• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

贵州白层超基性岩对右江盆地燕山晚期拉张环境深源岩浆演化作用的启示——来自地球化学的证据

吴松洋, 侯林, 丁俊, 张锦让, 朱斯豹

吴松洋, 侯林, 丁俊, 张锦让, 朱斯豹. 2017: 贵州白层超基性岩对右江盆地燕山晚期拉张环境深源岩浆演化作用的启示——来自地球化学的证据. 地质通报, 36(2-3): 445-458.
引用本文: 吴松洋, 侯林, 丁俊, 张锦让, 朱斯豹. 2017: 贵州白层超基性岩对右江盆地燕山晚期拉张环境深源岩浆演化作用的启示——来自地球化学的证据. 地质通报, 36(2-3): 445-458.
WU Songyang, HOU Lin, DING Jun, ZHANG Jinrang, ZHU Sibao. 2017: Deep magma evolution in the extensional Youjiang Basin in late Yanshanian period: Evidence from geochemical characteristics of Baiceng ultramafic rock, Guizhou Province. Geological Bulletin of China, 36(2-3): 445-458.
Citation: WU Songyang, HOU Lin, DING Jun, ZHANG Jinrang, ZHU Sibao. 2017: Deep magma evolution in the extensional Youjiang Basin in late Yanshanian period: Evidence from geochemical characteristics of Baiceng ultramafic rock, Guizhou Province. Geological Bulletin of China, 36(2-3): 445-458.

贵州白层超基性岩对右江盆地燕山晚期拉张环境深源岩浆演化作用的启示——来自地球化学的证据

基金项目: 

中国地质调查局项目《贵州贞丰金-铀多金属成矿区控矿因素与找矿方法研究》 编号:12120113094400

详细信息
    作者简介:

    吴松洋 (1989-), 男, 在读博士生, 岩石学、矿物学、矿床学专业。E-mail:songywu@163.com

    通讯作者:

    侯林 (1985-), 男, 博士, 工程师, 矿床学专业。E-mail:houlin_aaron@163.com

  • 中图分类号: P588.12+5;P588.11+5

Deep magma evolution in the extensional Youjiang Basin in late Yanshanian period: Evidence from geochemical characteristics of Baiceng ultramafic rock, Guizhou Province

  • 摘要:

    白层超基性岩产出于扬子地台西南缘,该区域存在多期次的岩浆活动,出露多处超基性岩体。对白层11件超基性岩样品进行了主量和微量元素(包括稀土元素)及铂族元素分析,结果表明,白层超基性岩主量元素变化范围不大,具低钠富钾钙碱性岩石的地球化学特征;该超基性岩富集Ba、Sr、Rb等大离子亲石元素及Nb等高场强元素;稀土元素总量高,球粒陨石标准化曲线呈强烈的右倾趋势,轻、重稀土元素分馏明显,Eu、Ce异常不明显;铂族元素总含量低,且分异不明显。该超基性岩的地球化学特征显示,其形成于燕山晚期右江盆地大规模岩石圈伸展减薄的构造背景下;岩浆来源于低程度部分熔融的超镁铁质地幔,石榴子石及硫化物在熔融过程中残留于源区。岩浆在上升过程中未发生明显的地壳物质混染。岩浆结晶分异程度不高,发生了橄榄石与单斜辉石的结晶分异但未发生斜长石的分离。

    Abstract:

    The ultramafic rocks in Baiceng area are located on the southwest margin of Yangtze block. There exist multi-stage magmatic activities and quite a few ultramafic rocks in this area. Lots of research work on ultramafic rocks has been done in this area, but some important questions remain unsolved. In this paper, the authors analyzed major elements, minor elements (including REE) and PGE for 11 samples of ultramafic rocks from Baiceng area. The results show that their major elements vary in a narrow range, implying the characteristics of high potassium and low sodium. These rocks are also enriched in LILE (Ba, Sr, Rb), HFSE (Nb) and rare earth elements. The enrichment of LREE forms a right inclined curve, which indicates definite fractionation of REE. The anomalies of Eu and Ce are negative. The total content of platinum group element is low, and the differentiation is not significant. Geochemical characteristics of these ultramafic rocks indicate that the rocks were formed under a tectonic setting of large-scale lithospheric extension in Youjiang Basin. The magma was derived from the mantle with a low degree of partial melting, with garnet and sulfide being left over during the melting. Obvious crustal contamination never happened during the process of magma rising. The crystallization and differentiation level of magma was not high. The fractionation of clinopyroxene and olivine occurred during magma intruding while there was no fractionation of plagioclase.

  • 超基性岩作为地幔岩部分熔融或岩浆源区的直接产物,继承了幔源丰富的地球化学特征.对超基性岩的研究为探讨地幔源区属性及岩浆演化过程提供了非常有价值的信息,而且超基性岩的产出对于区域动力学背景具有指示意义,因而有利于讨论壳幔相互作用、岩石形成构造背景等方面的性质[1].

    贵州省黔西南州地处中国重要的滇黔桂金三角金矿富集区[2-5].该区域的岩浆活动较弱,分布的岩浆岩也较少,且岩浆岩的形成时代不同,从泥盆纪一直到晚三叠世.这一现象说明,区域上存在多期次的岩浆活动及演化.区域上出露的岩浆岩主要为二叠纪大陆溢流拉斑玄武岩、偏碱性辉绿岩组合、偏碱性超基性岩组合[6-7].在镇宁、贞丰、望谟三县交界地区分布一系列超基性岩体,根据岩体的出露情况及相关的物探资料,将该区域的超基性岩分为5个岩带,即陇要-杨家寨岩带、鲁容岩带、白层岩带、阴河岩带及蒋家营岩带.对于该区的超基性岩,前人已做过部分研究工作.陈懋弘等[8]针对该超基性岩进行了锆石U-Pb测年及Hf同位素研究,获得锆石U-Pb年龄为84Ma, 形成于燕山晚期,且认为岩浆源区以富集地幔为主,并受到部分地壳物质的混染.Liu等[9]对该区超基性岩进行了主量、微量元素、Sr-Nd同位素的分析及40Ar-39Ar、U-Pb定年,得出超基性岩的侵位时间为85~88Ma, 岩浆来源于含石榴子石、二辉橄榄岩的软流圈地幔的低程度(小于1%)部分熔融,且岩浆在上升过程中经历了地壳混染及斜方辉石、橄榄石、磷灰石的分离结晶.冯光英等[10]对该超基性岩进行了铂族元素分析,认为其来自地幔低程度的部分熔融,原始岩浆具有硫不饱和的特征.

    本次研究的白层超基性岩带位于黔西南州贞丰县白层镇以南.虽然针对黔西南地区超基性岩体的研究较多,但针对白层地区超基性岩尚缺乏系统地研究,一些关键性问题尚待解决:有关白层超基性岩形成的构造背景的探讨较少,制约了对该岩体与区域金成矿作用关系的认识;超基性岩浆一般来源于深部,深部岩浆的上升机制及演化过程也尚未得到充分的探讨;地壳混染作用在岩浆上升过程中起到多大的影响,也值得进一步讨论.另外,值得注意的是,根据前人研究[8]可知,区域分布的一系列超基性岩体是右江盆地在燕山晚期深部岩浆活动作用的结果,是同一期岩浆活动的产物.作为与区域金成矿时代最近的一期岩浆活动,超基性岩与金成矿之间的关系是不可忽视的重要问题,但现今争议仍较大.能够确定的是,金成矿作用发生于燕山期[2611-13],但由于缺乏合适的测年矿物,该区精确的成矿年龄无法最终厘定,加之区域超基性岩形成的构造背景与金成矿背景尚未对比研究,故右江盆地在燕山晚期的岩浆活动与区域金成矿之间的关系仍需要更多研究成果的支撑.

    针对以上问题,笔者主要对白层超基性岩的主量、微量元素(包括稀土元素)及铂族元素地球化学特征进行了研究,探讨该岩体岩石特征、构造环境、岩体物质来源与地壳混染及岩浆演化过程,提出新的观点.白层超基性岩体的研究对于认识该地区乃至整个华南地区燕山晚期的岩浆活动具有重要意义,同时为探讨该地区岩体与卡林型金矿之间的成因联系提供了依据.

    贵州黔西南州大地构造位置位于扬子地台西南缘前陆褶皱冲断带的变形域内.根据贵州省区域地质志[14],黔西南地区处于羌塘-扬子-华南板块中扬子陆块下的上扬子地块,具体可细分为6个构造单元:威宁隆起区、六盘水裂陷槽、黔北隆起区、兴义隆起区、右江裂谷-前陆盆地地区、黔南坳陷区(图 1).区内地层以二叠系和三叠系为主,二叠系与三叠系也被认为是黔西南“金三角”矿集区金的原始源区[15].区域断裂构造线基本与三大地块边缘平行,为NE向弥勒-师宗断裂、NW向水城-紫云-巴马断裂及近EW向南盘江断裂.区内岩浆活动较发育,可分为海西期、印支期和燕山期岩浆活动,其中海西期与印支期活动频繁且强烈,燕山期活动较弱,以岩浆侵入为主.早石炭世—晚二叠世,该区域有峨眉山玄武岩出露[15-16],主要包括玄武质熔岩、火山碎屑岩和角砾岩.超基性岩主要集中分布在贞丰地区,侵入于下二叠统—中三叠统中(图 2).

    图  1  贵州黔西南大地构造分区及岩浆岩分布(据参考文献[14]修改)
    1—峨眉山玄武岩;2—偏碱性玄武岩;3—辉绿岩;4—超基性岩;Ⅳ-4-1-1—威宁隆起区;Ⅳ-4-1-2—六盘水裂陷槽;Ⅳ-4-2-1—兴义隆起区;Ⅳ-4-2-2—右江裂谷-前陆盆地地区;Ⅳ-4-2-3—黔南坳陷区;Ⅳ-4-1-3(1)—织金穹盆构造变形区;Ⅳ-4-2-2(1)—册亨东西向紧闭褶皱变形区;Ⅳ-4-2-2(2)—望谟北西向褶皱带;Ⅳ-4-2-3(1)—都匀南北向隔槽式褶皱变形区
    Figure  1.  Geotectonic divisions and distribution of magmatic rocks in southwestern Guizhou Provence
    图  2  研究区区域地质图(据参考文献①修改)
    T2l—垄头组;T2p—坡断组;T2b—边阳组;T2x1—新苑组一段;T2x2—新苑组二段;T1g—关岭组;T1l-z—罗楼-紫云组;P2lh—领组;P2w-c—吴家坪-长兴组;P1β—玄武岩;P1m—茅口组;SiQ—硅质蚀变岩
    Figure  2.  Geological map of the study area

    白层地区超基性岩体位于白层镇白层大桥以南约500m处.岩体出露明显,平面上呈楔状展布,长约20m, 长轴为NNE方向.岩体中部宽约1m, 顶、底均为中二叠统吴家坪组灰岩,岩体侵位于其中,与围岩界线清楚,地层走向总体呈近SN向,倾向SE(图版Ⅰ-ab).岩体新鲜面呈灰黑色(图版Ⅰ-c),围岩蚀变较弱.根据野外实测,岩体的产状为110°∠50°,倾向SE;围岩的层理清楚,产状为280°∠25°,倾向NW.根据岩体与围岩的特点可以推断,岩体的侵位方式为被动侵位[8].

      图版Ⅰ  a、b—野外宏观特征;c—手标本特征;d、e、f—微观特征(正交偏光).Bt—黑云母;Px—辉石;Hbl—普通角闪石

    岩石样品呈灰黑色,斑状结构、块状构造.岩石由斑晶和基质组成,斑晶的主要成分为辉石、黑云母、角闪石,粒径0.5~3mm, 占30%~40%.基质成分主要为后期蚀变形成的方解石及粘土矿物(图Ⅰ-d~f).根据镜下特征判断,该岩石为黑云母辉石岩.岩体中可见方解石脉穿插,反映在岩体形成后仍存在较强烈的热液活动.

    本次研究的超基性岩样品采自距贵州黔西南州贞丰县21km的白层镇白层大桥以南约500m的路旁,沿超基性岩体间距约10m采集,选取新鲜、蚀变不强、块度好、矿物颗粒粗的样品进行编号.主量、微量元素(包括稀土元素)、铂族元素的测定均在贵州省地质矿产中心实验室完成.主量与微量元素分析仪器为等离子发射光谱仪ICP-AES(IPISintrepid IIS-92).主量元素测试流程:准确称取试料0.1000g置于聚四氟乙烯塑料坩埚中,加入少许水润湿,然后依次加入5mL氢氟酸、3mL硝酸、1mL高氯酸,摇匀;将聚四氟乙烯坩埚置于高温电热板上加热溶解直至高氯酸白烟冒尽;稍冷却后,加入5mL浓盐酸热提取,然后用少许水洗涤聚四氟乙烯坩埚壁,待溶液提取清澈后取下、冷却,移入100.0mL的容量瓶中,用水稀释至刻度、摇匀;待样品溶液澄清后上机测试.微量元素(包括稀土元素)测试流程为称取试料0.1000g置于聚四氟乙烯塑料坩埚中,加入少许水润湿,然后依次加入5mL氢氟酸、3mL硝酸、1mL高氯酸,摇匀;将聚四氟乙烯坩埚置于高温电热板上加热溶解,直至高氯酸白烟冒尽;稍冷却后,加入5mL 20%的王水热提取、冷却,移入10.0mL的塑料管中,用水稀释至刻度,摇匀;待样品溶液澄清后上机测试.铂族元素分析仪器为等离子质谱仪ICP-MS(Xseries 2S-227).数据的处理使用路远发的地球化学工具软件包GeoKit程序[17].

    11件岩石样品的主量元素分析结果及其特征值列于表 1.方解石灼烧后CO2的挥发造成样品LOI(烧失量)偏高.将分析结果扣除烧失量后归一化重新计算,从结果可知,SiO2含量较稳定,为34.19%~36.47%;TFeO按照TFeO=FeO+0.899 ×Fe2O3计算,值为7.14%~7.88%,平均值为7.48%;MgO为6.33%~7.87%;Mg#按照Mg#=100 × [Mg2+/(Mg2++ Fe2+3]计算,值为46.12~50.11,平均值为48.36;Na2O+K2O含量在3.98%~4.79%之间,且Na2O<K2O.11个样品的CaO、Al2O3含量都较高,CaO为14.64%~18.62%,Al2O3含量为11.17%~11.91%;TiO2为0.7%~0.87%;P2O5为1.72%~2.10%.

    表  1  白层超基性岩主量元素分析结果及特征值
    Table  1.  Major elements compositions of ultramafic rocks in Baiceng
    %
    样品号εk52-1εk52-2εk52-3εk52-4εk52-5εk52-6 εk52-8εk52-9εk52-10εk52-11εk52-12
    SiO235.4436.2535.5236.3136.1934.6235.4735.6236.4735.4334.64
    Al2O311.1711.9111.6511.5611.8911.8711.3711.5611.5911.2411.21
    TFe7.247.527.437.727.737.147.277.887.617.47.38
    MgO7.297.787.257.517.266.337.267.787.677.877.21
    CaO16.4115.5915.7714.8114.6418.6216.0715.1214.8415.5116.53
    K2O4.123.653.824.134.183.544.083.673.774.293.88
    Na2O0.560.410.490.570.440.440.550.480.470.50.51
    TiO20.790.720.860.850.850.70.850.810.870.820.72
    P2O52.011.891.971.782.071.721.872.042.072.11.87
    烧失量7.877.718.048.247.908.698.328.858.147.729.87
    总和99.3699.2798.8898.6698.4099.2899.4999.8099.9998.3999.93
    Mg#50.1148.7448.2546.7546.1247.3948.2949.1149.4749.2548.43
    Na2O+K2O4.684.064.314.74.623.984.634.154.244.794.39
    Na2O/K2O0.140.110.130.140.110.120.130.130.120.090.13
    下载: 导出CSV 
    | 显示表格

    主量元素化学成分显示,岩石受到一定程度的后期蚀变影响,但不强烈,基本保持了岩浆的特征,可用于探讨岩石分类及岩浆演化过程.该岩石中Ca、Al、Mg、Fe含量较高,Na、Ti含量偏低,从岩石的SiO2含量确定,该岩石为超基性岩;Na2O/K2O=0.09~0.14,表现出低钠、富钾的特征.在岩浆/火成岩全碱-硅(TAS)岩石化学分类图解(图 3)中,样品点落入碱性系列范围内,在Ir曲线之上,表现出碱性特征.总的来说,本次研究的样品具有高Ca、Al、Mg、K,贫Na、Ti的特征,属于碱性黑云母辉石岩.

    图  3  白层超基性岩SiO2-(K2O+Na2O) 图解
    Figure  3.  SiO2-(K2O+Na2O) diagram of ultramafic rocks in Baiceng

    超基性岩样品的微量元素含量见表 2.由球粒陨石标准化蛛网图解(图 4-a)可以看出,所有样品中绝大部分大离子亲石元素Ba(5111 × 10-6~6469×10-6)、Rb(127.1×10-6~173.7×10-6)等及高场强元素Nb(216.3×10-6~285.4×10-6)等明显富集,部分元素Hf(4.27×10-6~5.25×10-6)、Sr(1420×10-6~2002×10-6)、U(7.72×10-6~10.06×10-6)呈弱负异常.

    表  2  白层超基性岩微量元素分析结果
    Table  2.  Trace elements compositions of ultramafic rocks in Baiceng
    10-6
    样品号εk52-1εk52-2εk52-3εk52-4εk52-5εk52-6 εk52-8εk52-9εk52-10εk52-11εk52-12
    Rb139.47127.06147.02173.73147.94127.21145.53155.48143.46162.19172.79
    Ba56216062646936996140594664256338614859035111
    Th56.560.8360.6459.8265.4760.8558.8263.1860.1557.9862.48
    U7.968.537.738.288.468.988.210.069.427.729.03
    Sc24.5124.7224.5522.1522.6522.2823.6525.1924.2424.9821.12
    Ta5.595.745.715.935.796.075.756.366.225.535.79
    Co33.634.734.823.334.631.634.536.935.334.132.7
    Ni58.960.859.636.455.752.258.860.658.758.552.2
    Nb216.26248.67228.66257.14259.27245.91243.27285.38269.35236.53245.75
    Sr1420.41758.081678.651680.031640.441519.681617.031661.911618.571629.272002.21
    Cr128.06126.81129.86108.68117.64110.1120.17128.32125.02124.78108.41
    Zr272.96299.57276.25267.79266.67250.79263.64278.15279.97268.38255.44
    Hf5.185.255.144.754.714.274.725.154.874.834.37
    La306329324325343307326343332320318
    Ce513549537537553504541572560540517
    Pr50.854.152.25253.749.452.7555453.350.5
    Nd170180175170175162174178177176166
    Sm2222.922.621.422.120.822.222.922.122.720.4
    Eu5.045.445.1455.114.695.155.35.25.214.85
    Gd16.417.716.915.916.91616.31717.617.115.7
    Tb1.71.781.661.631.71.61.661.751.731.631.55
    Dy6.76.936.626.546.616.366.556.876.836.596.02
    Ho1.081.151.091.041.061.021.061.141.121.081
    Er2.993.193.032.942.992.882.943.233.012.922.85
    Tm0.340.370.330.340.360.330.330.380.340.340.33
    Yb2.172.222.152.132.132.112.052.292.252.082.06
    Lu0.320.340.320.310.310.30.310.340.320.30.29
    ΣREE1098.481174.381148.081141.371184.21079.451152.831208.221183.51149.541106.72
    LREE1066.741140.711115.981110.521152.151048.891121.611175.211150.271117.531076.87
    HREE31.7433.6732.130.8532.0530.5731.2233.0133.2332.0129.85
    LREE/HREE33.6133.8834.773635.9534.3235.9235.634.6234.9236.07
    (La/Yb)N97.77103.01104.84106.12111.89101.15110.47103.74102.2106.9106.83
    (La/Sm)N8.739.039.019.539.749.319.239.399.438.879.77
    (Gd/Yb)N6.256.596.516.26.566.256.596.136.466.786.3
    δEu0.780.790.770.790.780.760.790.790.780.780.8
    δCe0.920.920.910.910.90.910.920.920.930.920.9
    下载: 导出CSV 
    | 显示表格
    图  4  白层超基性岩微量元素蛛网图(a)和稀土元素配分图(b)
    (球粒陨石标准化数据据参考文献[18])
    Figure  4.  Trace element spider diagram and REE patterns of ultramafic rocks in Baiceng

    对白层超基性岩进行稀土元素含量测定,得到稀土元素含量值和特征参数(表 2).白层超基性岩的稀土元素含量总体较高,ΣREE值为1079.45×10-6~1028.22×10-6,平均值为1147.89×10-6.轻、重稀土元素分馏明显,LREE/HREE值为33.61~36.07,轻稀土元素相对于重稀土元素富集.一些稀土元素特征参数也能反映轻、重稀土元素的分馏程度,如(La/Yb)N、(La/Sm)N及(Gd/Yb)N值.(La/Yb)N值为97.77~106.90,(La/Sm)N值为8.73~9.87,(Gd/Yb)N值为6.13~6.78(C1球粒陨石稀土元素含量据Anders等[19]),同样显示出轻稀土元素相对富集的特点.δEu值为0.75~0.79,平均值为0.78,负Eu异常不明显,δCe值为0.88~0.92,平均值为0.90,负Ce异常同样不明显,反映岩石形成于中性稍偏还原的环境中[20-21].从球粒陨石标准化配分图解(图 4-b)也可以看出,所有样品的曲线几乎重合,配分曲线明显右倾,Eu、Ce异常不明显.

    白层超基性岩11件样品的铂族元素分析结果见表 3.ΣPGE含量为3.621×10-9~5.639×10-9,Ru含量为0.031×10-9~0.055×10-9,Ir含量为0.074×10-9~0.169×10-9,Rh含量为2.13×10-9~2.69×10-9,Pd含量为1.01×10-9~2.62×10-9,Pt含量为0.093×10-9~0.140×10-9.从分析结果看,PPGE/IPGE值(0.46~1.11)接近于地幔值(1.21)[22],反映不明显的分异效应.Pd/Ir值为8.14~33.39,远高于原始地幔(1.22)和球粒陨石(1.21)值[18].11个样品的Pd/Ru平均值为0.87,接近于原始地幔(0.78)和球粒陨石(0.77)值;Pd/Rh平均值为19.31,远高于原始地幔(4.33)和球粒陨石(4.23)相对应的值[18].另外,在PPGE中,Pt/Pd平均值为0.022,小于原始地幔的Pt/Pd值(1.82)[22];Pt/Pt*平均值为3.02(算法据参考文献[23];铂族元素在球粒陨石中的丰度据参考文献[18]),大于原始地幔相应值,反映了Pd相对Pt富集.从PGE原始地幔标准化配分曲线(图 5)可以看出,所有样品显示出Ru富集而Pt亏损的特点,这可能是由于地幔源区中液相流体的作用使Pt相对于Ru迁移活动性强造成的[24].

    表  3  白层超基性岩铂族元素分析结果及特征值
    Table  3.  PGE compositions and characteristic parameters of Baiceng ultramafic rock
    10-9
    样品号IrRuRhPtPd∑PGEPPGE/IPGEPd/IrPd/RuPd/RhPt/PdPt/Pt*
    εk52-10.1652.690.1080.0512.622.6760.97515.9410.97624.2620.0202.970
    εk52-20.1242.340.1110.0371.011.0460.4698.1420.4319.0640.0364.110
    εk52-30.1252.360.1050.0451.781.8250.77614.2720.75316.9660.0253.210
    εk52-40.1692.310.1210.0402.282.3220.98613.4940.98818.9260.0182.590
    εk52-50.0862.190.0980.0432.382.4261.10727.7101.08624.3530.0182.670
    εk52-60.0742.740.1050.0522.462.5090.92933.3930.89623.3150.0213.170
    εk52-80.0852.460.1150.0402.262.3000.95026.6630.92019.6030.0182.830
    εk52-90.1532.130.1050.0372.472.5061.14316.1081.15823.5980.0152.460
    εk52-100.1042.440.1040.0552.452.5011.02523.4861.00423.5830.0222.840
    εk52-110.1342.450.1400.0461.731.7720.74112.8630.70612.3220.0262.920
    εk52-120.1342.180.0930.0311.521.5560.71211.3420.69916.4510.0213.410
    下载: 导出CSV 
    | 显示表格
    图  5  白层超基性岩铂族元素原始地幔标准化图
    (标准化数据据参考文献[22])
    Figure  5.  Primitive mantle-normalized PGE patterns for Baiceng ultramafic rocks

    超基性岩通常形成于以裂谷、陆内伸展等为代表的拉张环境下[25-29].本次研究选取了如Ti、Zr、Y、Nb等化学性质相对稳定的元素,以免由于蚀变、混染、部分熔融等对分析结果造成影响.根据Pearce等[30]的构造-岩浆Zr-Zr/Y判别图解(图 6-a),所有超基性岩样品点均落在板内玄武岩区域,进一步投点于Nb×2-Zr/4-Y图解(图 6-b)中,接近于板内碱性玄武岩区域.总体说明,白层超基性岩形成于板内碱性玄武岩性质的构造背景,与TAS图解揭示的超基性岩具有碱性的性质吻合.早二叠世后,哀牢山洋盆向北东俯冲,使右江盆地进入弧后盆地阶段,且晚二叠世的裂陷作用最强.中三叠世进一步俯冲,导致晚三叠世之后右江盆地处于板内活动阶段[32-35].燕山晚期华南板块发生了大规模的岩石圈伸展减薄作用[8],促使岩石圈富集地幔发生部分熔融,并导致岩浆上涌.陈懋弘等[8]对白层超基性岩进行了SHRIMP U-Pb测年,得到的年龄约为84Ma, 确定其形成于燕山晚期.笔者认为,燕山晚期拉张环境[33]为超基性岩的形成提供了先决条件,同时也决定了其形成的构造环境(板内环境).该时期岩石圈伸展减薄作用引起软流圈上涌[36],为岩浆的上侵提供了动力条件,使深部岩浆侵入到地表成岩,同时成矿物质也随之向上运移成矿,因此燕山期是区域金成矿的主要时期[37-38].

    图  6  白层超基性岩形成的构造环境判别图
    a—Zr-Zr/Y图解[30];b—Nb×2-Zr/4-Y图解[31];A1—板内碱性玄武岩;A2—板内碱性玄武岩和板内拉斑玄武岩;B—富集型洋中脊玄武岩;C—板内拉斑玄武岩和火山弧玄武岩;D—富集型洋中脊玄武岩和火山弧玄武岩
    Figure  6.  Diagrams for discriminating tectonic settings of ultramafic rocks in Baiceng

    在岩浆演化过程中,地壳物质可能参与岩浆活动,并发生壳幔混染,同时造成一些元素含量的变化.通过某些元素及元素比值的特征可以判断幔源岩浆是否发生了地壳混染.Taylor的研究表明[39],无论上地壳还是下地壳的混染都会造成Pb的正异常和Ti、Sr的负异常成对出现,白层超基性岩体中Sr、Nb的富集,与地壳混染造成的结果不一致,说明岩体在形成过程中没有经历过明显的地壳混染作用.另外,微量元素Nb/U值也能反映源区的性质[40-41].Rehkamper等[42]将Nb/U值作为地幔物质发生地壳混染的灵敏指示标志,地壳中的Nb/U值明显低于地幔源岩,若岩石样品受到地壳物质的混染,则Nb/U值与SiO2或MgO含量有明显的相关关系.图 7-a显示,白层碱性超基性岩中的Nb/U值与SiO2、MgO值没有明显的相关关系,指示白层碱性超基性岩浆未经历明显的地壳混染作用.此外,为避免K2O、Ba、Rb、Sr等元素的影响,用Nb/Ta-La/Yb关系图做进一步判断.在关系图(图 7-b)中,未显示出明显地壳混染的负相关关系[43],同样说明,岩浆在上升侵位过程中未受到陆源物质的混染.岩石中富集大离子亲石元素、LREE等特征很可能是继承了地幔源区的性质.根据前文可知,燕山期的岩石圈伸展拉张作用,在促进地幔熔融作用发生的同时,也导致深部岩浆的迅速侵位,从而使岩浆避免了地壳物质的混染.

    图  7  白层超基性岩MgO-Nb/U协变关系图(a)及Nb/Ta-La/Yb协变关系图(b)
    Figure  7.  Diagrams of MgO-Nb/U (a) and Nb/Ta-La/Yb (b) of ultramafic rocks in Baiceng

    在主量元素协变图解中(图 8),白层超基性岩样品的MgO与其他主量元素存在一定程度的负相关性,与CaO、Na2O、K2O的负相关相对明显,暗示岩浆演化过程中存在一定程度的结晶分异.从La-La/Sm关系图(图 9-a)中也可看出,趋势线较平缓,说明超基性岩是岩浆结晶分异及部分熔融共同作用的结果.另外,任何岩浆的分异演化都是向贫MgO的方向演化,且变化比SiO2更显著,所以利用固结指数(SI)研究岩浆演化比SiO2更好.大多数原生岩浆的固结指数为40左右,岩浆分异程度差,SI值就大;岩浆分异程度高,SI值就小.本次研究样品的SI值为35.55~40.36(计算公式为SI=100×MgO/(MgO+FeO+Fe2O3+ Na2O+K2O),说明岩浆的结晶分异程度不高.

    图  8  白层超基性岩主量元素与MgO的相关关系协变图
    Figure  8.  Diagrams of correlations of MgO versus major elements of ultramafic rocks in Baiceng
    图  9  白层超基性岩La-La/Sm相关关系图(a)及MgO-Sr相关关系图(b)
    Figure  9.  Diagrams of La-La/Sm (a) and MgO-Sr (b) of ultramafic rocks in Baiceng

    白层超基性岩11件样品均具有负Eu异常,但不明显(平均0.78),又因为Sr富集,且Sr与MgO相关性较差(图 9-b),故指示在岩浆演化过程中未经历斜长石的分离.从微量元素结果可以看出,相对于地幔来源岩浆,白层超基性岩的Cr和Ni均呈现亏损的特征,表明在成岩过程中经历了橄榄石和单斜辉石的分馏作用.另外,MgO与Sc、Cr、Co和Ni表现出良好的正相关关系,也说明了橄榄石和单斜辉石的分馏.该区超基性岩的Ni和Cr含量相比原始碱性玄武岩中相应元素含量偏小,反映原始岩浆的分馏作用较明显.另外,铂族元素中IPGE、PPGE均存在内部分异现象,IPGE相对于PPGE的亏损同样可能暗示在岩浆演化过程中橄榄石(IPGE的配分系数更高)等早期矿物的大量晶出.

    地球化学分析结果显示,相对于地壳来源熔体,白层超基性岩具有较高的MgO(平均7.51%)、Cr(平均120.7×10-6)、Ni(平均55.65×10-6)含量,且Mg#值(46.12~50.11)也较高,镁铁比值(m/f)为0.84~1.01,平均值为0.95,反映岩浆来源于超镁铁质地幔;铂族元素配分模式的强烈左倾及大离子亲石元素的富集也说明了岩浆来源于地幔且具有超铁镁质的特点[44-45].Liu等[9]对白层超基性岩进行了Sr-Nd同位素分析,低87Sr/86Sr初始比值(0.7060~0.7063)及高εNd (t) 值指示,白层超基性岩来源于软流圈地幔的熔融.另外,在部分熔融过程中大离子亲石元素极易进入流体相而发生迁移,在地幔岩浆演化的过程中越富集表示熔融程度越低[46].虽然在硫化物和硅酸盐中,铂族元素与Ni或Cu的分配系数不同,但是岩浆体系中硫化物的分离对残余岩浆中Pd/Ir和Ni/Cu值影响不大,故可以指示形成岩浆的母岩浆性质.根据Barnes等[47]提出的Ni/Cu-Pd/Ir图解(图 10-a)判断,该超基性岩体的母岩浆可能为高镁的玄武质岩浆.铂族元素中,Ir相对于Pd在岩浆中明显亏损,且Ir更容易保留在残余的地幔橄榄岩中,所以熔融产生的岩浆Pd/Ir值高于球粒陨石中的Pd/Ir值.11件样品的Pd/Ir值均高于原始地幔(1.22),最高达33.39,平均值为18.49,反映地幔的部分熔融程度低.根据Pd-Cu/Pd图解(图 10-b),所有样品点均落在PGE富集地幔.

    图  10  白层超基性岩Ni/Cu-Pd/Ir图解(a)[47]和Pd-Cu/Pd图解(b)[47]
    Figure  10.  Diagrams of Ni/Cu-Pd/Ir (a) and Pd-Cu/Pd (b) of ultramafic rocks in Baiceng

    地幔橄榄岩在部分熔融过程中,母岩浆中高LREE(轻稀土元素)及低Yb含量的特征常常是由于石榴子石的残留造成的.石榴子石中,Sm(0.22)相对于La(0.01)具有较高的分配系数,且Yb(6.6)分配系数高于Sm(0.25).在Sm/Yb-La/Sm图解(图 11)中,白层超基性岩样品的投点均落在石榴子石橄榄岩和尖晶石橄榄岩部分熔融线之间,且均靠近石榴子石部分熔融线,指示源区发生了石榴子石的残留,且源区主要组成岩相为石榴子石-橄榄岩.在稀土元素球粒陨石标准化配分图(图 4-b)中,所有样品的(La/Yb) N平均值高达104.99,均表现出强烈的HREE(重稀土元素)亏损,暗示在原始岩浆中同样亏损HREE,即HREE残留于地幔源区.再者,因为在地幔岩中HREE强相容于石榴子石[49-52],指示在地幔低程度部分熔融过程中石榴子石为源区的残留岩石.此外,Sc在石榴子石中也为强相容元素[53],Sc的亏损也佐证了这一结论.值得一提的是,本次研究的超基性岩PGE含量均很低(1.046~2.676).Keays[54]认为,当地幔部分熔融程度较低时,原始地幔中少量的PGE会随着部分熔融过程进入岩浆,而绝大部分的PGE仍然会残留于原始地幔中,从而造成部分熔融岩浆中的PGE元素含量很低.另外,Cu和Pd为亲硫元素,Cu/Pd的平均值为34707,远远大于原始地幔(9000),造成比值变大有2个原因:一是硫化物残留在地幔源区;二是在岩浆上升过程中发生了硫化物的熔离.考虑到发生硫化物的熔离需要在高程度地幔熔融且Pd/Ir值稳定的条件下,Cu/Pd值指示了地幔熔融过程中由于硫化物残留于源区,造成了岩浆具有硫不饱和的特征.

    图  11  白层超基性岩La/Sm-Sm/Yb图解(底图据参考文献[48])
    Figure  11.  Diagrams of La/Sm-Sm/Yb of ultramafic rocks in Baiceng

    (1)本次研究在白层地区所采的样品SiO2含量偏低,属于超基性岩.根据镜下特征观察及样品具有高Ca、Al、Mg、K,贫Na、Ti的特征,判断其为碱性黑云母辉石岩.

    (2)白层超基性岩形成于燕山晚期板内碱性玄武岩性质的构造背景下,右江盆地燕山晚期岩石圈伸展减薄作用为超基性岩的形成提供了条件,同时导致成矿物质向上运移成矿.

    (3)白层超基性岩的形成是岩浆结晶分异及部分熔融共同作用的结果,结晶分异程度不高,岩浆上升过程中未受到明显的地壳物质混染.岩浆在演化过程中经历了橄榄石和单斜辉石的结晶分异,但未经历斜长石的分离.

    (4)镁铁比值、铂族元素特征、大离子亲石元素的富集、弱负Eu异常等特点,指示母岩浆来源于低程度部分熔融的超镁铁质、铂族元素富集的软流圈地幔,母岩浆具有高镁玄武质的特点.石榴子石及硫化物在地幔部分熔融过程中残留于源区.

    致谢: 感谢审稿专家提出的宝贵意见;本次野外工作、室内数据处理及成文过程中得到峨眉403地质队王疆丽硕士、中国地质调查局成都地质调查中心王秀平的帮助,在此一并表示衷心感谢.
  • 图  1   贵州黔西南大地构造分区及岩浆岩分布(据参考文献[14]修改)

    1—峨眉山玄武岩;2—偏碱性玄武岩;3—辉绿岩;4—超基性岩;Ⅳ-4-1-1—威宁隆起区;Ⅳ-4-1-2—六盘水裂陷槽;Ⅳ-4-2-1—兴义隆起区;Ⅳ-4-2-2—右江裂谷-前陆盆地地区;Ⅳ-4-2-3—黔南坳陷区;Ⅳ-4-1-3(1)—织金穹盆构造变形区;Ⅳ-4-2-2(1)—册亨东西向紧闭褶皱变形区;Ⅳ-4-2-2(2)—望谟北西向褶皱带;Ⅳ-4-2-3(1)—都匀南北向隔槽式褶皱变形区

    Figure  1.   Geotectonic divisions and distribution of magmatic rocks in southwestern Guizhou Provence

    图  2   研究区区域地质图(据参考文献①修改)

    T2l—垄头组;T2p—坡断组;T2b—边阳组;T2x1—新苑组一段;T2x2—新苑组二段;T1g—关岭组;T1l-z—罗楼-紫云组;P2lh—领组;P2w-c—吴家坪-长兴组;P1β—玄武岩;P1m—茅口组;SiQ—硅质蚀变岩

    Figure  2.   Geological map of the study area

    图版Ⅰ   a、b—野外宏观特征;c—手标本特征;d、e、f—微观特征(正交偏光).Bt—黑云母;Px—辉石;Hbl—普通角闪石

    图  3   白层超基性岩SiO2-(K2O+Na2O) 图解

    Figure  3.   SiO2-(K2O+Na2O) diagram of ultramafic rocks in Baiceng

    图  4   白层超基性岩微量元素蛛网图(a)和稀土元素配分图(b)

    (球粒陨石标准化数据据参考文献[18])

    Figure  4.   Trace element spider diagram and REE patterns of ultramafic rocks in Baiceng

    图  5   白层超基性岩铂族元素原始地幔标准化图

    (标准化数据据参考文献[22])

    Figure  5.   Primitive mantle-normalized PGE patterns for Baiceng ultramafic rocks

    图  6   白层超基性岩形成的构造环境判别图

    a—Zr-Zr/Y图解[30];b—Nb×2-Zr/4-Y图解[31];A1—板内碱性玄武岩;A2—板内碱性玄武岩和板内拉斑玄武岩;B—富集型洋中脊玄武岩;C—板内拉斑玄武岩和火山弧玄武岩;D—富集型洋中脊玄武岩和火山弧玄武岩

    Figure  6.   Diagrams for discriminating tectonic settings of ultramafic rocks in Baiceng

    图  7   白层超基性岩MgO-Nb/U协变关系图(a)及Nb/Ta-La/Yb协变关系图(b)

    Figure  7.   Diagrams of MgO-Nb/U (a) and Nb/Ta-La/Yb (b) of ultramafic rocks in Baiceng

    图  8   白层超基性岩主量元素与MgO的相关关系协变图

    Figure  8.   Diagrams of correlations of MgO versus major elements of ultramafic rocks in Baiceng

    图  9   白层超基性岩La-La/Sm相关关系图(a)及MgO-Sr相关关系图(b)

    Figure  9.   Diagrams of La-La/Sm (a) and MgO-Sr (b) of ultramafic rocks in Baiceng

    图  10   白层超基性岩Ni/Cu-Pd/Ir图解(a)[47]和Pd-Cu/Pd图解(b)[47]

    Figure  10.   Diagrams of Ni/Cu-Pd/Ir (a) and Pd-Cu/Pd (b) of ultramafic rocks in Baiceng

    图  11   白层超基性岩La/Sm-Sm/Yb图解(底图据参考文献[48])

    Figure  11.   Diagrams of La/Sm-Sm/Yb of ultramafic rocks in Baiceng

    表  1   白层超基性岩主量元素分析结果及特征值

    Table  1   Major elements compositions of ultramafic rocks in Baiceng

    %
    样品号εk52-1εk52-2εk52-3εk52-4εk52-5εk52-6 εk52-8εk52-9εk52-10εk52-11εk52-12
    SiO235.4436.2535.5236.3136.1934.6235.4735.6236.4735.4334.64
    Al2O311.1711.9111.6511.5611.8911.8711.3711.5611.5911.2411.21
    TFe7.247.527.437.727.737.147.277.887.617.47.38
    MgO7.297.787.257.517.266.337.267.787.677.877.21
    CaO16.4115.5915.7714.8114.6418.6216.0715.1214.8415.5116.53
    K2O4.123.653.824.134.183.544.083.673.774.293.88
    Na2O0.560.410.490.570.440.440.550.480.470.50.51
    TiO20.790.720.860.850.850.70.850.810.870.820.72
    P2O52.011.891.971.782.071.721.872.042.072.11.87
    烧失量7.877.718.048.247.908.698.328.858.147.729.87
    总和99.3699.2798.8898.6698.4099.2899.4999.8099.9998.3999.93
    Mg#50.1148.7448.2546.7546.1247.3948.2949.1149.4749.2548.43
    Na2O+K2O4.684.064.314.74.623.984.634.154.244.794.39
    Na2O/K2O0.140.110.130.140.110.120.130.130.120.090.13
    下载: 导出CSV

    表  2   白层超基性岩微量元素分析结果

    Table  2   Trace elements compositions of ultramafic rocks in Baiceng

    10-6
    样品号εk52-1εk52-2εk52-3εk52-4εk52-5εk52-6 εk52-8εk52-9εk52-10εk52-11εk52-12
    Rb139.47127.06147.02173.73147.94127.21145.53155.48143.46162.19172.79
    Ba56216062646936996140594664256338614859035111
    Th56.560.8360.6459.8265.4760.8558.8263.1860.1557.9862.48
    U7.968.537.738.288.468.988.210.069.427.729.03
    Sc24.5124.7224.5522.1522.6522.2823.6525.1924.2424.9821.12
    Ta5.595.745.715.935.796.075.756.366.225.535.79
    Co33.634.734.823.334.631.634.536.935.334.132.7
    Ni58.960.859.636.455.752.258.860.658.758.552.2
    Nb216.26248.67228.66257.14259.27245.91243.27285.38269.35236.53245.75
    Sr1420.41758.081678.651680.031640.441519.681617.031661.911618.571629.272002.21
    Cr128.06126.81129.86108.68117.64110.1120.17128.32125.02124.78108.41
    Zr272.96299.57276.25267.79266.67250.79263.64278.15279.97268.38255.44
    Hf5.185.255.144.754.714.274.725.154.874.834.37
    La306329324325343307326343332320318
    Ce513549537537553504541572560540517
    Pr50.854.152.25253.749.452.7555453.350.5
    Nd170180175170175162174178177176166
    Sm2222.922.621.422.120.822.222.922.122.720.4
    Eu5.045.445.1455.114.695.155.35.25.214.85
    Gd16.417.716.915.916.91616.31717.617.115.7
    Tb1.71.781.661.631.71.61.661.751.731.631.55
    Dy6.76.936.626.546.616.366.556.876.836.596.02
    Ho1.081.151.091.041.061.021.061.141.121.081
    Er2.993.193.032.942.992.882.943.233.012.922.85
    Tm0.340.370.330.340.360.330.330.380.340.340.33
    Yb2.172.222.152.132.132.112.052.292.252.082.06
    Lu0.320.340.320.310.310.30.310.340.320.30.29
    ΣREE1098.481174.381148.081141.371184.21079.451152.831208.221183.51149.541106.72
    LREE1066.741140.711115.981110.521152.151048.891121.611175.211150.271117.531076.87
    HREE31.7433.6732.130.8532.0530.5731.2233.0133.2332.0129.85
    LREE/HREE33.6133.8834.773635.9534.3235.9235.634.6234.9236.07
    (La/Yb)N97.77103.01104.84106.12111.89101.15110.47103.74102.2106.9106.83
    (La/Sm)N8.739.039.019.539.749.319.239.399.438.879.77
    (Gd/Yb)N6.256.596.516.26.566.256.596.136.466.786.3
    δEu0.780.790.770.790.780.760.790.790.780.780.8
    δCe0.920.920.910.910.90.910.920.920.930.920.9
    下载: 导出CSV

    表  3   白层超基性岩铂族元素分析结果及特征值

    Table  3   PGE compositions and characteristic parameters of Baiceng ultramafic rock

    10-9
    样品号IrRuRhPtPd∑PGEPPGE/IPGEPd/IrPd/RuPd/RhPt/PdPt/Pt*
    εk52-10.1652.690.1080.0512.622.6760.97515.9410.97624.2620.0202.970
    εk52-20.1242.340.1110.0371.011.0460.4698.1420.4319.0640.0364.110
    εk52-30.1252.360.1050.0451.781.8250.77614.2720.75316.9660.0253.210
    εk52-40.1692.310.1210.0402.282.3220.98613.4940.98818.9260.0182.590
    εk52-50.0862.190.0980.0432.382.4261.10727.7101.08624.3530.0182.670
    εk52-60.0742.740.1050.0522.462.5090.92933.3930.89623.3150.0213.170
    εk52-80.0852.460.1150.0402.262.3000.95026.6630.92019.6030.0182.830
    εk52-90.1532.130.1050.0372.472.5061.14316.1081.15823.5980.0152.460
    εk52-100.1042.440.1040.0552.452.5011.02523.4861.00423.5830.0222.840
    εk52-110.1342.450.1400.0461.731.7720.74112.8630.70612.3220.0262.920
    εk52-120.1342.180.0930.0311.521.5560.71211.3420.69916.4510.0213.410
    下载: 导出CSV
  • 邓晋福, 苏尚国, 周肃, 等.华北地区燕山期岩石圈减薄的深部过程[J].地学前缘, 2003, 10(3):41-50. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303004.htm

    Su W C, Hu R Z, Xia B, et al. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China[J]. Chemical Geology, 2009, 258:269-274. doi: 10.1016/j.chemgeo.2008.10.030

    Peter S G, Huang J Z, Li Z P, et al. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area, Guizhou, and Yunnan Provinces, and Guangxi District, China[J]. Ore Geology Reviews, 2007, 31:170-204. doi: 10.1016/j.oregeorev.2005.03.014

    朱赖民, 刘显凡, 金景福, 等.滇-黔-桂微细浸染型金矿床时空分布与成矿流体来源[J].地质科学, 1998, 33(4):463-474. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX804.008.htm
    王砚耕, 索书田, 张明发.黔西南构造与卡林型金矿[M].北京:地质出版社, 1994.
    陈懋弘, 毛景文, 吴六灵, 等.滇黔桂矿集区微细浸染型金矿成矿年代学研究[J].桂林工学院学报, 2006, 26(3):334-340. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX200603004.htm
    韩至钧, 王砚耕, 冯济舟, 等.黔西南金矿地质与勘查[M].贵阳:贵州科技出版社, 1999.
    陈懋弘, 章伟, 杨宗喜, 等.黔西南白层超基性岩墙锆石SHRIMP U-Pb年龄和Hf同位素组成研究[J].矿床地质, 2009, 28(2):240-250. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200903003.htm

    Liu S, Su W C, Hu R Z, et al. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from south-west Guizhou Province, SW China[J]. Lithos, 2010, 114:253-264. doi: 10.1016/j.lithos.2009.08.012

    冯光英, 刘燊, 苏文超, 等.黔西南碱性超基性脉岩的铂族元素地球化学[J].矿物学报, 2010, 30(2):207-214. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201002007.htm
    陈懋弘, 毛景文, 屈文俊, 等.贵州贞丰烂泥沟卡林型金矿床含砷黄铁矿Re-Os同位素测年及地质意义[J].地质论评, 2007, 53(3): 371-382. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200703009.htm
    胡瑞忠, 彭建堂, 马东升, 等.扬子地块西南缘大面积低温成矿时代[J].矿床地质, 2007, 26(6):583-596. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200706002.htm
    刘建中, 邓一明, 刘川勤, 等.水银洞金矿床包裹体和同位素地球化学研究[J].贵州地质, 2006, 23(1):51-56. http://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200601011.htm
    贵州省地质调查院.贵州省区域地质志[M].北京:地质出版社, 1994.

    Zhang X C, Spiro B, Halls C, et al. Sediment-hosted disseminated gold deposit in Southwest Guizhou PRC: Their geological setting and orgin in relation to mineralogical, fluid inclusion, and stable-isotope characteristics[J]. International Geology Review, 2003, 45:407-470. doi: 10.2747/0020-6814.45.5.407

    梅厚钧.峨眉山玄武岩地球化学特征, IGCAS年度报告 (1980-1981)[M].贵阳:贵州人民出版社, 1980.
    路远发. GeoKit:一个用VAB构建的地球化学工具软件包[J].地球化学, 2004, 33(5):459-464. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm

    McDonough W F, Sun S S. The composition of the earth[J]. Chemical Geology, 1995, 120: 223-230. doi: 10.1016/0009-2541(94)00140-4

    Anders E, Grevese N. Abundances of the elements meteoritic and solar[J]. Geochimica et Cosmochimica Acta, 1989, 53(1):197-214. doi: 10.1016/0016-7037(89)90286-X

    张成江, 陈友良. 510-1铀矿床垂直分带规律的发现及其成因意义[J].地质与勘探, 2010, 46(4):434-441. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201003009.htm
    赵振华.微量元素地球化学原理[M].北京:科学出版社, 1997.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in The Ocean Basins. Geological Society Special Publication, 1989, 42:313-345.

    孙晓明, 熊德信, 王生伟, 等.云南哀牢山金矿带墨江金镍矿床铂族元素 (PGE) 地球化学及其对矿床成因的制约[J].矿床地质, 2006, 25(4):438-446. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604007.htm

    Rehkamper M, HallidayA N, Barfod D, et al. Platinum-Group Element Abundance Patterns in different Mantle Environments[J]. Science, 1997, 278:1595-1598 doi: 10.1126/science.278.5343.1595

    张贵山, 温汉捷, 裘愉卓.闽西晚中生代基性岩脉的地球化学研究[J].地球化学, 2004, 3(3):243-253. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200403002.htm
    张贵山, 温汉捷, 胡瑞忠, 等.闽东南基性岩脉形成的构造应力场地质意义[J].大地构造与成矿学, 2006, 30(2):142-148. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200504001144.htm
    李立兴, 李厚明, 崔艳合, 等.河北高寺台含铬超基性岩杂岩体成岩成矿时代及岩石成因[J].岩石学报, 2012, 28(11):3757-3771. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211026.htm
    冯光英, 刘燊, 冯彩霞, 等.吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J].岩石学报, 2011, 27(6): 1594-1606. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106003.htm
    吴华, 李华芹, 莫新华, 等.新疆哈密白石泉铜镍矿区基性-超基性岩的形成时代及其地质意义[J].地质学报, 2005, 79(4):498-502. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200504009.htm

    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69:33-47. doi: 10.1007/BF00375192

    Meschede M. A method of discriminat between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56:207-218. doi: 10.1016/0009-2541(86)90004-5

    杜远生, 黄宏伟, 黄志强, 等.右江盆地晚古生代-三叠纪盆地转换及其构造意义[J].地质科技情报, 2009, 28(6):10-15. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200906002.htm
    曾允孚, 刘文均, 陈洪德, 等.华南右江复合盆地的沉积构造演化[J].地质学报, 1995, 69(2):113-124. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199502001.htm
    曾允孚, 刘文均, 陈洪德, 等.右江复合盆地的沉积特征及其构造演化[J].广西地质, 1992, 5(4):1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ199204000.htm
    陈洪德, 曾允孚.右江沉积盆地的性质及演化讨论[J].岩相古地理, 1990, 1:28-37 http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD199001003.htm
    毛景文, 谢桂青, 李晓峰, 等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘, 2004, 11(1):45-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401002.htm

    Chen M H, Mao J W, Li C, et al. Re-Os isochron ages for arsenopyrite from Carlin-like gold deposits in the Yunnan-Guizhou-Guangxi "golden triangle", southwestern China[J]. Ore Geology Reviews, 2015, 64:316-327. doi: 10.1016/j.oregeorev.2014.07.019

    Su W C, Hu R Z, Xia B, et al. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type Au deposit, Guizhou, China[J]. Chemical Geology, 2009, 258:269-274. doi: 10.1016/j.chemgeo.2008.10.030

    Taylor S, McLennan S. The Continental Crust: Its Composition and Evolution[M]. New York:Oxford Press, 1985.

    Hofmann A, Jochum K, Seufert M, et al. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79(1/2):33-45. https://www.researchgate.net/publication/222453665_Hofmann_A_W_Jochum_K_P_Seufert_M_White_W_M_Nb_and_Pb_in_oceanic_basalts_new_constraints_on_mantle_evolution_Earth_Planet_Sci_Lett_79_33-45

    Munker C, Pfander J A, Weyer S, et al. Evolution of planetary cores and the earth-moon system from Nb/Ta systematics[J]. Science, 2003, 301(5629):84-87. doi: 10.1126/science.1084662

    Rehkamper M, Halliday A N, Barfod D, et al. Platinum-Group Element Abundance Patterns in different Mantle Environments[J]. Science, 1997, 278:1595-1598. doi: 10.1126/science.278.5343.1595

    Munker C. Nb/Ta fractionation in a Cambrian arc/back system, New Zealand:source constraints and application of refined ICPMS techniques[J]. Chemical Geology, 1998, 56:207-218. https://www.researchgate.net/publication/248360164_NbTa_fractionation_in_a_Cambrian_arcback_arc_system_New_Zealand_Source_constraints_and_application_of_refined_ICPMS_techniques

    Naldrett A J, Hoffmann E L, Green A H, et al. The composition of Ni-sulfide ores with particular reference to their content of PGE and Au[J]. Canada Mineral, 1979, 17:403-415. http://canmin.geoscienceworld.org/content/17/2/403

    储雪蕾, 李晓林, 徐久华, 等.汉诺坝玄武岩及其地幔橄榄岩、麻粒岩捕掳体的PGE分布特征[J].科学通报, 1999, 44(8):859-863. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199908016.htm
    赵正, 漆亮, 黄智龙, 等.攀西裂谷南段鸡街碱性超基性岩微量元素和Sr-Nd同位素地球化学及其成因探讨[J].岩石学报, 2012, 28(6):1915-1927. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206016.htm

    Barnes S J, Naldrett A J, Gorton M P. The orgin of the Fractionation of plartinum-group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53:303-323. doi: 10.1016/0009-2541(85)90076-2

    Genc S C, Tuysuz O. Tectonic setting of the Jurassic bimodal magmatism in the Sakarya zone (central and western Pontides), northern Turkey:A geochemical and isotopic approach[J]. Lithos, 2010, 118(1/2):95-111. https://www.researchgate.net/publication/222136664_Tectonic_setting_of_the_Jurassic_bimodal_magmatism_in_the_Sakarya_Zone_Central_and_Western_Pontides_Northern_Turkey_A_geochemical_and_isotopic_approach

    Eggins S, Rudnick R, McDonough W. The composition of peridotites and their minerals:A laser-ablation ICP-MS study[J]. Earth and Planetary Science Letters, 1998, 154(1/4):53-71. http://www.academia.edu/2806189/The_composition_of_peridotites_and_their_minerals_a_laser-ablation_ICP-MS_study

    McDonough W F, Stosch H, Ware N. Distribution of the titanium and the rare earth elements between peridotitic minerals[J]. Contributions to Mineralogy and Petrology, 1992, 110(2):321-328. doi: 10.1007/BF00310747

    Xu Y G. Distribution of trace element in spinel and garnet peridotites[J]. Science in China (Series D), 2000, 43(2):166-175. doi: 10.1007/BF02878146

    Zack T, Foley S, Jenner G. A consistent partition coefficient set for clinopyroxene, amphibole and garnet from laser ablation microprobe analysis of garnet pyroxenites from Kakanui, New Zealand[J]. Neues Jahrbuch Fur Mineralogie Abhandlungen, 1998, 172:23-41. http://www.academia.edu/2837201/A_consistent_partition_coefficient_set_for_clinopyroxene_amphibole_and_garnet_from_laser_ablation_microprobe_analysis_of_garnet_pyroxenites_from_Kakanui_New_Zealand

    Bodinier J, Merlet C, Bedini R, et al. Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle:The spinel paradox[J]. Geochimica et Cosmochimica Acta, 1996, 60(3):545-550. doi: 10.1016/0016-7037(95)00431-9

    Keays R R. The role of komatiitic magmatism and S-saturation in the formation of ore deposits[J]. Lithos, 1995, 34:1-18. doi: 10.1016/0024-4937(95)90003-9

图(12)  /  表(3)
计量
  • 文章访问数:  2186
  • HTML全文浏览量:  274
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-22
  • 修回日期:  2017-01-19
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2017-02-28

目录

/

返回文章
返回