Characteristics and hydrocarbon accumulation controlling factors of Neogene Shawan Formation reservoir in Chepaizi uplift, Junggar Basin
-
摘要:
对准噶尔盆地车排子凸起新近系沙湾组已发现油藏从层位、规模、油性、物性、物源、类型等方面进行了梳理和总结。沙湾组共发育岩性、断层-岩性、断鼻三类圈闭,储层特征与油藏规模存在差异,油性分布较复杂。在明确沙湾组复杂油藏特征的基础上,结合典型油藏解剖,认为长期继承性的古隆起、高效的毯状砂体输导层、断层纵横向的封闭性、储集层物性的差异、多源多期成藏过程及不同的保存条件是沙湾组油气藏类型多样、油性复杂的主要控制因素。根据上述认识,预测毯状砂体侧向尖灭带为有利的油气聚集区,从实钻效果看,该区带内油气显示丰富,展现出较好的勘探前景。
Abstract:The characteristics of the Neogene Shawan Formation reservoirs in Chepaizi uplift are summarized and analyzed according to their layers, sizes, oil qualities, physical property, origins, and types. Lithological, fault-lithological and fault nose traps are the major traps where Shawan Formation was developed. Reservoir characteristics and sizes vary in different reservoirs. The distribution of oil character is very complex. Based on an analysis of the typical reservoirs, the authors hold that long-term inherited paleouplift, effi-cient blanket-like sand body, fault sealing properties, difference of litholoies and physical properties, and multi-source and multistage accumulation together with storage condition constitute the main controlling factors for the hydrocarbon accumulation. On such a basis, it is pointed out that the blanket sand's lateral pinch zone is the favorable oil accumulation zone. Drilling reveals that the area possesses rich oil resources and shows good prospect for exploration.
-
Keywords:
- Chepaizi uplift /
- reservoir character /
- oil accumulation /
- controlling elements /
- Shawan Formation
-
甘肃省龙首山地区是中国西北部重要的铀-多金属成矿带,区内铀成矿条件较优越,现已发现红石泉、新水井、芨岭等中小型铀矿床。芨岭铀矿床自发现以来有较多学者在矿床地质特征、控矿构造条件、元素地球化学等方面进行了研究[1-3],取得了一定的成果和认识,但是在矿床成矿流体的性质与演化、成矿机制等方面研究较少。为此,笔者在龙首山成矿带进行地质工作时,对该矿床进行了较系统的研究,通过主成矿阶段含矿碳酸盐脉流体包裹体岩相学、显微测温、群体包裹体成分、激光拉曼探针分析等研究,探讨成矿流体的性质,揭示芨岭地区的铀成矿机制。
1. 矿床地质特征
龙首山地区位于华北板块西南缘阿拉善地块的南缘,南接河西走廊过渡带,北邻潮水盆地。在漫长的地质历史中经历了多旋回地质构造演化。区内出露最老的地层为古元古界龙首山岩群,是在古裂谷环境下沉积的一套双峰式火山岩、碎屑岩及碳酸盐岩,经角闪岩相变质作用形成的强变质变形地体,其次为新元古界孩母山岩群。最新地层为山前坳陷沉积的古近系红色碎屑岩及新近系粘土、砂、砾。
芨岭花岗岩体是该区最大的侵入体(图 1),在加里东期侵位于元古宙地层中,是由混合花岗岩、闪长岩、斑状闪长花岗岩、(似斑状)粗粒二长花岗岩、碱性岩组成的杂岩体;由陆壳重熔岩浆经结晶分异形成,岩浆演化成熟度高,后期出现碱性岩及碱性热液脉体,奠定了龙首山地区的铀矿物质基础[4-6]。
图 1 甘肃省芨岭地区地质图(据参考文献[4]修改)1—全新统;2—中新统;3—新元古界孩母山岩群;4—古元古界龙首山岩群;5—加里东期花岗岩;6—钠交代型铀矿床;7—断层及运动方向;8—逆断层;Ⅰ—阿拉善地块;Ⅰ1—龙首山断隆带;Ⅱ—祁连地块;Ⅱ1—河西走廊Figure 1. Geological map of the Jiling area, Gansu Province矿体产于区域性断裂和与之呈锐角相交或近于平行的次级断裂带中,成群出现,产状基本与断裂一致。矿体以盲矿体为主,位于次级断裂下盘钠交代中粗粒(似斑状)二长花岗岩中,矿体产出与次级断裂一致,向南西倾伏,倾伏角为60°~80°。单个矿体一般呈筒状、透镜状、不规则状,宽度几米至几十米,长度可达数百米。品位一般变化于0.03%~ 0.25%之间,变化系数为60.2%。含矿岩石主要为碎裂中粗粒斑状钠交代岩及少量钠交代混染闪长岩。矿石具碎裂斑状、破碎角砾状和微粒胶结结构。主要矿物为钠长石、黄铁矿、方铅矿、雪花状方解石、鲕状(球粒状)绿泥石、赤铁矿、锐钛矿、磷灰石等。铀的存在形式主要为铀矿物,以沥青铀矿为主,有少量铀黑、硅钙铀矿;部分呈类质同象和分散吸附形式[7]。矿石具碎裂、碎斑和破碎角砾状结构,脉状、网脉状、浸染状或不规则团块状构造;围岩蚀变主要为钠长石化、赤铁矿化、绿泥石化和碳酸盐化(图 2)“四位一体”的碱交代热液蚀变,局部发育绢云母化、硅化、粘土化、褐铁矿化等。
2. 样品和实验方法
本次主要对主成矿阶段矿石中碳酸盐脉开展流体包裹体岩相学、显微测温、群体包裹体成分、激光拉曼探针分析,样品采自芨岭铀矿床Ⅴ、Ⅶ、Ⅷ号脉。将样品磨制成厚度为0.25mm双面抛光的包裹体薄片,进行流体包裹体岩相学观察,选择代表性样品进行均一温度、冰点、成分等分析[8-10]。
显微测温工作在西安地质矿产研究所流体实验室完成,使用的仪器为Linkam THMS-600型冷热台(-196~600℃)。测试前,应用国际标准样纯H2O及NaCleqv=25%的H2O-NaCl包裹体,对流体包裹体的参数进行系统矫正,误差为±0.1℃。测试期间,当温度小于30℃时升温速率为1℃/min;当温度大于200℃时,升温速率为10℃/min;在相变化及冰点附近,升温速率小于0.2℃/min。
单个包裹体的激光拉曼分析在西安地质矿产研究所流体实验室(LABHR-VISLABRAMHR800型显微激光拉曼光谱仪)完成,实验条件为:波长为531nm,Yag晶体倍频,固体激光器,激光束斑大于等于1μm,扫描时间12s,扫描3次。
流体包裹体群体成分分析在西安地质矿产研究所流体实验室完成。气相成分分析实验使用仪器为美国PerkinElmer公司clarus600气相色谱仪。实验条件为温度25℃,载气为氩气,载气气流25mL/min,载气压力100kPa,检测器TCD,柱箱温度120℃。热导检测器温度150℃,包裹体的爆裂温度为550℃。液相成分分析使用仪器为美国DION⁃ EX-500型离子色谱仪。
3. 实验结果
3.1 流体包裹体类型和特征
流体包裹体岩相学研究显示,含矿碳酸盐脉内的流体包裹体较发育,包裹体类型简单。根据流体包裹体岩相学及冷热台相变行为[11-14],可将包裹体分为气相包裹体、液相包裹体和纯液相包裹体。液相包裹体主要由液体成分和气相成分组成,其液相成分占包裹体体积的62%~85%;包裹体呈不规则状、椭圆状、次圆状,大小为4~13μm,包裹体加热时均一至液相;气相包裹体同样由气相和液相组成,形态主要为椭圆状、次圆状、四边形状和不规则状,气相成分占整个包裹体的60% ~80%,大小为3~ 8μm,包裹体均一至气相;纯液相包裹体常温下全部为液相,包裹体呈椭圆状、次圆状产出,大小介于3~5μm之间。
3.2 流体包裹体显微测温、盐度和密度
本次共采集11件碳酸盐脉样品用于流体包裹体研究,从中挑选8件代表性样品用于包裹体均一温度测定。测定均一温度时,首先对包裹体进行冷却,然后再回温加热,记录包裹体冰点温度(Ti),测定气体包裹体和液体包裹体均一温度(Tht)和均一方式,测试结果见表 1。
表 1 芨岭铀矿碳酸盐脉流体包裹体显微测温数据及参数Table 1. Microthermometric data and estimated parameters of fluid inclusions in carbonate from the Jiling uranium deposit样号 测试数 均一相态 Ti/℃ Tht/℃ NaCleqv/% p1/MPa h1/km ρ/(g· m-3) ZKJ9-2-6 6 液相 -0.7~-1.8 172.0~187.6 1.2~3.1 7.6~22.8 0.3 ~0.8 0.81~0.91 5 气相 -2.2~-4.1 193.5~200.0 3.6~6.6 27.9~59.1 0.9 ~2.0 0.83~0.92 ZKJ9-2-7 5 液相 -2.5~-3.4 188.5~195.4 4.2~5.6 33.1~47.9 1.1 ~1.6 0.93~0.95 6 气相 -2.0~-2.4 165.2~180.6 3.4~4.0 25.7 ~31.6 0.9 ~1.1 0.85~0.93 ZKJ9-2-8 5 液相 -3.1~-3.5 171.7~173.4 5.1~5.7 43.1~49.5 1.4 ~1.6 0.87~0.95 6 气相 -1.7~-2.6 141.1~171.3 2.8~4.4 20.7 ~35.4 0.7~1.2 0.92~0.93 ZKJ9-2-9 4 液相 -4.0~-4.3 182.4~185.5 6.4~6.8 56.6~61.5 1.9~2.0 0.83~0.88 5 气相 -2.6~-3.4 168.8~174.2 4.3~5.6 34.6 ~47.9 1.2 ~1.6 0.93~0.97 ZKJ9-2-10 5 液相 -1.2~-1.7 195.4~214.0 2.1~2.9 14.6 ~21.4 0.5~0.7 0.92~0.95 5 气相 -3.2~-3.7 180.5~192.1 5.2~5.9 43.9~51.8 1.5 ~1.7 0.86~0.89 ZKJ9-2-11 4 液相 -2.1~-2.7 279.8~287.8 3.5~4.5 27.2 ~36.9 0.9 ~1.2 0.93~0.97 5 气相 -4.0~-4.6 245.0~246.8 6.4~7.3 57.4 ~67.9 1.9 ~2.3 0.85~0.93 ZKJ9-2-12 4 液相 -1.8~-2.0 291.2~294.5 3.0~3.3 22.1 ~25.0 0.7 ~0.8 0.92~1.07 4 气相 -4.6~-5.0 205.1~226.6 7.2~7.7 67.1~72.7 2.2~2.4 0.97~1.03 ZKJ9-2-13 4 液相 -1.7~-2.5 245.3~256.6 2.8~4.2 20.7 ~33.1 0.7~1.1 0.92~0.93 5 气相 -3.7~-4.5 217.3~223.4 6.0~7.0 52.6 ~64.7 1.8~2.2 0.94~0.97 注:Ti为冰点下降温度;Tht为均一温度;NaCl为盐度;p1为成矿压力;h1为成矿深度;ρ为密度 由表 1可以看出,芨岭铀矿碳酸盐脉中流体包裹体均一温度分布在141~295℃之间(n=104),平均温度为205℃。根据所测包裹体均一温度数据绘制直方图。从均一温度直方图(图 2)可以看出,液体流体包裹体均一温度变化范围较宽,成矿温度分2期:① 晚期集中在170~200℃之间,具有175℃左右峰值;② 早期集中在210~230℃之间,具有220℃左右峰值。气体包裹体均一温度变化范围也较大,成矿温度在190~295℃之间,有245℃左右峰值,成矿温度部分低于液体包裹体,但成矿温度范围整体趋势高于液体包裹体,部分重叠,说明二者具有相同的均一温度。上述测温结果表明,芨岭铀矿床成矿阶段流体具有中-低温热液的特点。
3.3 流体包裹体激光拉曼分析
流体包裹体被喻为成矿热液的原始样品,是解译成矿作用的密码[11],其成分的测定可以探测成矿流体来源和源区组成,激光拉曼分析是对单个包裹体进行非破坏测定最有效的方法[12-17]。
本次流体包裹体激光拉曼光谱显示,主成矿阶段流体包裹体气相成分以CH4、N2、H2为主,其次为H2S,少量CO2等气体,液相成分富H2O和CH4,成矿流体属于NaCl-H2O±CH4±CO2体系(图 3)。
3.4 流体包裹体群体成分分析
对芨岭铀矿主成矿阶段碳酸盐脉中群体包裹体气液成分进行分析,测试结果显示,芨岭铀矿气相成分以CH4、N2、H2为主,其次为H2S,少量CO2等气体,液相成分富H2O和CH4,与激光拉曼分析结果一致。
4. C、O同位素
根据陈云杰等[6]对矿区碳酸盐的C、O同位素组成分析结果,C、O同位素组成有以下特征:δ13CVPDB值在-1.50‰~-6.33‰之间;正常花岗岩的δ18OSMOW值为1.526‰~4.763‰,矿化期钠交代花岗岩中碳酸盐化样品方解石的δ18OSMOW值为1.474‰ ~ 5.051‰;正常花岗岩碳酸盐脉样品的δ18OSMOW值为-1.082‰~-2.495‰,成矿期钠交代花岗岩中碳酸盐脉样品的δ18OSMOW值为-0.938‰~2.577‰。从上述数据可以看出,区内成矿期和成矿晚期形成的碳酸盐的O同位素组成没有明显的差别。δ18OSMOW值反映了成矿热液的水源主要为岩浆热液与大气降水混合特征,以大气降水形成为主。
5. 地质意义
5.1 成矿流体的性质
芨岭铀矿床主成矿阶段流体包裹体可见气相包裹体、液相包裹体和纯液相包裹体相邻,共生于同一结晶面上,流体包裹体显微测温显示,包裹体均一温度介于141~295℃之间,液相包裹体和气相包裹体均一温度相近,均一方式各异,气相包裹体均一至气相,液相包裹体均一至液相(表 1),应属于典型的沸腾流体包裹体组合。然而,从流体包裹体盐度直方图(图 4)可以看出,包裹体盐度呈非正态分布特征,其与沸腾流体盐度特征基本相符[10, 18]。因此,成矿流体在成矿时期发生沸腾作用。激光拉曼和群体成分分析显示,流体包裹体气相成分以CH4、N2、H2为主,具有绝对优势,其次为H2S,含有少量CO2等气体,液相成分富H2O和CH4,成矿流体属于NaCl-H2O±CO2±CH4体系。
5.2 成矿流体的盐度、密度、压力和成矿深度
本次研究获得的冰点温度变化范围主要为-5.0~-1.2℃(表 1),根据测得的冰点温度数据(n=64),采用Potter等[19]及Hall等[20]的(NaCl-H2O体系)盐度计算公式:
w=0.00+1.78Ti−0.0442Ti2+0.000557Ti3 (1) 式中w为NaCl的质量百分数,Ti为冰点下降温度的绝对值,求得盐度为2.09%~7.69% NaCleqv(表 1),平均值为4.76% NaCleqv。从盐度直方图(图 4)中可以看出,流体盐度峰值集中在5.0%~6.0% NaCleqv。
根据均一温度和盐度,应用刘斌[21]的经验公式:
ρ=a+bTht+cTht2 (2) 式中a、b和c均为无量纲参数,求得芨岭铀矿床流体包裹体的密度变化区间为0.81~1.07g/cm3(表 1),平均值为0.92g/cm3,成矿流体具低密度的特征。
本次流体包裹体激光拉曼光谱显示:主成矿阶段流体包裹体气相成分含有较多的CH4和H2,H2S、N2次之,仅1件样品中检测到CO2,其余未检测到其他气体成分存在。
p1=p0×t1/t0 (3) 式中p1为成矿压力(×105Pa);p0=219+2620×w,t0=374+920×w,p0为初始压力(×105Pa);t0为初始温度。计算得出芨岭铀矿床成矿压力的范围为15~ 73MPa(表 1),峰值集中在25~60MPa之间,平均值为40MPa(图 5)。
成矿深度对矿床成因研究和资源矿产勘查潜力的确定具有重要的意义[14, 24],邵洁涟等[22]提出的成矿压力和成矿深度经验公式为:
h1(成矿深度)=p1×1/300×105m (4) 根据这些关系求出芨岭铀矿床的成矿深度范围为0.9~2.4km(表 1),平均值为1.95km,可见芨岭地区铀成矿形成于中浅成环境。
由上可知,芨岭铀矿成矿流体显示中-低温、低盐度、低密度、中-低压的流体特征,铀矿体形成于浅成成矿环境。
5.3 成矿流体来源及成矿机制
根据陈云杰等[6]对芨岭矿床的C、O同位素研究(图 6),C、O同位素组成δ13CVPDB的值在-1.50‰~-6.33‰之间,δ18OSMOW值在-2.577‰~5.051‰之间,成矿热液的水源主要为岩浆热液与大气降水混合特征,以大气降水形成为主。
图 6 岌岭铀矿床C-O同位素相关图解(据参考文献[6]修改)Figure 6. Diagram showing δ18O and δ13C from the Jiling uranium deposit流体混合、水岩反应、流体沸腾或相分离等是热液矿床成矿物质沉淀的主要机制。芨岭铀矿C、O同位素研究表明,成矿流体具有岩浆水和大气降水混合的特点。在流体包裹体研究中,发现液相包裹体、气相包裹体和纯液相包裹体共生同一结晶面,属于同时捕获的结果。研究认为,其是含矿热液自超临界状态向临界状态转化应力骤减降低的结果,是流体不混溶或流体沸腾的标志[18]。激光拉曼和群体成分分析结果显示,成矿流体包括多种组分,说明捕获的流体是不均一状态流体,与相分离作用特征相符,因此流体不混溶或沸腾作用导致相分离。结合成矿流体特征,铀成矿有2期成矿特征,早期流体不混溶或沸腾作用导致相分离产生铀矿沉淀,晚期流体脱气(CO2)作用导致铀矿质再次沉淀富集,是芨岭铀成矿作用的主要原因。
6. 结论
(1)芨岭铀矿床流体包裹体以气相包裹体和液相包裹体为主,含少量纯液相包裹体。流体包裹体气相成分以CH4、N2、H2为主,其次为H2S,少量CO2等气体,液相成分富H2O和CH4,成矿流体属于NaCl-H2O±CH4±CO2体系。
(2)流体包裹体测试和估算结果显示,成矿流体具有中-低温(180~200℃、290~300℃)、低盐度 (2.09%~ 7.69%)、低密度(0.81~1.07g/cm3)、中-低压(15~ 73MPa)和浅成成矿环境(成矿深度0.9~2.4km)。
(3)流体不混溶或沸腾作用导致相分离产生铀矿沉淀,以及流体脱气(CO2)作用导致矿质再次沉淀富集,是芨岭铀成矿作用的主要原因。
致谢: 油气藏数据的收集和整理阶段得到中石化胜利油田李晓晴教授级高级工程师、商丰凯、程长岭高级工程师的大力帮助,论文编写过程中得到中国石油勘探开发研究院刘伟、王铜山高级工程师的悉心指导,在此深表感谢。 -
表 1 沙湾组油藏特征统计
Table 1 Statistics of the reservoir characteristics in Shawan Formation
油藏名称 层位 含油高度/m 代表井 储层深度/m 孔隙度/% 渗透率/10-3μm2 含油饱和度/% 油性 油源 油藏类型 沉积体系 排2 沙二段 60 排2井 1013.4~1017.2 26.46 165.65 46.24 稀油 侏罗系 岩性 扇三角洲前缘 排2-30 沙二段 26 排2-30井 827.2~830.7 25.8 378 73.9 稀油 侏罗系 岩性 扇三角洲前缘 排2-40 沙二段 25 排2-40井 999.0~1003.0 35.4 1466.5 77.1 稀油 侏罗系 岩性 扇三角洲前缘 排2-88 沙二段 30 排2-88井 1401.1~1404.9 27.6 357.2 78.6 稀油 侏罗系 岩性 扇三角洲前缘 排206-X15 沙二段 45 排206-X15井 1074.1~1077.9 29 712.4 73.1 稀油 侏罗系 岩性 扇三角洲前缘 排8 沙二段 32 排8井 1177.2~1181.9 34.99 528.44 62.93 稀油 侏罗系 岩性 扇三角洲前缘 排8-30 沙二段 20 排8-30井 1087.6~1092.4 30.4 735.7 70.5 稀油 侏罗系 岩性 扇三角洲前缘 排8-40 沙二段 18 排8-40井 1008.8~1013.6 31 946.7 63.4 稀油 侏罗系 岩性 扇三角洲前缘 排601 沙一段 295 排601井 487.2~492.7 36.6 72 稠油 二叠系 断层-岩性 扇三角洲前缘 排602 沙一段 150 排602井 524.8~527 18.88 37.377 48.65 稠油 .一叠系 岩性 扇三角洲前缘 排2-400 沙一段 35 排2-400井 732.2~734 18.23 81 45.82 中质油 混源 断层-岩性 冲积扇 排609 沙一段 65 排609井 226~235.5 20.3 139.5 51.1 稠油 .一叠系 岩性 冲积扇 排612 沙一段 120 排612井 314.5~317.5 34.09 587.45 59.61 稠油 .一叠系 岩性 扇三角洲前缘 春2 沙一段 50 春2井 929.4~934.8 30.37 1469 77.64 中质油 混源 断层-岩性 扇三角洲前缘 排2-300 沙一段 10 排2-300井 1266.1~1270.6 26.15 437 60.93 中质油 混源 断鼻 扇三角洲前缘 表 2 车排子地区部分断层各层系封闭性统计
Table 2 Statistics of the sealing properties of some faults in Chepaizi area
断层 层位 砂泥对接系数 断裂带充填物泥质含量 (Rm)/% 泥岩涂抹因子 (SGR)/% 侧向封闭性 垂向封闭性 沙一段 0.53 48 77 封闭 可输导 排21北 沙二段 0.56 65 62 可输导 封闭 沙三段 1.4 19 21 优势通道 优势通道 沙一段 4.1 8.3 20 优势通道 优势通道 排8南 沙二段 0.34 56 75 封闭 可输导 沙三段 0.63 76 71 封闭 封闭 沙一段 0.12 68 80 封闭 封闭 排6东 沙二段 0.14 57 100 封闭 可输导 沙三段 0.2 33 84 封堵 优势通道 沙一段 0.78 39 45 可输导 优势通道 排22南 沙二段 0.36 72 77 封闭 封闭 沙三段 2.4 13 24 优势通道 优势通道 沙一段 3.5 43 35 优势通道 优势通道 排7西 沙二段 0.78 83 84 封闭 封闭 沙三段 1.9 74 25 优势通道 封闭 沙一段 3.1 35 18 优势通道 优势通道 排2西 沙二段 0.62 69 77 封闭 封闭 沙三段 0.31 51 79 封闭 可输导 -
王坤, 任新成, 马奎, 等.准噶尔盆地车排子凸起沙湾组油藏输导体系研究[J].高校地质学报, 2016, 22(2):350-359. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201602015.htm 沈扬, 李茂榕.准噶尔盆地车排子凸起稀、稠油反序分布成因探讨[J].石油与天然气地质, 2008, 29(1):66-71. doi: 10.11743/ogg20080110 邢凤存, 陆永潮, 刘传虎, 等.车排子地区构造-古地貌特征及其控砂机制[J].石油与天然气地质, 2008, 29(1):79-83. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200801014.htm 庄新明.准噶尔盆地车排子凸起石油地质特征及勘探方向[J].新疆地质, 2009, 27(6):70-74. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200901019.htm 杨少春, 孟祥梅, 陈宁宁, 等.准噶尔盆地车排子地区新近系沙湾组沉积特征[J].中国石油大学学报 (自然科学版), 2011, 35(2):20-24. http://cdmd.cnki.com.cn/Article/CDMD-10425-2010280847.htm 赵晓东, 向奎, 叶光辉, 等.准噶尔盆地车排子地区新近系沙湾组层序地层格架分析[J].科技导报, 2010, 28(12):89-94. http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201012032.htm 杨勇, 陈世悦, 王桂萍, 等.准噶尔盆地车排子地区古近系层序地层与岩性圈闭预测[J].科技导报, 2011, 29(11):27-32. doi: 10.3981/j.issn.1000-7857.2011.11.003 金鑫, 陆永潮, 卢林.准噶尔盆地车排子地区中、新生界沉降史分析[J].海洋石油, 2007, 27(3):51-56. http://www.cnki.com.cn/Article/CJFDTOTAL-HYSY200703007.htm 苏朝光, 仲维苹.准噶尔盆地车排子凸起新近系沙湾组物源分析[J].石油与天然气地质, 2010, 31(5):648-655. doi: 10.11743/ogg20100514 沈扬, 贾东, 赵宏亮, 等.准噶尔盆地西部车排子凸起新近系沙湾组成藏体系与富集规律[J].地质通报, 2010, 29(4):581-588. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100413&journal_id=gbc 王振奇, 支东明, 张昌民, 等.准噶尔盆地西北缘车排子地区新近系沙湾组油源探讨[J].中国科学 (D辑), 2008, 38(增刊Ⅱ):97-104. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S2014.htm 李政, 张林晔, 沈忠民, 等.准噶尔盆地车排子凸起轻质油母源及充注方向[J].石油实验地质, 2011, 33(4):419-423. doi: 10.11781/sysydz201104419 王照录, 王华, 杨红.含油气盆地的输导体系研究[J].石油与天然气地质, 2000, 21(2):133-135. doi: 10.11743/ogg20000210 靖辉, 江洪, 向奎.准噶尔盆地西缘车排子地区岩性油气藏成藏主控因素[J].石油实验地质, 2007, 29(4):377-383. doi: 10.11781/sysydz200704377 张善文, 王永诗, 姜素华, 等.网毯式油气成藏体系仓储层运移机理研究[J].中国海洋大学学报, 2009, 39(3):476-482. http://cdmd.cnki.com.cn/Article/CDMD-10423-2008174931.htm 姜素华, 查明, 张善文.网毯式油气成藏体系的动态平衡研究[J].石油大学学报 (自然科学版), 2004, 28(4):16-20. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200404004.htm 张善文, 王永诗, 彭传圣, 等.网毯式油气成藏体系在勘探中的应用[J].石油学报, 2008, 29(6):791-796. doi: 10.7623/syxb200806001 蒋宏, 施伟军, 秦建中, 等.颗粒荧光定量分析技术在塔河油田储层研究中的应用[J].石油实验地质, 2010, 32(2):201-204. doi: 10.11781/sysydz201002201 王离迟, 杨勇, 洪太元, 等.准噶尔盆地西缘车排子地区断层封闭性研究[J].石油实验地质, 2008, 30(1):41-46. doi: 10.11781/sysydz200801041 吕延防, 付广.断层封闭性研究[M].北京:石油工业出版社, 2002. 吕延防, 李国会, 王跃文.断层封闭性的定量研究方法[J].石油学报, 1996, 17(3):39-45. doi: 10.7623/syxb199603006 徐兴友.准噶尔盆地车排子地区油气成藏期次研究[J].石油天然气学报, 2008, 38(3):40-49. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200803011.htm 中国石化胜利油田分公司新疆勘探开发中心. 准噶尔盆地车排子地区油气地球化学特征及油源分析. 2009. 中国石油大学 (华东). 准噶尔盆地车排子地区油气优势输导体系研究. 2011. 胜利油田分公司西部新区研究中心. 车排子地区油气成藏分析与勘探方向研究. 2010.