热台相变行为[11-14],可将包裹体分为气相包裹体、液相包裹体和纯液相包裹体。液相包裹体主要由液体成分和气相成分组成,其液相成分占包裹体体积的62%~85%;包裹体呈不规则状、椭圆状、次圆状,大小为4~13μm,包裹体加热时均一至液相;气相包裹体同样由气相和液相组成,形态主要为椭圆状、次圆状、四边形状和不规则状,气相成分占整个包裹体的60% ~80%,大小为3~ 8μm,包裹体均一至气相;纯液相包裹体常温下全部为液相,包裹体呈椭圆状、次圆状产出,大小介于3~5μm之间。

    本次共采集11件碳酸盐脉样品用于流体包裹体研究,从中挑选8件代表性样品用于包裹体均一温度测定。测定均一温度时,首先对包裹体进行冷却,然后再回温加热,记录包裹体冰点温度(Ti),测定气体包裹体和液体包裹体均一温度(Tht)和均一方式,测试结果见表 1

    表  1  芨岭铀矿碳酸盐脉流体包裹体显微测温数据及参数
    Table  1.  Microthermometric data and estimated parameters of fluid inclusions in carbonate from the Jiling uranium deposit
    样号测试数均一相态Ti/℃Tht/℃NaCleqv/%p1/MPah1/kmρ/(g· m-3)
    ZKJ9-2-66液相-0.7~-1.8172.0~187.61.2~3.17.6~22.80.3 ~0.80.81~0.91
    5气相-2.2~-4.1193.5~200.03.6~6.627.9~59.10.9 ~2.00.83~0.92
    ZKJ9-2-75液相-2.5~-3.4188.5~195.44.2~5.633.1~47.91.1 ~1.60.93~0.95
    6气相-2.0~-2.4165.2~180.63.4~4.025.7 ~31.60.9 ~1.10.85~0.93
    ZKJ9-2-85液相-3.1~-3.5171.7~173.45.1~5.743.1~49.51.4 ~1.60.87~0.95
    6气相-1.7~-2.6141.1~171.32.8~4.420.7 ~35.40.7~1.20.92~0.93
    ZKJ9-2-94液相-4.0~-4.3182.4~185.56.4~6.856.6~61.51.9~2.00.83~0.88
    5气相-2.6~-3.4168.8~174.24.3~5.634.6 ~47.91.2 ~1.60.93~0.97
    ZKJ9-2-105液相-1.2~-1.7195.4~214.02.1~2.914.6 ~21.40.5~0.70.92~0.95
    5气相-3.2~-3.7180.5~192.15.2~5.943.9~51.81.5 ~1.70.86~0.89
    ZKJ9-2-114液相-2.1~-2.7279.8~287.83.5~4.527.2 ~36.90.9 ~1.20.93~0.97
    5气相-4.0~-4.6245.0~246.86.4~7.357.4 ~67.91.9 ~2.30.85~0.93
    ZKJ9-2-124液相-1.8~-2.0291.2~294.53.0~3.322.1 ~25.00.7 ~0.80.92~1.07
    4气相-4.6~-5.0205.1~226.67.2~7.767.1~72.72.2~2.40.97~1.03
    ZKJ9-2-134液相-1.7~-2.5245.3~256.62.8~4.220.7 ~33.10.7~1.10.92~0.93
    5气相-3.7~-4.5217.3~223.46.0~7.052.6 ~64.71.8~2.20.94~0.97
    注:Ti为冰点下降温度;Tht为均一温度;NaCl为盐度;p1为成矿压力;h1为成矿深度;ρ为密度
    下载: 导出CSV 
    | 显示表格

    表 1可以看出,芨岭铀矿碳酸盐脉中流体包裹体均一温度分布在141~295℃之间(n=104),平均温度为205℃。根据所测包裹体均一温度数据绘制直方图。从均一温度直方图(图 2)可以看出,液体流体包裹体均一温度变化范围较宽,成矿温度分2期:① 晚期集中在170~200℃之间,具有175℃左右峰值;② 早期集中在210~230℃之间,具有220℃左右峰值。气体包裹体均一温度变化范围也较大,成矿温度在190~295℃之间,有245℃左右峰值,成矿温度部分低于液体包裹体,但成矿温度范围整体趋势高于液体包裹体,部分重叠,说明二者具有相同的均一温度。上述测温结果表明,芨岭铀矿床成矿阶段流体具有中-低温热液的特点。

    流体包裹体被喻为成矿热液的原始样品,是解译成矿作用的密码[11],其成分的测定可以探测成矿流体来源和源区组成,激光拉曼分析是对单个包裹体进行非破坏测定最有效的方法[12-17]

    本次流体包裹体激光拉曼光谱显示,主成矿阶段流体包裹体气相成分以CH4、N2、H2为主,其次为H2S,少量CO2等气体,液相成分富H2O和CH4,成矿流体属于NaCl-H2O±CH4±CO2体系(图 3)。

    图  3  芨岭铀矿床主成矿阶段碳酸盐流体包裹体气相和液相激光拉曼图
    Figure  3.  Raman spectrograms of fluid inclusions in carbonate from the Jiling uranium deposit

    对芨岭铀矿主成矿阶段碳酸盐脉中群体包裹体气液成分进行分析,测试结果显示,芨岭铀矿气相成分以CH4、N2、H2为主,其次为H2S,少量CO2等气体,液相成分富H2O和CH4,与激光拉曼分析结果一致。

    根据陈云杰等[6]对矿区碳酸盐的C、O同位素组成分析结果,C、O同位素组成有以下特征:δ13CVPDB值在-1.50‰~-6.33‰之间;正常花岗岩的δ18OSMOW值为1.526‰~4.763‰,矿化期钠交代花岗岩中碳酸盐化样品方解石的δ18OSMOW值为1.474‰ ~ 5.051‰;正常花岗岩碳酸盐脉样品的δ18OSMOW值为-1.082‰~-2.495‰,成矿期钠交代花岗岩中碳酸盐脉样品的δ18OSMOW值为-0.938‰~2.577‰。从上述数据可以看出,区内成矿期和成矿晚期形成的碳酸盐的O同位素组成没有明显的差别。δ18OSMOW值反映了成矿热液的水源主要为岩浆热液与大气降水混合特征,以大气降水形成为主。

    芨岭铀矿床主成矿阶段流体包裹体可见气相包裹体、液相包裹体和纯液相包裹体相邻,共生于同一结晶面上,流体包裹体显微测温显示,包裹体均一温度介于141~295℃之间,液相包裹体和气相包裹体均一温度相近,均一方式各异,气相包裹体均一至气相,液相包裹体均一至液相(表 1),应属于典型的沸腾流体包裹体组合。然而,从流体包裹体盐度直方图(图 4)可以看出,包裹体盐度呈非正态分布特征,其与沸腾流体盐度特征基本相符[10, 18]。因此,成矿流体在成矿时期发生沸腾作用。激光拉曼和群体成分分析显示,流体包裹体气相成分以CH4、N2、H2为主,具有绝对优势,其次为H2S,含有少量CO2等气体,液相成分富H2O和CH4,成矿流体属于NaCl-H2O±CO2±CH4体系。

    图  4  芨岭铀矿碳酸盐脉流体包裹体盐度直方图
    Figure  4.  Histogram showing salinity of fluid inclusions in carbonate from the Jiling uranium deposit

    本次研究获得的冰点温度变化范围主要为-5.0~-1.2℃(表 1),根据测得的冰点温度数据(n=64),采用Potter等[19]及Hall等[20]的(NaCl-H2O体系)盐度计算公式:

    w=0.00+1.78Ti0.0442Ti2+0.000557Ti3 (1)

    式中w为NaCl的质量百分数,Ti为冰点下降温度的绝对值,求得盐度为2.09%~7.69% NaCleqv表 1),平均值为4.76% NaCleqv。从盐度直方图(图 4)中可以看出,流体盐度峰值集中在5.0%~6.0% NaCleqv

    根据均一温度和盐度,应用刘斌[21]的经验公式:

    ρ=a+bTht+cTht2 (2)

    式中abc均为无量纲参数,求得芨岭铀矿床流体包裹体的密度变化区间为0.81~1.07g/cm3表 1),平均值为0.92g/cm3,成矿流体具低密度的特征。

    本次流体包裹体激光拉曼光谱显示:主成矿阶段流体包裹体气相成分含有较多的CH4和H2,H2S、N2次之,仅1件样品中检测到CO2,其余未检测到其他气体成分存在。

    根据邵洁涟等[22-23]计算流体压力的经验公式:

    p1=p0×t1/t0 (3)

    式中p1为成矿压力(×105Pa);p0=219+2620×wt0=374+920×wp0为初始压力(×105Pa);t0为初始温度。计算得出芨岭铀矿床成矿压力的范围为15~ 73MPa(表 1),峰值集中在25~60MPa之间,平均值为40MPa(图 5)。

    图  5  芨岭铀矿床成矿压力直方图
    Figure  5.  Histogram showing ore-forming pressures from the Jiling uranium deposit

    成矿深度对矿床成因研究和资源矿产勘查潜力的确定具有重要的意义[14, 24],邵洁涟等[22]提出的成矿压力和成矿深度经验公式为:

    h1()=p1×1/300×105m (4)

    根据这些关系求出芨岭铀矿床的成矿深度范围为0.9~2.4km(表 1),平均值为1.95km,可见芨岭地区铀成矿形成于中浅成环境。

    由上可知,芨岭铀矿成矿流体显示中-低温、低盐度、低密度、中-低压的流体特征,铀矿体形成于浅成成矿环境。

    根据陈云杰等[6]对芨岭矿床的C、O同位素研究(图 6),C、O同位素组成δ13CVPDB的值在-1.50‰~-6.33‰之间,δ18OSMOW值在-2.577‰~5.051‰之间,成矿热液的水源主要为岩浆热液与大气降水混合特征,以大气降水形成为主。

    图  6  岌岭铀矿床C-O同位素相关图解
    (据参考文献[6]修改)
    Figure  6.  Diagram showing δ18O and δ13C from the Jiling uranium deposit

    流体混合、水岩反应、流体沸腾或相分离等是热液矿床成矿物质沉淀的主要机制。芨岭铀矿C、O同位素研究表明,成矿流体具有岩浆水和大气降水混合的特点。在流体包裹体研究中,发现液相包裹体、气相包裹体和纯液相包裹体共生同一结晶面,属于同时捕获的结果。研究认为,其是含矿热液自超临界状态向临界状态转化应力骤减降低的结果,是流体不混溶或流体沸腾的标志[18]。激光拉曼和群体成分分析结果显示,成矿流体包括多种组分,说明捕获的流体是不均一状态流体,与相分离作用特征相符,因此流体不混溶或沸腾作用导致相分离。结合成矿流体特征,铀成矿有2期成矿特征,早期流体不混溶或沸腾作用导致相分离产生铀矿沉淀,晚期流体脱气(CO2)作用导致铀矿质再次沉淀富集,是芨岭铀成矿作用的主要原因。

    (1)芨岭铀矿床流体包裹体以气相包裹体和液相包裹体为主,含少量纯液相包裹体。流体包裹体气相成分以CH4、N2、H2为主,其次为H2S,少量CO2等气体,液相成分富H2O和CH4,成矿流体属于NaCl-H2O±CH4±CO2体系。

    (2)流体包裹体测试和估算结果显示,成矿流体具有中-低温(180~200℃、290~300℃)、低盐度 (2.09%~ 7.69%)、低密度(0.81~1.07g/cm3)、中-低压(15~ 73MPa)和浅成成矿环境(成矿深度0.9~2.4km)。

    (3)流体不混溶或沸腾作用导致相分离产生铀矿沉淀,以及流体脱气(CO2)作用导致矿质再次沉淀富集,是芨岭铀成矿作用的主要原因。

    致谢: 参加本次野外工作的还有贵州省地质调查院的朱勋、易成兴、吴韬工程师等,在此表示衷心的感谢。
  • 图  1   研究区地质简图及采样位置

    1—色哇组;2—布曲组;3—夏里组一段;4—夏里组二段;5—夏里组三段;6—索瓦组一段;7—索瓦组二段;8—安山岩;9—康托组;10—第四系;11—实测断层;12—推测断层;13—地层产状;14—沥青采样点;15—不整合;16—盆地边界;17—盆地边沿断裂;18—构造单元界线;19—中央隆起;20—断层;21—逆冲断层

    Figure  1.   Geological sketch map of the study area and sampling locations

    图  2   鄂斯玛地区沥青野外露头及显微特征

    a—沥青野外露头;b—沥青野外露头;c—含沥青储层显微照片(单偏光);d—含沥青储层显微照片(荧光)

    Figure  2.   Characteristics of the bitumen in Esima area

    图  3   鄂斯玛地区沥青和可能烃源岩饱和烃分布特征

    Figure  3.   TIC distribution of saturated hydrocarbons extracted from the bitumen samples and their potential source rocks in Esima area

    图  4   鄂斯玛地区沥青及可能烃源岩Ph/nC18-Pr/nC17图解

    Figure  4.   Cross plot of Pr/nC17 versus Ph/nC18 for the bitumens samples and their potential source rocks in Esima area

    图  5   鄂斯玛地区沥青及可能烃源岩甾烷 (m/z217) 分布特征

    Figure  5.   Sterane distribution of saturated hydrocarbons extracted from the bitumen samples and their potential source rocks in Esima area

    图  6   鄂斯玛地区沥青及可能烃源岩甾烷三角图(样品编号同表 1

    Figure  6.   Ternary diagram showing C27-C28-C29 regular sterane compositions of the bitumens samples and their potential source rocks in Esima area

    图  7   鄂斯玛地区沥青与可能烃源岩C29ααα20S/ααα(20S+20R) 与C29αββ/(ααα+αββ) 关系(样品编号同表 1

    Figure  7.   Cross plot of C29ααα20S/ααα(20S+20R) steranes versus C29αββ/(ααα +αββ) steranes of the bitumens samples and their potential source rocks in Esima area

    图  8   鄂斯玛地区沥青及可能烃源岩萜烷(m/z191)分布特征

    Figure  8.   Terpane distribution of saturated hydrocarbons extracted from the bitumen samples and their potential source rocks in Esima area

    表  1   鄂斯玛地区早白垩世沥青及可能烃源岩基本有机地球化学参数

    Table  1   Geochemical parameters of the bitumens samples and their potential source rocks in Esima area

    样品
    编号
    层位岩性TOC/%S/%氯仿沥青
    “A”/%
    氯仿沥青“A”族组成/%
    饱和烃芳烃非烃沥青质
    B1J3K1s含沥青灰岩3.540.240.027612.5228.4931.9427.04
    B2J3K1s含沥青灰岩6.530.100.019516.6731.5431.0320.77
    B3J3K1s含沥青灰岩7.300.490.02349.7126.6424.3839.28
    B4J3K1s纯沥青75.011.590.45836.9924.2640.8127.94
    B5J3K1s含沥青灰岩3.420.030.024413.4323.8837.3125.37
    B6J3K1s含沥青灰岩5.380.030.012319.5730.4328.2621.74
    A1J3K1s泥岩0.720.340.033224.2829.8620.2125.64
    A2J3K1s泥岩0.750.440.030021.3728.7115.1934.72
    注:J3K1s为索瓦组
    下载: 导出CSV

    表  2   鄂斯玛地区沥青及可能烃源岩正构烷烃和类异戊二烯烃分析结果

    Table  2   Data of saturated hydrocarbon and isoprenoid hydrocarbon for the bitumens samples and their potential source rocks in Esima area

    样品
    编号
    主峰碳CPIOEPPr/PhPr/
    nC17
    Ph/
    nC18
    nC21-/
    nC22+
    (nC21+nC22)/
    (nC28+nC29)
    B1191.020.990.920.350.260.801.73
    B2191.051.030.840.440.340.731.79
    B3201.070.970.910.540.450.541.73
    B4191.161.070.690.720.370.943.44
    B5191.141.070.730.750.470.702.55
    B6211.171.020.570.810.420.692.68
    A1211.071.010.890.400.320.901.94
    A2200.981.020.980.560.280.781.66
    下载: 导出CSV

    表  3   鄂斯玛地区沥青及可能烃源岩甾烷和萜烷标志物分析结果

    Table  3   The parameters of biomarkers from the bitumens samples and their potential source rocks in Esima area

    样品
    编号
    规则甾烷/%
    C27 C28 C29
    C29ααα20Sααα/
    (20S+20R)
    C29αββ/
    (ααα+αββ)
    Ts/(Tm+Ts)C29藿烷/
    C30藿烷
    C(29+30)莫烷/
    C(29+30)藿烷
    C31 αβ22S/
    (22S+22R)
    γ蜡烷/C31
    (22S+22R)/2
    B13319480.380.510.380.480.120.500.29
    B22825470.50.480.390.540.110.430.18
    B33521440.420.40.200.670.160.400.13
    B43422440.470.440.220.590.150.430.18
    B53621430.50.410.420.520.100.480.26
    B63920410.40.440.370.580.170.400.16
    A13025450.50.500.280.500.140.380.19
    A23123460.420.500.380.570.170.360.09
    下载: 导出CSV
  • 鲁兵, 李永铁, 刘忠.青藏高原的盆地形成与分类[J].石油学报, 2000, 21(2):21-26. doi: 10.7623/syxb200002004
    丘东洲, 谢渊, 李晓清, 等.亚洲特提斯域岩相古地理与油气聚集地质特征[J].海相油气地质, 2009, 14(2):41-51. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200902008.htm
    王成善, 伊海生, 刘池洋, 等.西藏羌塘盆地古油藏发现及其意义[J].石油与天然气地质, 2004, 25(2):139-143. doi: 10.11743/ogg20040204
    解超明, 李才, 李林庆, 等.藏北羌塘中部首次发现泥火山[J].地质通报, 2009, 28(9):1319-1324. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20090921&journal_id=gbc
    陈文彬, 廖忠礼, 刘建清, 等.西藏羌塘盆地扎仁地区白云岩油苗地球化学特征[J].新疆石油地质, 2008, 29(2):214-218. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200802026.htm
    刘家铎, 周文, 李勇, 等.青藏地区油气资源潜力分析与评价[M].北京:地质出版社, 2007:1-299.
    赵政璋, 李永铁, 叶和飞, 等.青藏高原海相烃源层的油气生成[M].北京:科学出版社, 2000:175-213.
    陈文彬, 贺永忠, 占王忠, 等.藏北南羌塘安多县鄂斯玛地区早白垩世孢粉化石Dicheiropollis的发现及地质意义[J].地质通报, 2012, 31(10):1602-1607. doi: 10.3969/j.issn.1671-2552.2012.10.006
    王剑, 谭富文, 李亚林, 等.青藏高原重点沉积盆地油气资源潜力分析[M].北京:地质出版社, 2004:38-42.
    彼得斯K E, 莫尔多万J M.生物标志化合物指南——古代沉积物和石油中分子化石的解释[M].北京:石油工业出版社, 1995:178-187.

    Tissot B P, Welte D H. Petroleum Formation and Occurrence[M]. New York:Springer-Verlag, 1984:1-538.

    李守军.正烷烃、姥鲛烷与植烷对沉积环境的指示意义——以山东济阳坳陷下第三系为例[J].石油大学报:自然科学版, 1999, 23(5):14-23. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX199905035.htm
    季长军, 伊海生, 陈志勇, 等.西藏羌塘盆地羌D2井原油类型及其勘探意义[J].石油学报, 2013, 34(6), 1070-1076. doi: 10.7623/syxb201306005

    Brooks J D, Gould K, Smith J W. Isoprenoid hydrocarbons in coal and petroleum[J]. Nature, 1969, 222(5190):257-259. doi: 10.1038/222257a0

    Powell T G, McKridy D M. Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia[J]. Nature, 1973, 243(124):37-39. https://www.researchgate.net/publication/232801496_Relationship_between_Ratio_of_Pristane_to_Phytane_Crude_Oil_Composition_and_Geological_Environment_in_Australia

    Didyk B M, Simoneit B R T, Brassell S C, et al. Organicgeochemi-cal indicators of palaeoenvironmental conditionsof sedimentation[J]. Nature, 1978, 272(5650):216-222. doi: 10.1038/272216a0

    Ten Haven H L, Rullköetter J, Leeuw D, et al. Pristane/phytane ratio as environmental indicator[J]. Nature, 1988, 333(6174):604. https://www.researchgate.net/publication/27687826_Pristanephytane_ratio_as_environmental_indicator_-_Reply

    Peters K E, Walters C C, Moldowan J M. The BiomarkerGuide (vol 1):Biomakers and Isotopes in the Environment and Human History. 2nd ed[M]. Cambridge:University of Cambridge, 2005:1-471. http://assets.cambridge.org/97805217/81589/frontmatter/9780521781589_frontmatter.pdf

    Shanmugan G. Significance of coniferous rain forests and related oil, Gipp sland Basin, Australia[J]. AAPG Bulletin, 1985, 69(8):1241-1254 https://www.researchgate.net/publication/264739638_Significance_of_Coniferous_Rain_Forests_and_Related_Organic_Matter_in_Generating_Commercial_Quantities_of_Oil_Gippsland_Basin_Australia

    Huang W Y, Meinschein W G. Sterols as ecological indicators[J]. Geochim Cosmochim Acta, 1979, 43(5):739-745. doi: 10.1016/0016-7037(79)90257-6

    Summons R E. Dinosterane and other steroidal hydrocarbons of di-noflagellate origin in sediments and petroleum[J].Geochimica et Cosmochimica Acta, 1987, 51:3075-3082. doi: 10.1016/0016-7037(87)90381-4

    Riboulleau A, Schnyder J, Riquier L, et al. Environmental change during the Early Cretaceous in the Purbeck-type Durlston Bay sec-tion (Dorset, Southern England):A biomarker approach[J]. Org. Geochem., 2007, 38(11):1804-1823. doi: 10.1016/j.orggeochem.2007.07.006

    Moldwan J M, Albrecht P, Phlip R P, et al. Biomarkers in sedi-ments and petroleum[M]. Prentice-Hall, Englewood Cliffs, New Tersey, 1992:268-280.

    陈建平, 黄第藩.酒东盆地油气生成和运移[M].北京:石油工业出版社, 1995:100-106.

    PetersK E, Walters C C, Moldowan J M. The biomarker guide (sec-ond edition):Ò. Biomarkers and Isotopes in Petroleum Explora-tionand Earth History[M]. Cambridge University Press, 2005:1-708.

    Mackenzie A S, Hoffmann C F, Maxwell J R. Molecular parame-ters of matuiration in the Toarcian shales, Paris Basin, France-Ⅲ. Changes in aromatic steroid hydrocarbons[J]. Geochimica et Cos-mochimica Acta, 1981, 45:1345-1355. doi: 10.1016/0016-7037(81)90227-1

    张立平, 黄第藩, 廖志勤.伽马蜡烷——水体分层的地球化学标志[J].沉积学报, 1999, 17(1):136-140. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB901.021.htm

    Sinninghe Damste J S, Kenig F, Koopmans M P, et al. Evidence for gammacerane as an indicator of water column stratification[J]. Geo-chim Cosmochim Acta, 1995, 59(9):1895-1900. doi: 10.1016/0016-7037(95)00073-9

    Schoell M, Hwang R J, Carlson R M K, et al. Carbonisotopic composition of individual biomarkers in gilsonites (Utah)[J]. Org. Geochem., 1994, 21(6/7):673-683. https://www.researchgate.net/publication/248421721_Carbon_isotopic_composition_of_individual_biomarkers_in_gilsonites_Utah

图(8)  /  表(3)
计量
  • 文章访问数:  2547
  • HTML全文浏览量:  272
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-17
  • 修回日期:  2017-03-15
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2017-03-31

目录

/

返回文章
返回