• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

额尔古纳地块玻乌勒山地区新元古代斜长角闪岩-片麻状花岗岩的成因及其地质意义

杨华本, 刘玉, 郑吉林, 梁中恺, 王晓勇, 唐雪峰, 苏燕平

杨华本, 刘玉, 郑吉林, 梁中恺, 王晓勇, 唐雪峰, 苏燕平. 2017: 额尔古纳地块玻乌勒山地区新元古代斜长角闪岩-片麻状花岗岩的成因及其地质意义. 地质通报, 36(2-3): 342-356. DOI: 10.12097/gbc.dztb-36-2-3-342
引用本文: 杨华本, 刘玉, 郑吉林, 梁中恺, 王晓勇, 唐雪峰, 苏燕平. 2017: 额尔古纳地块玻乌勒山地区新元古代斜长角闪岩-片麻状花岗岩的成因及其地质意义. 地质通报, 36(2-3): 342-356. DOI: 10.12097/gbc.dztb-36-2-3-342
YANG Huaben, LIU Yu, ZHENG Jilin, LIANG Zhongkai, WANG Xiaoyong, TANG Xuefeng, SU Yanping. 2017: Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Erguna massif, Northeast China. Geological Bulletin of China, 36(2-3): 342-356. DOI: 10.12097/gbc.dztb-36-2-3-342
Citation: YANG Huaben, LIU Yu, ZHENG Jilin, LIANG Zhongkai, WANG Xiaoyong, TANG Xuefeng, SU Yanping. 2017: Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Erguna massif, Northeast China. Geological Bulletin of China, 36(2-3): 342-356. DOI: 10.12097/gbc.dztb-36-2-3-342

额尔古纳地块玻乌勒山地区新元古代斜长角闪岩-片麻状花岗岩的成因及其地质意义

基金项目: 

中国地质调查局项目《黑龙江1∶5 万碧州公社、大乌苏、玻乌勒山、沙兰山幅区域地质矿产调查》 编号:1212011220666

详细信息
    作者简介:

    杨华本(1986-),男,硕士,工程师,从事区域地质调查工作。E-mail:yanghuaben@163.com

  • 中图分类号: P534.3;P588.12+1

Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Erguna massif, Northeast China

  • 摘要:

    对大兴安岭北段额尔古纳地块东南缘玻乌勒山地区新元古代斜长角闪岩和片麻状花岗岩进行了LA-ICP-MS 锆石UPb定年和岩石地球化学分析,讨论额尔古纳地块的演化及其与Rodinia 超大陆聚合事件的关系。斜长角闪岩的锆石阴极发光图像显示核边结构,获得核部年龄904±4Ma 和边部年龄803~886Ma;片麻状花岗岩的锆石呈自形-半自形,发育岩浆成因的振荡环带,U-Pb 年龄为915±3Ma,表明其形成于新元古代。片麻状花岗岩SiO2=61.85%~67.63%,Mg#=36.9-47.9,Na2O+K2O=4.21%~9.29%,A/CNK=0.89~1.01,属于偏铝质系列。岩石富集轻稀土元素和大离子亲石元素,亏损高场强元素Nb、Ta 和Ti,具弱的Eu 负异常、低的初始Sr 比值和正的εNd(t)值,暗示片麻状花岗岩为年轻的初生地壳物质熔融形成。斜长角闪岩贫硅、Mg#较高,Ni、Cr、Co 含量较高,Zr/Hf、Nb/Ta 和Th/U 值低,具有平坦的稀土元素配分模式,与正常型洋中脊玄武岩相似,具有亏损地幔性质,同时富集大离子亲石元素Rb、Ba、K、Sr 和Pb,亏损高场强元素Nb、Ta、Ti 等,记录了消减带岩浆作用的信息,表明其为活动大陆边缘经过岛弧岩浆抽提的亏损地幔源区发生重新熔融形成。结合区域上新元古代岩浆事件的纪录,认为额尔古纳地块新元古代早期岩浆事件是Rodinia 超大陆聚合事件的响应,后期变质事件可能与Rodinia 超大陆裂解有关。

    Abstract:

    In this paper, the authors discuss LA-ICP-MS zircon U-Pb ages, major and trace element analyses for Neoproterozoic Bowuleshan amphibolite and gneissic granite on the southeastern margin of Erguna massif, northern Da Hinggan Mountains. The purpose is to elucidate the tectonic history of the Erguna massif and its relationship to the assemblage of the Rodinia supercontinent. Zircons collected from amphibolite exhibit core-rim structure in CL images, the U-Pb dating yielded the age of 904±4Ma for magmatic core and 889~915Ma for metamorphic rim. Zircons collected from gneissic granite are euhedral-subhedral in form, and display fine-scale oscillatory growth zoning in CL images, implying a magmatic origin. The dating age is 915±3Ma. Zircon U-Pb dating demonstrates that these rocks were emplaced during the Neoproterozoic. The Neoproterozoic gneissic granite in the Erguna massif has SiO2=61.85%~67.63%, Mg#=36.9~47.9, Na2O+K2O=4.21%~9.29%, and A/CNK=0.89~1.01, suggesting metaluminous characteristics, Moreover, the Neoproterozoic granitoids are enriched in LREEs and LILEs, and depleted in HREEs and high field strength elements (HFSEs, Nb, Ta, and Ti), with Eu negative anomalies (δEu=0.77~0.80) and low initial Sr isotope ratios and positive values for the εNd(t) value (3.52), which implies that their primary magmas were derived from partial melting of an original crust. In contrast, the Neoproterozoic amphibolite has low SiO2 (45.22%~49.16%), relatively high Mg#, high Ni, Cr, low Zr/Hf, Nb/Ta and Th/ U ratios, and Co content. The flat REE patterns are analogous to features of N-type MORB from the depleted mantle source, but are characterized by enrichment of LILEs (Rb, Ba, K, Sr and Pb) and depletion of HFSEs such as Nb, Ta and Ti; it records magmatic processes of subduction zone, and indicates that amphibolite was derived from partial melting of depleted mantle wedge with igneous activity in continental arcs, on the active continental margin. On such a basis, in combination with the regional characteristics of Neoproterozoic magmatic events, the authors have reached the conclusion that the Early Neoproterozoic magmatic events of the Erguna massif occurred in the context of the assembly of the Rodinia supercontinent, and later metamorphic events might correspond to the breakup of the Rodinia supercontinent.

  • 查隆岩体位于西藏昂仁县措迈乡西北部,所处大地构造位置为冈底斯-喜马拉雅造山系(一级)中的拉达克-冈底斯-察隅弧盆系(二级),属中冈底斯北侧的岩浆带。目前普遍认为,冈底斯带中生代花岗岩为新特提斯洋壳向北俯冲和班公-怒江洋向南俯冲共同消减作用的结果[1-3]。另外,前人也对冈底斯中生代岩浆岩的构造性质、构造演化、岩浆活动及成矿作用进行了较多研究。王成善等[4]认为,冈底斯中生代花岗岩是新特提斯洋壳至少2次俯冲消亡和多次俯冲-碰撞的结果;有学者认为,冈底斯带中北部地区的岩浆作用与班公湖-怒江洋壳向南的俯冲作用有关[1-3];也有学者认为,冈底斯带中北部地区的岩浆作用与冈底斯和羌塘地块碰撞后软流圈上涌引起的地壳熔融有关[5]。区域上晚白垩世岩浆大面积出露于南冈底斯带,中冈底斯带一直缺少晚白垩世花岗岩的报道。另外,冈底斯岩浆弧带成矿地质条件优越,孕育了大量的铜、金、银、钼、富铁、铅锌等矿产资源,是青藏高原最重要的成矿区带,但对铁矿的研究明显偏少。在填绘1:5万羊他幅时发现了晚白垩世岩体和查隆磁铁矿点,在对该岩体进行详细野外调查的基础上,结合区域资料,对晚白垩世岩体的岩石成因、地球动力学背景及成矿意义进行探讨,以期对冈底斯带构造岩浆研究提供可靠的基础资料。

    查隆岩体以岩株的形式产出,主要由5个独立的侵入体组成,在研究区呈零星分布,出露面积约9km2(图 1)。在各武勒嘎一带,南部被林子宗群年波组火山岩及第四系不整合覆盖,与围岩接触带岩石有弱的变质变形;在查隆一带侵位于拉嘎组、昂杰组、下拉组,与围岩接触带附近有变质变形、硅化、角岩化现象,岩体接触带附近可见黑云母钾长变粒岩、角岩化粉砂岩、变质含砾细粒岩屑石英砂岩等热接触变质岩。岩体以中酸性岩石为主,岩石类型为黑云花岗闪长岩、花岗闪长岩(图版Ⅰ-ab)。研究区处于冈底斯成矿带中西段,主体位于冈底斯-念青唐古拉中生代、新生代铜钼金铁铬盐类成矿带西段,矿点出露地层为石炭系—二叠系碎屑岩及碳酸盐岩,构造主要表现为断裂、节理,以及与逆断层伴生的牵引褶皱。北西向断裂较常见,为主要的赋矿构造,倾向一般为40°~50°,倾角为55°~ 60°,且多为逆断层。磁铁矿化蚀变带以浸染状的形式赋存于拉嘎组(C2P1l)、昂杰组(P1a)与中细粒黑云母花岗闪长岩岩体的外接触带上。初步圈定磁铁矿体3条,拣块样全铁最高品位68.9%(图版Ⅰ-c)。矿体呈似层状、透镜状产出,围岩硅化、角岩化蚀变较强,且受断层控制明显。矿石矿物主要为磁铁矿,少量赤铁矿、黄铁矿(图版Ⅰ-d)。

    图  1  查隆花岗岩地质简图及大地构造位置(据参考文献修改)
    1—断层;2—同位素采样位置;3—U-Pb年龄值;4—花岗岩体;5—热变质;6—火山岩;7—地层界线;Q—第四系;E3—渐新统;E2—始新统;P2—中二叠统;C-P—石炭系-二叠系;Ⅰ4-2—北喜马拉雅大陆边缘褶冲带北带;Ⅱ1—雅鲁藏布江缝合带;Ⅱ3—拉孜-曲松增生逆推带;Ⅲ1—日喀则弧前盆地;南冈底斯:Ⅲ2—冈底斯下察隅火山岩浆弧;中冈底斯:Ⅲ3—隆格尔-念青唐古拉火山岩浆弧,Ⅲ4—措勤-申扎火山岩浆弧;Ⅲ5—狮泉河蛇绿混杂岩带;北冈底斯:Ⅲ6—班戈-八宿岩浆弧;Ⅳ1—班公-怒江结合带; Ⅳ2—东恰错增生楔逆推带;Ⅴ1—羌南陆块
    Figure  1.  Simplified geological map of the granite in Chalong area and the division of tectonic units in adjacent areas
      图版Ⅰ 
    a.查隆岩体花岗闪长岩;b.闪长岩镜下特征;c.磁铁矿;d.磁铁矿镜下特征。Q—石英;Pl—斜长石;Kfs—钾长石;Mag—磁铁矿;Py—黄铁矿;Hm—赤铁矿
      图版Ⅰ. 

    查隆岩体的主要岩石类型为中细粒花岗闪长岩、细粒-中粒黑云花岗闪长岩。

    中细粒花岗闪长岩:呈灰白色,中细粒半自形粒状结构,块状构造,主要矿物成分为斜长石(56%~57%)、石英(20%~21%)、钾长石(12%~ 13%)、角闪石(4%~5%)和黑云母(3%~4%)。长石可分为1~1.5mm细粒级和2~2.5mm中粒级,不同颗粒相互紧密嵌接,杂乱分布。斜长石呈半自形粒状,较洁净;石英呈他形填隙粒状,洁净;钾长石呈他形粒状,较混浊,显示条纹结构;角闪石呈半自形粒状,浅绿色;黑云母呈半自形片状,红褐色。

    细粒黑云母花岗闪长岩:呈灰白色,细粒花岗结构,块状构造,主要矿物成分为斜长石(50%)、石英(25%)、钾长石(15%)及绿泥石化黑云母(8%),少量磷灰石,金红石+金属矿物含量为2%;另见副矿物为磷灰石、不透明金属矿物等。长石大部分为板柱状,一般粒径在0.90mm×1.72mm以上,个别可达1.15mm×2.25mm~1.43mm×2.80mm;斜长石泥化和绢云母化明显,较浑浊;钾长石略具泥化现象,个别可见卡氏双晶,为正长石;石英多为不规则粒状,分布于长石粒间,粒径一般小于0.70mm,个别可达1.00mm;黑云母为片状,最大片径0.71mm × 1.00mm,大部分已绿泥石化并有细针状或网状金红石,部分可见铁质析出物;副矿物见磷灰石,多为不规则状,粒径小于0.12mm;金属矿物多为较规则粒状,一般粒径小于0.25mm,部分有白钛矿化特征。

    磁铁矿石特征(图版Ⅰ-c):呈黑色,他形粒状结构,块状构造。主要金属矿物为磁铁矿(90%),另见赤铁矿(3%)和个别黄铁矿。磁铁矿一般粒径小于0.15mm,镶嵌分布,沿边部及解理裂隙可见赤铁矿交代的现象,黄铁矿仅见个别微粒,粒径小于0.005mm。脉石矿物主要为石榴子石(7%),不规则粒状,粒径一般小于0.30mm,个别可达0.63mm,裂隙较发育,部分裂隙中见少量绿泥石及个别石英,充填分布于金属矿物粒间。

    将5件新鲜花岗闪长岩样品无污染碎样至200目后,送至自然资源部西安矿产资源监督检测中心,分析其岩石化学数据。样品加工前先切掉氧化或蚀变膜。岩石化学成分用XRF光谱测定,分析精度一般优于2%。微量元素用XRF玻璃饼熔样,以保证样品中的副矿物全部溶解,然后在ICP-MS上测定,分析精度一般为2%~5%。

    锆石单矿物分离在河北廊坊区域地质调查研究所完成。将约5kg的样品破碎至60~80目,淘洗后获得重砂,再经过磁选,得到纯度较高的试样,在双目显微镜下挑选出晶形和透明度较好的锆石颗粒,制作成环氧树脂样品靶。待环氧树脂充分固化后打磨抛光至锆石颗粒中心暴露,然后拍摄反射光、透射光和阴极发光图像,最后进行LA-ICPMS U-Pb同位素测定。锆石的阴极发光(CL)图像在西北大学大陆动力学国家重点实验室扫描电镜加载阴极发光仪上完成。

    LA-ICP-MS测定在西北大学大陆动力学重点实验室完成,使用的ICP-MS为Agilient公司生产的Agilient7500a。锆石U-Pb定年及微量元素分析在同一个系统内同时完成,分析仪器为配备193nmArF-excimer激光器的Geo-Las200M型激光剥蚀系统和Elan6100DRC型四极杆质谱仪,激光束斑直径为44μm。LA-ICP-MS激光剥蚀采样采用单点剥蚀的方式, 数据分析前用NIST610进行仪器调试, 使之达到最优状态。在测试过程中每测定5个样品点后, 重复测定一次标准锆石91500和一次标准玻璃NIST610进行校正,观察仪器的状态以保证测试的精度。锆石年龄计算采用标准锆石91500为外标,元素含量采用美国国家标准物质局人工合成硅酸盐玻璃NISTSRM610为外标,29Si为内标元素进行校正。数据采集处理采用Glitter(Version4.0),并采用Anderson软件[6]对测试数据进行普通铅校正,年龄计算及谐和图绘制采用Isoplot(3.0版)软件[7]完成。因样品年轻,采用206Pb/238U年龄,206Pb/238U年龄加权平均值误差具95%置信度。

    岩石化学分析结果见表 1。SiO2含量为65.32%~69.19%,平均为67.10%,在TAS分类图解上位于花岗闪长岩区(图 2),为中酸性侵入岩类。K2O/Na2O=0.86~2.00,平均为1.31,显示贫钠富钾特征;SiO2-K2O岩石系列判别图解显示为高钾钙碱性系列岩石(图 3-a)。Al2O3含量为13.75% ~ 15.38%,平均为14.63%,A/CNK=0.95~1.12,平均为1.00,均小于1.1,岩石铝饱和指数判别图解显示属于准铝质花岗岩(图 3-b)。里特曼指数σ=0.78~ 2.09,大部分大于1.8;全碱(K2O + Na2O)含量为6.04%~7.49%,平均为6.84%;AR=1.8~2.16,平均为2.05。固结指数(SI)为0.71~1.32,平均为0.94;分异指数(DI)为71.18~73.08,平均为72.18,说明岩浆结晶分异程度较高。

    表  1  查隆花岗岩主量、微量和稀土元素分析结果
    Table  1.  Major, trace and rare earth element compositions of granite in Chalong area
    样品号 D1641-1 D1658-1 D1660-1 D1573-1 D1574-2
    岩石名称 中细粒花岗闪长岩 细粒黑云母花岗闪长岩 中粒黑云花岗闪长岩
    SiO2 66.5 69.19 67.74 65.32 66.74
    Al2O3 14.3 14.34 13.75 15.37 15.38
    MgO 2.05 1.41 1.89 1.97 1.65
    CaO 2.68 2.13 2.55 3.93 3.1
    Na2O 3.21 2.36 3.05 3.25 3.23
    K2O 4.13 4.71 4.44 2.79 3.01
    P2O5 0.2 0.14 0.19 0.18 0.15
    MnO 0.14 0.06 0.07 0.11 0.1
    TiO2 0.66 0.54 0.61 0.59 0.51
    TFe2O3 4.86 3.86 4.47 5.11 4.48
    烧失量 2.18 1.7 1.83 0.62 0.97
    总计 100.91 100.44 100.59 99.24 99.32
    A/NK 1.47 1.6 1.4 1.84 1.79
    A/CNK 0.98 1.12 0.95 0.99 1.08
    R1 2220 2598 2299 2443 2518
    R2 680 588 646 834 729
    Y 21.3 21.8 19.7 19.4 16
    La 64.2 38.8 60.1 43.7 30
    Ce 134 79 122 80 58.2
    Pr 13.6 8.54 12.7 8.14 5.96
    Nd 47.3 30.1 44.9 29.8 22.3
    Sm 6.96 5.67 7.19 5.1 4.06
    Eu 1.33 0.99 1.22 1.22 1.1
    Gd 6.99 5.64 6.51 4.88 3.71
    Tb 0.74 0.66 0.6 0.52 0.46
    Dy 3.79 3.96 3.57 3.37 2.75
    Ho 0.63 0.65 0.6 0.54 0.47
    Er 1.93 2.05 1.89 1.83 1.58
    Tm 0.24 0.27 0.28 0.22 0.21
    Yb 1.75 2.08 1.77 1.82 1.47
    Lu 0.22 0.29 0.24 0.25 0.2
    ΣREE 283.38 178.7 263.47 181.39 132.47
    LREE 267.09 163.1 248.01 167.96 121.62
    HREE 16.29 15.6 15.46 13.43 10.85
    LREE/ 16.4 10.46 16.04 12.51 11.21
    HREE 26.31 13.38 24.36 17.22 14.64
    (La/Yb)N 2.03 4.1 1.72 3.07 4.17
    (La/Sm)N 3.82 1.82 1.62 1.61 1.91
    (Gd/Lu)N 0.58 0.53 0.53 0.74 0.85
    δEu 34287.26 39102.42 36860.88 23162.58 24989.02
    K 3956.7 3237.3 3656.95 3537.05 3057.45
    Ti 981.9 600.2 662.9 828 626
    P 707.9 607.8 506.8 506 517
    Ba 33.4 24.7 43 26.8 22.7
    Th 3.17 2.26 6.24 2.38 1.64
    U 1.06 1.28 3.61 2.39 1.78
    Ta 7.41 15.8 25.1 13.7 14.2
    Nb 173 200 190.8 115 127
    Rb 225.4 211.5 210.1 163 126
    注:元素分析由自然资源部西安矿产资源监督检测中心完成;主量元素含量单位为%,微量和稀土元素为10-6
    下载: 导出CSV 
    | 显示表格
    图  2  查隆花岗岩SiO2-(Na2O +K2O)图解(底图据参考文献[8])
    Figure  2.  SiO2-(Na2O +K2O)diagram of granite in Chalong area
    图  3  查隆花岗岩SiO2-K2O图解(a, 底图据参考文献[9])和A/CNK-A/NK图解(b, 底图据参考文献[10])
    Figure  3.  SiO2 versus K2O diagram (a) and A/CNK versus A/NK diagram (b) of granite in Chalong area

    稀土元素分析结果见表 1。稀土元素总量(ΣREE)变化较大,ΣREE为132×10-6~283×10-6,LREE/HREE值为10.46~16.40,平均为12.98,(La/Yb)N值为13.38~26.31,平均为18.39,表明轻稀土元素较富集且分馏程度较高。稀土元素球粒陨石标准化配分曲线呈右倾特征,轻稀土元素富集,重稀土元素亏损,表明该岩浆经过一定程度的分异(图 4-a)。δEu值为0.53~0.85,显示中等的负Eu异常,配分曲线在Eu处的沟谷不明显,反映该岩体虽有微弱的亏损,但分异程度不明显。

    图  4  查隆花岗岩稀土元素球粒陨石标准化配分型式图(a)和微量元素原始地幔标准化蛛网图(b)(底图据参考文献[11])
    Figure  4.  Chondrite-normalized REE patterns (a) and trace element spider diagrams (b) for granite in Chalong area

    微量元素分析结果见表 1。原始地幔标准化微量元素蛛网图(图 4-b)显示,Th、Rb、K元素含量偏高,显示正异常;Ba、Nb、P、Ti元素显示负异常;比值蛛网图呈“W”型,大离子亲石元素Rb、K相对富集,Ba、Sr相对亏损;高场强元素Th、La、Nd相对富集,Ti、Nb、P相对亏损,P和Ti亏损一般与俯冲有关,这种特点与火山弧环境的花岗岩类似。

    测年样品均采于查隆岩体中部。其中, 样品RZ1641-1为中细粒花岗闪长岩,锆石晶形较完好,多呈长柱状,长宽比为2~3,发育明显的振荡环带,为典型的岩浆成因锆石。测得24粒锆石24个数据的206Pb/238U年龄介于88.5~91.3Ma之间(表 2图 5),其年龄加权平均值为89.88±0.55Ma(95%置信度),MSWD=0.43(图 5)。

    表  2  查隆岩体花岗闪长岩(RZ1641-1)和黑云花岗闪长岩(RZ1573-1)LA-ICP-MS锆石U-Th-Pb同位素数据
    Table  2.  LA-ICP-MS zircon U-Th-Pb data of granodiorite (RZ1641-1) and biotite granodiorite(RZ1573-1)in Chalong area
    测点号 同位素比值 年龄/Ma
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th
    花岗闪长岩
    1 0.0479 0.0034 0.0936 0.0063 0.0142 0.0002 0.0043 0.0001 95 160 91 6 91 2 87 2
    2 0.0475 0.0022 0.0921 0.0039 0.0141 0.0002 0.0045 0.0001 73 108 90 4 90 1 91 1
    3 0.0477 0.0024 0.093 0.0043 0.0141 0.0002 0.0044 0.0001 83 116 90 4 91 1 89 2
    4 0.0473 0.0061 0.0925 0.0116 0.0142 0.0004 0.0047 0.0002 65 283 90 11 91 3 94 4
    5 0.0484 0.0026 0.0923 0.0045 0.0138 0.0002 0.0042 0.0001 119 120 90 4 89 1 84 2
    6 0.0476 0.0021 0.0931 0.0037 0.0142 0.0002 0.0045 0.0001 76 103 90 3 91 1 91 1
    7 0.0473 0.0042 0.0926 0.0079 0.0142 0.0003 0.0045 0.0001 63 199 90 7 91 2 92 3
    8 0.0482 0.0071 0.0922 0.0132 0.0139 0.0004 0.0048 0.0002 107 315 90 12 89 3 97 4
    9 0.0476 0.0024 0.093 0.0043 0.0142 0.0002 0.0044 0.0001 78 117 90 4 91 1 88 2
    10 0.0471 0.0025 0.0927 0.0045 0.0143 0.0002 0.0047 0.0001 55 120 90 4 91 1 94 2
    11 0.0481 0.0064 0.0929 0.0121 0.014 0.0004 0.0049 0.0002 106 289 90 11 90 2 98 4
    12 0.0478 0.0027 0.0911 0.0047 0.0138 0.0002 0.0047 0.0001 89 128 89 4 89 1 96 2
    13 0.047 0.0051 0.0916 0.0097 0.0141 0.0003 0.0048 0.0002 50 242 89 9 91 2 97 4
    14 0.0479 0.004 0.0923 0.0073 0.014 0.0003 0.0045 0.0001 95 185 90 7 90 2 90 2
    15 0.047 0.0023 0.0917 0.0041 0.0142 0.0002 0.0043 0.0001 49 112 89 4 91 1 86 2
    16 0.0469 0.0025 0.0906 0.0045 0.014 0.0002 0.0043 0.0001 45 125 88 4 90 1 87 1
    17 0.0483 0.0034 0.0933 0.0063 0.014 0.0002 0.0046 0.0001 112 160 91 6 90 1 92 2
    18 0.0481 0.0029 0.0922 0.0051 0.0139 0.0002 0.0046 0.0001 102 134 90 5 89 1 92 2
    19 0.0482 0.0026 0.0924 0.0046 0.0139 0.0002 0.0043 0.0001 109 122 90 4 89 1 87 2
    20 0.0477 0.0036 0.0909 0.0065 0.0138 0.0002 0.0041 0.0001 85 171 88 6 89 2 83 2
    21 0.0481 0.0031 0.0925 0.0056 0.014 0.0002 0.0045 0.0001 103 144 90 5 89 1 90 2
    22 0.0482 0.0065 0.0936 0.0123 0.0141 0.0004 0.0046 0.0002 107 292 91 11 90 2 93 4
    23 0.048 0.0065 0.0916 0.0122 0.0138 0.0004 0.0048 0.0002 97 295 89 11 89 2 97 4
    24 0.0489 0.0039 0.0942 0.0071 0.014 0.0002 0.0043 0.0001 145 176 91 7 89 2 87 2
    黑云花岗闪长岩
    1 0.0469 0.0065 0.0885 0.0117 0.0137 0.0004 0.004 0.0003 41 301 86 11 88 3 82 6
    2 0.0482 0.0052 0.0895 0.0091 0.0135 0.0004 0.0039 0.0002 111 235 87 8 86 2 78 4
    3 0.0481 0.0025 0.0904 0.0039 0.0136 0.0002 0.0042 0.0001 104 117 88 4 87 1 85 2
    4 0.0478 0.0029 0.0921 0.0049 0.014 0.0002 0.0045 0.0001 86 137 90 5 90 2 90 3
    5 0.0477 0.0061 0.0917 0.0112 0.014 0.0004 0.0047 0.0003 82 279 89 10 89 3 95 6
    6 0.048 0.0026 0.0848 0.004 0.0128 0.0002 0.0039 0.0001 97 125 83 4 82 1 79 2
    7 0.0481 0.0032 0.0904 0.0053 0.0136 0.0002 0.0042 0.0001 105 148 88 5 87 2 85 2
    8 0.0473 0.008 0.0853 0.014 0.0131 0.0005 0.0043 0.0004 65 360 83 13 84 3 87 7
    9 0.0477 0.004 0.0901 0.0071 0.0137 0.0003 0.0041 0.0002 81 190 88 7 88 2 82 3
    10 0.0477 0.0039 0.0862 0.0066 0.0131 0.0003 0.004 0.0002 85 185 84 6 84 2 80 3
    11 0.0478 0.0027 0.087 0.0042 0.0132 0.0002 0.0038 0.0001 86 127 85 4 85 1 77 2
    12 0.0473 0.0043 0.0863 0.0073 0.0132 0.0003 0.004 0.0002 63 202 84 7 85 2 81 3
    13 0.0475 0.0028 0.0908 0.0047 0.0139 0.0002 0.004 0.0001 76 135 88 4 89 1 81 2
    14 0.0478 0.004 0.0885 0.007 0.0134 0.0003 0.0041 0.0002 86 190 86 7 86 2 82 3
    15 0.049 0.0166 0.0913 0.0303 0.0135 0.0009 0.0043 0.0004 146 646 89 28 87 6 86 8
    16 0.0479 0.0036 0.0922 0.0064 0.014 0.0003 0.0043 0.0001 93 171 90 6 89 2 88 3
    17 0.0477 0.0038 0.0924 0.0069 0.014 0.0003 0.0044 0.0002 84 181 90 6 90 2 88 3
    18 0.0477 0.0028 0.0892 0.0047 0.0136 0.0002 0.0042 0.0001 81 136 87 4 87 1 84 2
    19 0.0477 0.003 0.0877 0.0049 0.0133 0.0002 0.004 0.0001 85 142 85 5 85 2 81 2
    20 0.0485 0.0031 0.0912 0.0053 0.0137 0.0002 0.0041 0.0001 121 146 89 5 87 2 83 2
    21 0.0477 0.0028 0.0869 0.0044 0.0132 0.0002 0.0042 0.0001 81 133 85 4 85 1 85 3
    22 0.0483 0.0028 0.0904 0.0045 0.0136 0.0002 0.0041 0.0001 115 129 88 4 87 1 82 3
    23 0.0477 0.0032 0.0933 0.0057 0.0142 0.0003 0.0042 0.0001 85 155 91 5 91 2 85 3
    24 0.0479 0.0028 0.0933 0.0047 0.0141 0.0002 0.0045 0.0001 91 132 91 4 91 2 90 2
    25 0.0473 0.0029 0.0855 0.0047 0.0131 0.0002 0.004 0.0001 62 142 83 4 84 1 81 2
    26 0.0482 0.0086 0.0846 0.0146 0.0127 0.0005 0.0042 0.0003 109 372 83 14 82 3 84 7
    27 0.0468 0.0027 0.0877 0.0043 0.0136 0.0002 0.0041 0.0001 41 130 85 4 87 1 82 2
    28 0.0482 0.0031 0.0921 0.0053 0.0139 0.0003 0.0042 0.0001 109 144 89 5 89 2 85 3
    29 0.0473 0.0053 0.0865 0.0092 0.0133 0.0004 0.0043 0.0002 63 247 84 9 85 2 86 4
    30 0.0478 0.0032 0.0889 0.0053 0.0135 0.0003 0.004 0.0001 89 151 87 5 86 2 81 2
    下载: 导出CSV 
    | 显示表格
    图  5  查隆花岗岩(RZ1641-1)锆石阴极发光(CL)图像(a)和U-Pb年龄谐和图(b、c)
    Figure  5.  CL images (a) and U-Pb concordia diagrams (b, c) of zircon from granite (sample RZ1641-1) in Chalong area

    样品RZ1573-1为黑云花岗闪长岩,锆石晶形较完好,多呈长柱状,长宽比为2~4,发育明显的振荡环带,为典型的岩浆成因锆石。测得29粒锆石的30个数据的206Pb/238U年龄介于82.1~90.8Ma之间,其年龄加权平均值为86.6±1.0Ma(95%置信度),MSWD=0.43(表 3;图 6)。

    图  6  查隆黑云花岗闪长岩(RZ1573-1)锆石阴极发光(CL)图像(a)和U-Pb年龄谐和图(b、c)
    Figure  6.  CL images (a) and U-Pb concordia diagrams (b, c) of zircon from biotite granodiorite (sample RZ1573-1) in Chalong area

    晚白垩世花岗岩多分布于南冈底斯中东段,中冈底斯和北冈底斯零星出露。其中南冈底斯带门巴地区金达北部的花岗闪长岩年龄为68.8± 1.6Ma(U-Pb年龄)[12],朗县—米林地区的花岗岩年龄介于84~78Ma之间(U-Pb年龄)[13],雪拉岩体的花岗闪长岩年龄为70.4±2.2Ma(U-Pb年龄)[14],谢通门地区的花岗岩年龄介于110~90Ma之间(U-Pb年龄)[15];而冈底斯带西北缘的扎隆琼娃石英二长岩年龄为85.6±0.48Ma(U-Pb年龄)[16],中冈底斯带岩体的花岗闪长岩年龄为74.8±1.6Ma(U-Pb年龄)[17],扎布耶茶卡的第二期闪长岩年龄为100.2±0.75Ma[18]。可见区域上既有晚白垩世早期的岩体也有晚白垩世末期的岩体,岩性以花岗闪长岩为主,多为俯冲型的Ⅰ型花岗岩。本文中2个年龄样品采自中冈底斯,年龄介于89.88~ 86.6Ma之间,岩性、地球化学特征及构造环境与区域上高度一致。结合目前冈底斯带晚白垩世岩体的特点,纵向上具有从北向南年龄变老的趋势,反映从俯冲到碰撞造山岩浆活动的中心总体从南向北发生迁移的过程。

    岩相学上没有发现堇青石、石榴子石、白云母等传统意义上S型花岗岩判别标志的富铝矿物。岩石CIPW标准矿物计算显示,刚玉分子3个样品均小于1%,Na2O含量多接近或大于3.2%,反映Ⅰ型花岗岩的特点。综上所述,查隆岩体应为高钾钙碱性的准铝质Ⅰ型花岗岩。

    研究表明,微量元素是岩浆混合作用和成岩过程的最好记录,壳、幔两类岩浆混合及成岩过程中,有显著的元素迁移和成分交换,并形成独特的扩散作用[19]。根据微量元素地球化学性质,Rb为强不相容元素,Ti为高场强元素,来自不同岩浆房成岩后,Rb/Ti值变化较大[20]。查隆岩体的Rb/Ti值为0.03~0.06,说明幔源基性岩浆和壳源酸性岩浆已经发生混合岩浆作用。Nb、Ta为强不相容元素,在侵蚀和变质作用过程中较稳定, Nb/Ta值可以示踪原始岩浆源区的特征[21-22]。查隆花岗闪长岩的Nb/ Ta值为5.73~12.34,其特征介于原始地幔(17.39)[23]和大陆地壳(Nb/Ta=11~12)[24]之间,暗示岩浆源区可能由地幔熔体和地壳熔体的混合形成。另外,熔融实验研究表明,陆壳熔融通常富钠,不能形成具高钾钙碱性特征的花岗质岩浆[25-27]。Panino等[27]根据陆壳岩石熔融结果,提出高钾钙碱性花岗岩通常是壳幔混合的结果。综上所述,查隆岩体岩浆来源显示了壳幔岩浆混合起源的特征。

    研究认为,新特提斯洋大致在晚三叠世或更早的时间打开,同时形成班公湖-怒江洋(北支)及雅鲁藏布洋(南支)[28]。大致于中侏罗世扩张到最大规模,然后开始消减缩小。北支班公湖-怒江洋大致在早白垩世末(100Ma左右)完全闭合,完成了拉萨地块与羌塘地块的碰撞拼合,南支雅鲁藏布洋闭合较晚。在古近纪印度大陆开始与拉萨地块碰撞[29]。而弧背断隆带和中冈底斯的形成时代分别为105~ 135Ma和95~145Ma,说明至少在早侏罗世,冈底斯带还受到班公湖怒江洋向南、雅鲁藏布江洋向北的双向俯冲作用影响,直到晚白垩世竟柱山组(位于岩体西北部)在93.9~100.5Ma沉积时,冈底斯中北部的俯冲作用才基本停止[30]。雅鲁藏布洋板块自中侏罗世开始向北俯冲于拉萨地块之下,65~70Ma前,雅鲁藏布洋开始闭合,印度-亚洲大陆开始碰撞[3]

    本次获得的年龄无疑属于新特提斯洋板块俯冲阶段,是俯冲成因的花岗闪长岩,表明在冈底斯带中部晚白垩世早期(约90Ma)至少存在一期由俯冲作用诱导的岩浆混合作用。到晚白垩世时,班公-怒江洋盆已经闭合,雅鲁藏布江洋盆向北单向强烈俯冲,由于洋壳俯冲速度不断加快,沿俯冲带产生的摩擦力持续增强,重熔速度加快,使地壳深部物质熔融。岩体的岩浆源区来自于上地幔和下地壳物质不断熔融,由于幔源岩浆在上侵过程中与下地壳物质发生不同程度的混溶作用,形成晚白垩世花岗闪长岩及同时期的磁铁矿。双向剪刀式俯冲作用只能解释早侏罗世―早白垩世的花岗岩特点,到晚白垩世已经变成单向俯冲,区域上晚白垩世岩体集中发育在南冈底斯带,该岩体的发现及认识对研究中冈底斯带晚白垩世岩浆作用的深部动力学过程具有重要意义。

    查隆地区的磁铁矿与燕山末期的中酸性岩浆侵入活动有关,岩浆演化晚期分离出成矿热液,沿层间裂隙、构造破碎带等部位与围岩发生接触交代反应,形成磁铁矿体。区内石炭系―二叠系沉积地层,燕山末期的侵入岩及近北西向大断裂控制的次级断裂和褶皱的发育构成了最有利的成矿岩性组合及控矿条件。中酸性花岗闪长岩直接侵入到有较强变形的石炭系―二叠系沉积地层,矿区构造复杂,具备良好的围岩条件,发现的磁铁矿石品位较富,说明该区是寻找与接触交代作用有关的富铁矿产地的有利区域,有望在区内找到中等以上规模的富磁铁矿产地。

    磁铁矿石普遍石榴子石化、少量绿泥石化,矿点的东侧及南侧均有中二叠统下拉组灰岩发育,具有矽卡岩型磁铁矿特征;脉状和浸染状磁铁矿的出现,表明矿床后期具有热液叠加特征。综上所述,该矿床早期为矽卡岩型成矿,后期叠加热液改造,其中矽卡岩期是磁铁矿形成的主要阶段,矿床成因类型应为矽卡岩-热液叠加改造型磁铁矿床。

    冈底斯带中北部晚白垩世可能发生过金属成矿大爆发,目前在冈底斯中北部已发现日阿铜矿床、尕尔穷铜矿床、拔拉扎铜钼矿床等,这些矿床的成矿环境、成矿条件、控矿构造、岩体地球化学特征等都具有相似性,可能属于同一成矿系统。该磁铁矿点的发现对开展西藏冈底斯中北部地区中生代矽卡岩型铁铜矿典型矿床的成矿作用、找矿方向具有重要意义。

    (1)查隆花岗闪长岩和黑云花岗闪长岩锆石U-Pb年龄分别为86.6±1.0Ma和89.88±0.55Ma,为雅江洋壳向北俯冲作用延续到晚白垩世的年代学证据,该岩体的发现为中冈底斯带存在晚白垩世岩浆活动提供了证据。

    (2)岩石学、岩石地球化学特征显示,查隆岩体为高钾钙碱性Ⅰ型花岗岩,为壳幔混合的产物。

    (3)查隆磁铁矿的成因类型为矽卡岩型-热液叠加改造型,对研究西藏冈底斯中北部地区中生代矽卡岩型铁铜矿典型矿床的成矿作用和找矿方向具有重要意义。

    致谢: 致谢:吉林大学孙加鹏教授、广州地球化学研究所马强博士、中国地质大学(武汉)平先权博士及审稿专家给予本文建设性意见和重要指导,在此谨表谢意.
  • 图  1   中国东北地区构造简图(a)及大兴安岭玻乌勒山地区地质简图(b)(图a 据参考文献[1],图b 据参考文献1 2 修改)

    1—第四系;2—上侏罗统玛尼吐组;3—早白垩世石英二长岩;4—晚石炭世二长花岗岩;5—新元古代(片麻状)二长花岗岩;6—新元古代斜长角闪岩;7-兴华渡口群捕虏体;8—采样位置;9—角度不整合界线.①—喜桂图-塔源断裂;②—贺根山-黑河断裂;③—索伦-西拉木伦-长春缝合带;④—嘉荫-牡丹江断裂;⑤—伊通-依兰断裂;⑥—敦化-密山断裂

    Figure  1.   Tectonic sketch map of NE China (a) and geological sketch mapof Bowuleshan area, Da Hinggan Mountains(b)

    图  2   大兴安岭玻乌勒山片麻状花岗岩(a)和斜长角闪岩(b)显微照片

    Pl—斜长石;Kfs—钾长石;Q—石英;Hbl—普通角闪石;Aug—普通辉石;Chl—绿泥石;Ep—绿帘石

    Figure  2.   Textures of the Bowuleshan gneissic granite (a) andamphibolite (b) from Da Hinggan Mountains

    图  3   玻乌勒山片麻状花岗岩(a)和斜长角闪岩(b)代表性锆石CL 图像

    Figure  3.   Representative CL images for zircons from the Bowuleshangneissic granite (a) and amphibolite (b)

    图  4   玻乌勒山片麻状花岗岩(a)和斜长角闪岩(b)锆石U-Pb 年龄谐和图

    Figure  4.   U-Pb concordia diagrams of zircons from Bowuleshangneissic granite (a) and amphibolites (b)

    图  5   玻乌勒山片麻状花岗岩与斜长角闪岩TAS 图[11](a)和SiO2-K2O 图[12](b)

    1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗闪长岩;6—花岗岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩;13—副长石辉长岩;14—副长石二长闪长岩;15—副长石二长正长岩;16—副长正长岩;17—副长深成岩;18—霓方钠岩/磷霞岩/粗白榴岩

    Figure  5.   Diagrams of TAS (a) and SiO2-K2O(b) from theBowuleshan gneissic granite and amphibolite

    图  6   玻乌勒山斜长角闪岩-片麻状花岗岩球粒陨石标准化稀土元素曲线(a、c)及原始地幔标准化微量元素蛛网图(b、d)(球粒陨石标准化值、原始地幔标准化值、OIB 及N-MORB 据参考文献[13])

    Figure  6.   Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized traceelement spider diagram (b, d) of the Bowuleshan amphibolite and gneissic granite

    图  7   玻乌勒山斜长角闪岩A-K 相关图解(a)[14]、Si-((al+fm)-(c+alk))图解(b)[15]、Nb/Y-SiO2图解(c)[16]和AI-CCPI 图解(d)[17]

    (K=100K2O/(K2O+Na2O),A=100Al2O3/( Al2O3+CaO+K2O+Na2O);al、fm、c、alk 为尼格里参数,al=100%×Al2O3/Σ、fm=100%×(FeO2+Fe2O3+MgO+MnO)/Σ、c=100%×CaO/Σ、alk=100%×(Na2O+K2O)/Σ、Σ=al+fm+c+alk; 绿泥石-碳酸盐-黄铁矿指数CCPI=100(MgO+FeO)/(MgO+FeO+Na2O+K2O),Ishikawa 变化指数AI=100(K2O+MgO)/(K2O +MgO+ Na2O+CaO))

    Figure  7.   The diagram of A-K (a), Si-((al+fm)-(c+alk))(b),Nb/Y-SiO2 (c)and AI-CCPI (d) of amphibolite in Bowuleshan

    图  8   玻乌勒山斜长角闪岩微量元素成分构造判别图

    a—Zr-Zr/Y 图[31];b—Ta/Hf-Th/Hf 图[32].WPB—板内玄武岩;IAB—岛弧玄武岩;MORB—洋中脊玄武岩;Ⅰ—板块发散边缘N-MORB 区;Ⅱ—板块汇聚边缘(Ⅱ1—大洋岛弧玄武岩区;Ⅱ2—陆缘岛弧及陆缘火山弧玄武岩区);Ⅲ—大洋板内洋岛、海山玄武岩区及T-MORB(过渡型地幔)、E-MORB 区;Ⅳ—大陆板内(Ⅳ1—陆内裂谷及陆缘裂谷拉斑玄武岩区;Ⅳ2—陆内裂谷碱性玄武岩区;Ⅳ3—大陆拉张带或初始裂谷玄武岩区);Ⅴ—地幔热柱玄武岩区

    Figure  8.   Trace element discrimination diagram for the tectonic setting of theamphibolite from the Bowuleshan intrusive rocks

    表  1   玻乌勒山片麻状花岗岩和斜长角闪岩的LA-ICP-MS 锆石U-Th-Pb 同位素分析结果

    Table  1   LA-ICP-MS zircon U-Th-Pb data of the Bowuleshangneissic granite and meta-gabbro

    分析点元素含量/10-6Th/U同位素比值年龄/Ma
    206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U207Pb/235U
    PbU测值测值测值测值测值
    SPM4TC07,片麻状花岗岩,206Pb/238U表面年龄加权平均值为915±3Ma,MSWD=0.15;北纬51°50.034′、东经124°56.083′
    110610.7190.15150.00161.4460.0430.06930.0021909990827
    28480.4550.15190.00171.4530.0620.06940.00299121091139
    3261550.6560.15190.00151.4540.020.06940.0009912991113
    412680.6110.15240.00161.4560.030.06930.0014915991319
    5321641.3370.15290.00171.4510.0190.06890.00089171091112
    615950.5210.15240.00171.460.0290.06950.00149151091418
    712770.2590.15290.00231.4580.0350.06920.00169171491422
    815850.8920.15330.00161.4730.0260.06970.00129191092016
    917980.7080.15240.00151.470.030.070.0014915991819
    1011660.660.15470.00181.4880.040.06980.00179271192625
    11351980.9150.1540.00171.490.0170.07020.00079241092611
    1214900.5590.15360.00161.4770.0250.06980.00119211092116
    1315890.6680.1530.00161.4670.0230.06960.0019181091714
    1414860.7880.15170.00151.4630.0250.06990.0012911991516
    15181080.7370.15190.00161.4660.0240.070.00119121091716
    168510.6990.15170.00161.4520.0530.06940.0024910991133
    177480.4070.15190.00161.4540.070.06950.00339111091244
    1810610.6080.1530.00161.4730.0530.06990.0025918992034
    1911660.6090.15120.00151.4550.0550.06980.0026908991235
    20211410.1680.15150.00181.4690.0240.07030.00099101191815
    2112750.5590.15190.00161.4740.0350.07040.00179121092022
    2212830.140.15290.00191.4690.0320.06970.00149171191820
    23161000.4570.15290.00161.4820.0280.07030.00139171092318
    2410650.4590.15190.00161.4750.0580.07040.00279121092036
    25513390.2580.15290.00151.4680.0160.06970.0007917991810
    268470.490.15330.00161.4740.0790.06970.00379201092049
    278470.540.15240.00161.4590.0620.06940.00299151091439
    2815930.5480.15180.00181.470.0250.07020.00119111191816
    2915930.6880.15270.00151.4630.0280.06950.0013916991518
    3011700.5520.15250.00161.4650.030.06970.0014915991619
    3115940.5380.15230.00171.460.0250.06950.00119141091416
    32281990.0270.15170.00161.450.0230.06930.00099101091015
    335320.4160.15260.00181.4530.0650.06910.00319151191141
    348500.6120.15340.00171.4680.0460.06950.00229201091829
    3513830.4560.15280.00151.4710.030.06990.0014917991919
    3615980.4890.15260.00171.4610.0230.06950.00119151091515
    37372320.530.15180.00181.4550.0180.06950.00069111191212
    38191350.0120.15290.00161.480.0240.07020.0019171092315
    SPM4TC07,片麻状花岗岩,206Pb/238U表面年龄加权平均值为915±3Ma,MSWD=0.15;北纬51°50.034′、东经124°56.083′
    395440.010.13290.00141.3320.0640.07270.0034805986041
    40713851.4270.15240.00161.4720.0140.07010.0005914109199
    4112750.4330.15220.00171.4590.0320.06950.00169131091420
    42342200.3640.15250.00191.4680.0190.06980.00069151191712
    43171030.7690.15170.00151.450.0220.06940.001910991014
    44181080.7810.1520.00161.4650.0210.06990.001912991613
    45271680.4640.15230.00251.4730.0270.07020.00089141591917
    468580.0130.15210.00161.5030.0690.07170.00329131093243
    47151000.4170.15260.00161.4640.0220.06960.00099161091614
    4815940.6170.15210.00181.4570.0270.06950.00129131191317
    49935750.5620.15240.00161.4610.0140.06950.000591599159
    HQG,斜长角闪岩,206Pb/238U表面年龄加权平均值为904±4Ma,MSWD=0.54;北纬51°52.936′、东经124°51.364′
    1141030.0150.15010.00161.4340.0260.06920.00129021090317
    2372660.0060.15070.00161.4420.0210.06940.00099051090713
    33180.1980.14910.0031.4230.1860.06920.009589618899117
    4180.1290.15210.00271.4650.2520.06980.013791316916158
    52130.0610.14370.00221.3490.1960.06810.010486613867126
    6131070.0250.13270.00161.2040.0360.06580.0019803980324
    77500.1220.15130.00161.4510.0380.06960.0017908991024
    91100.1110.15150.00271.460.2180.06990.010990916914137
    810700.0850.15020.0021.4390.0450.06950.00189021290628
    104320.0350.14210.00151.3330.0650.06810.0033857986042
    112120.1120.14780.00211.4050.1610.0690.008288912891103
    12322240.0590.15150.00231.460.0330.070.00119091491421
    133140.0510.18230.00293.9470.2490.1570.00981080171623103
    14181310.0130.150.00171.4240.0230.06890.0019011089915
    152120.0680.13750.0021.2780.1420.06740.00768301283693
    16292040.3160.15090.00161.4350.0220.0690.00099061090414
    176450.0520.15160.00191.4610.050.06990.00249101291531
    182180.0540.14140.00181.3290.1010.06820.00528521185865
    192110.0620.15450.00231.5040.1790.07060.008492614932111
    2012870.0410.15030.0021.4270.0330.06890.00149031290021
    21171300.0190.13790.00151.2670.0210.06660.001833983114
    22322280.0040.1510.00181.4350.0220.06890.00099071190414
    23251770.0110.150.00171.4330.0230.06930.0019011090315
    252130.0730.15090.00271.4440.230.06950.011490616908145
    26443200.0630.14630.00151.3730.0190.06810.0009880987713
    27161130.0340.15110.00151.4530.0280.06980.0013907991118
    28141010.010.15140.00161.4580.0290.06980.0013909991318
    292150.0810.15180.0021.4650.1380.070.00669111291687
    302110.1180.15930.00241.570.1670.07150.007795315959102
    HQG,斜长角闪岩,206Pb/238U表面年龄加权平均值为904±4Ma,MSWD=0.54;北纬51°52.936′、东经124°51.364′
    3112870.0070.14880.00151.4180.0360.06920.0017894989723
    323180.110.13810.00181.2790.10.06720.00518341183766
    339660.0130.15210.00171.470.0340.07020.00169121091822
    3412880.0960.14740.00161.3980.0320.06880.00168861088821
    353200.0460.15250.0021.4620.0920.06960.00449151291558
    362120.0770.14790.00211.4030.1620.06880.008288913891103
    375380.0370.15010.00161.4330.050.06930.00249021090332
    382110.1390.15160.00231.4620.1880.070.009291014915118
    393140.0750.20010.00242.2040.1480.07990.0054117614118379
    405330.040.15080.00221.4410.0740.06930.00329051390647
    4110700.0180.14830.00171.420.030.06950.00138911089819
    422100.1670.15070.00231.4510.1850.06990.009390514911116
    下载: 导出CSV

    表  2   玻乌勒山片麻状花岗岩与斜长角闪岩主量、微量、稀土元素和Sr-Nd 同位素分析结果

    Table  2   Major, trace elements, REE and Sr-Nd isotopic compositionsfor Bowuleshan gneissic granite and amphibolite

    样号
    岩性
    PM5TC
    3-1
    PM4TC
    07
    PM5TC
    04
    PM25TC9HQG1HQG3HQG4
    片麻状花岗岩斜长角闪岩
    SiO261.8567.6367.347.8549.1645.2246.02
    Al2O316.8613.5915.4213.815.6315.0814.68
    TiO20.720.680.621.570.751.050.77
    Fe2O33.12.671.564.124.644.414.52
    FeO1.463.091.849.136.446.395.58
    CaO2.854.771.9410.9910.3911.9813.54
    MgO1.41.881.337.226.34109.56
    K2O4.730.463.220.440.521.090.85
    Na2O4.553.764.932.332.881.351.3
    MnO0.1010.1190.080.2160.240.1610.165
    P2O50.2940.1620.1790.1410.0650.0490.033
    LOI1.831.111.352.032.83.022.78
    总和99.7699.9199.7999.8499.8699.8199.8
    FeOT4.255.493.2512.8410.6210.369.65
    A/CNK0.950.891.020.570.650.60.53
    Mg#36.937.842.350.151.563.263.8
    SI9.1515.810.431.130.44343.8
    Rb/Sr0.220.070.130.030.030.170.09
    σ4.580.722.741.581.882.681.52
    Y17.1534.9318.0327.814.831.219.7
    La41.0113.0137.355.572.111.681.53
    Ce85.7742.2575.2914.84.553.622.95
    Pr10.334.159.072.380.730.810.58
    Nd37.4717.8431.5512.13.775.453.8
    Sm6.294.825.23.571.422.591.62
    Eu1.441.241.161.380.651.080.73
    Gd4.84.874.083.791.663.322.11
    Tb0.71.040.660.790.390.80.49
    Dy3.626.553.425.432.785.893.67
    Ho0.641.370.651.10.571.230.77
    Er1.984.42.052.941.613.472.16
    Tm0.310.730.360.50.290.580.37
    Yb1.964.492.253.21.83.592.26
    Lu0.520.540.290.430.250.520.31
    Li16.667.9110.867.9123.338.824.4
    Be2.952.362.140.520.570.350.48
    Sc8.0620.215.2844.245.447.633.9
    V61.664.553.9335338313221
    Cr8.620.38.8337112353442
    Co9.215.86.947.341.651.837.3
    Ni4.37.97.254.732.3121114
    Ga20.2717.9420.3818.222.519.315.9
    Rb123.315.946.87.2513.646.929.6
    Sr555.8234.9357.2220518273324
    Zr311.3230.3278.710230.632.327.7
    Nb15.078.2515.064.951.030.510.66
    Mo0.170.20.260.40.240.370.3
    Ba893.8150.6810.596.5176300341
    Hf7.658.914.945.991.652.241.74
    Ta0.940.551.080.480.340.380.17
    Pb19.8623.13.1210.69.423.2
    Th8.935.1114.520.380.170.110.13
    U1.60.72.010.150.0870.0860.1
    Cl44.79363.857.93779.951.9
    F530290408412360564480
    ΣREE214142.24191.4285.7537.3665.8343.05
    LREE/HREE5.751.415.020.870.550.30.35
    (La/Yb)N8.382.5713.581.40.90.350.52
    δEu0.80.780.771.141.291.131.2
    87Sr/86Sr0.704774
    87Sr/86Sr(i)0.703387
    143Nd/144Nd0.512657
    εNd(915Ma)3.52
    TDM2(Ga)1.28
    注:A/CNK=(Al2O3)/(CaO+K2O+Na2O);Mg#=100×Mg2+/(Mg2++Fe2++Fe3+);δEu=EuN/[(GdN+SmN)/2];“N”表示相对于球粒陨石标准化值;固结指数(SI)=MgO×100/(MgO+FeO+F2O3+Na2O+K2O);主量元素含量单位为%, 微量和稀土元素含量为10-6
    下载: 导出CSV
  • Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3/4):542-556. https://www.researchgate.net/publication/223492632_The_Hulan_Group_Its_role_in_the_evolution_of_the_Central_Asian_Orogenic_Belt_of_NE_China

    任纪舜, 牛宝贵, 刘志刚. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, 1999,(3):85-93. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199903010.htm
    谢鸣谦. 拼贴板块构造及其驱动机理:中国东北及邻区的大地构造演化[M]. 北京:科学出版社, 2000.
    孙广瑞, 李仰春, 张昱. 额尔古纳地块基底地质构造[J]. 地质与资源, 2002, 11(3):129-139. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200203000.htm
    苗来成, 刘敦一, 张福勤,等. 大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J]. 科学通报, 2007, 52(5):591-601. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200705018.htm
    表尚虎, 郑卫政, 周兴福. 大兴安岭北部锆石U-Pb年龄对额尔古纳地块构造归属的制约[J]. 地质学报, 2012, 86(8):1262-1272. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201208010.htm
    王洪波, 杨晓平. 大兴安岭北段新一轮国土资源大调查以来的主要基础地质成果与进展[J]. 地质通报, 2013, 32(2/3):525-532. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1025.htm

    Liu Y, Hu Z, Gao S, et al. In situ, analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43. https://www.researchgate.net/profile/Yongsheng_Liu5/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard/links/54067d610cf2c48563b2536f/In-situ-analysis-of-major-and-trace-elements-of-anhydrous-minerals-by-LA-ICP-MSLA-ICP-MS-without-applying-an-internal-standard.pdf

    Liu Y, Gao S, Hu Z, et al. Continental and Oceanic Crust Recycling-induced Melt - Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2):392-9.

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LAICP-MS[J]. Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224. http://www.oalib.com/references/7414805

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to mineralogy and petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts; Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    周世泰. 恢复变质岩原岩的一种岩石化学方法[J]. 辽宁地质学报, 1981, (1):178-187.

    Simonen A. Stratigraphy and sedimentation of the Svecofennidic, early Archeansupracrustal rocks in southwestern Finland[J]. Bulletin of the Geological Society of Finland, 1953, 160:1-64.

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20(4):325-343. http://www.academia.edu/17797804/Geochemical_discrimination_of_different_magma_series_and_their_differentiation_products_using_immobile_elements

    Large R R. The Alteration Box Plot: A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits[J]. Economic Geology, 2001, 96(5):957-971. https://pangea.stanford.edu/research/ODEX/EG/papers/Abs96-5_files/large2.pdf

    Maclean W H. Mass change calculations in altered rock series[J]. MineraliumDeposita, 1990, 25(1):44-49.

    Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5):751-767. doi: 10.1107/S0567739476001551

    Niu Y, Batiza R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle[J]. Earth & Planetary Science Letters, 1998, 155(1/2):147-147. https://www.researchgate.net/publication/222314997_Trace_element_evidence_from_seamounts_for_recycled_oceanic_crust_in_the_Eastern_Pacific_mantle_vol_148_pg_471_1997

    Niu Y, Hékinian R. Basaltic liquids and harzburgitic residues in the Garrett Transform: a case study at fast-spreading ridges[J]. Earth & Planetary Science Letters, 1997, 146(1/2):243-258. https://www.researchgate.net/publication/245580976_Basaltic_liquids_and_harzburgitic_residues_in_the_Garrett_Transform_A_case_study_at_fast-spreading_ridges

    Niu Y. Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and, Post-melting Processes Beneath Mid-Ocean Ridges[J]. Journal of Petrology, 2004, 45(12):2423-2458. doi: 10.1093/petrology/egh068

    Niu Y. ChemInform Abstract: Earth Processes Cause Zr-Hf and Nb-Ta Fractionations, but Why and How?[J]. ChemInform, 2012, 43(29):3587-3591. https://www.researchgate.net/publication/264214788_ChemInform_Abstract_Earth_Processes_Cause_Zr-Hf_and_Nb-Ta_Fractionations_but_Why_and_How

    Alard O, Luguet A, Pearson N J, et al. In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle[J]. Nature, 2005, 436(7053):1005-8. doi: 10.1038/nature03902

    Thompson R N, O'Hara M J. An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis: An Elemental Approach[and Discussion][J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 1984, 310(1514):549-590.

    Eiler J M, Crawford A, Elliott T, et al. Oxygen Isotope Geochemistry of Oceanic-Arc Lavas[J]. Journal of Petrology, 2000, 41(2):229-256. doi: 10.1093/petrology/41.2.229

    Chung S L, Wang K L, Crawford A J, et al. High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassiclavas[J]. Lithos, 2001, 59(4):153-170. doi: 10.1016/S0024-4937(01)00067-6

    Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks[J]. Journal of Geology, 1985, 94(4): 632-633. https://www.researchgate.net/publication/224929850_The_Continental_Crust_its_Composition_and_Evolution_An_Examination_of_the_Geochemical_Record_Preserved_in_Sedimentary_Rocks

    Mahoney J J, Coffin M F. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints[C]//Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, 2013:335-355.

    Jochum K P, Mcdonough W F, Palme H, et al. Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotitexenoliths[J]. Nature, 1989, 340(6234):548-550. doi: 10.1038/340548a0

    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1):33-47. doi: 10.1007/BF00375192

    汪云亮, 张成江, 修淑芝. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3):413-421. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm
    万渝生, 吴澄宇, 张炳熹, 稀土元素地球化学与玄武质岩石的成因-应用与问题. 岩石圈研究的现代方法.[M] 北京: 原子能出版社, 1997: 215-228.

    Taylor S R, Mclennan S M. The chemical composition of the Archaeancrust[J]. Geological Society London Special Publications, 1986, 24:173-178. doi: 10.1144/GSL.SP.1986.024.01.16

    Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):293-301.

    高山, 骆庭川, 张本仁,等. 中国东部地壳的结构和组成[J]. 中国科学:地球科学, 1999, 29(3):204-213. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199903001.htm
    洪大卫, 王式, 谢锡林,等. 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘, 2000(2):441-456.

    Wu F Y, Jahn B M, Wilde S, et al. Phanerozoic crustal growth: UPb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1):89-113. https://www.researchgate.net/publication/223576713_Phanerozoic_crustal_growth_U-Pb_and_Sr-Nd_isotopic_evidence_from_the_granites_in_northeastern_China

    Jahn B M, Griffin W L, Windley B. Continental growth in the Phanerozoic: Evidence from Central Asia[J]. Tectonophysics, 2000, 328(328):vii-x. https://www.researchgate.net/publication/240379167_Continental_growth_in_the_Phanerozoic_Evidence_from_Central_Asia

    吴福元, 孙德有. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 1999, 15(2):181-189. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.003.htm

    Martin H. Adakitic magmas: modern analogues of Archaeangranitoids[J]. Lithos, 1999, 46(3):411-429. doi: 10.1016/S0024-4937(98)00076-0

    罗毅, 王正邦, 周德安. 额尔古纳超大型火山热液型铀成矿带地质特征及找矿前景[J]. 东华理工大学学报(自然科学版), 1997(1): 1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ701.000.htm
    武广, 孙丰月, 赵财胜,等. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J]. 科学通报, 2005, 50(20):2278-2288. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200520016.htm
    边红业, 吉峰, 表尚虎. 大兴安岭富西里地区赞岐岩-(石英)二长闪长岩LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 世界地质, 2014, 33(4):768-779. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201404004.htm

    Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014

    Gou J, Sun D Y, Ren Y S, et al. Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China: Geochronological, geochemical and Hf isotopic evidence[J]. Journal of Asian Earth Sciences, 2013, 67: 114-137. https://www.researchgate.net/publication/258794425_Petrogenesis_and_geodynamic_setting_of_Neoproterozoic_and_Late_Paleozoic_magmatism_in_the_Manzhouli-Erguna_area_of_Inner_Mongolia_China_Geochronological_geochemical_and_Hf_isotopic_evidence

    张一涵. 内蒙古东北部额尔古纳河群和乌宾敖包组的形成时代与物源:碎屑锆石U-Pb年代学证据[D]. 吉林大学硕士学位论文, 2014.
    李明. 中国东北现代河流碎屑锆石U-Pb年代学和Hf同位素研究及大陆生长与演化[D]. 中国地质大学博士学位论文, 2010.
    陈岳龙, 李大鹏, 刘长征, 等. 大兴安岭的形成与演化历史: 来自河漫滩沉积物地球化学及其碎屑锆石U-Pb年龄, Hf同位素组成的证据[J]. 地质学报, 2014, 88(1): 1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201401001.htm

    Powell C M, Powell C M. Assembly and break-up of Rodinia: introduction to the special volume[J]. Precambrian Research, 2001, 110(1):1-8. https://www.researchgate.net/publication/263311146_Assembly_and_break-up_of_Rodinia_Introduction_to_the_special_volume

    郭进京, 张国伟, 陆松年,等. 中国新元古代大陆拼合与Rodinia超大陆[J]. 高校地质学报, 1999(2):148-156. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX902.002.htm
    周建波, 曾维顺, 曹嘉麟,等. 中国东北地区的构造格局与演化:从500Ma到180Ma[J]. 吉林大学学报(地), 2012, 42(5):1298-1316. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205005.htm

    Hoffman P F. Did the breakout of laurentia turn gondwanaland inside-out?[J]. Science, 1991, 252(5011):1409-12. doi: 10.1126/science.252.5011.1409

图(8)  /  表(2)
计量
  • 文章访问数:  2302
  • HTML全文浏览量:  322
  • PDF下载量:  537
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-08
  • 修回日期:  2016-06-30
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2017-02-28

目录

/

返回文章
返回