• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

内蒙古乌拉盖苏木球状酸性浅成岩的发现及其岩相学特征

汪岩, 钱程, 钟辉, 张立东, 杨雅军, 庞雪娇, 江山, 杨晓平, 宋维民, 那福超

汪岩, 钱程, 钟辉, 张立东, 杨雅军, 庞雪娇, 江山, 杨晓平, 宋维民, 那福超. 2017: 内蒙古乌拉盖苏木球状酸性浅成岩的发现及其岩相学特征. 地质通报, 36(2-3): 321-330.
引用本文: 汪岩, 钱程, 钟辉, 张立东, 杨雅军, 庞雪娇, 江山, 杨晓平, 宋维民, 那福超. 2017: 内蒙古乌拉盖苏木球状酸性浅成岩的发现及其岩相学特征. 地质通报, 36(2-3): 321-330.
WANG Yan, QIAN Cheng, ZHONG Hui, ZHANG Lidong, YANG Yajun, PANG Xuejiao, JIANG Shan, YANG Xiaoping, SONG Weimin, NA Fuchao. 2017: The discovery of orbicular acid hypabyssal rocks in Wulagaisumu area of Inner Mongolia and their petrographic characteristics. Geological Bulletin of China, 36(2-3): 321-330.
Citation: WANG Yan, QIAN Cheng, ZHONG Hui, ZHANG Lidong, YANG Yajun, PANG Xuejiao, JIANG Shan, YANG Xiaoping, SONG Weimin, NA Fuchao. 2017: The discovery of orbicular acid hypabyssal rocks in Wulagaisumu area of Inner Mongolia and their petrographic characteristics. Geological Bulletin of China, 36(2-3): 321-330.

内蒙古乌拉盖苏木球状酸性浅成岩的发现及其岩相学特征

基金项目: 

中国地质调查局项目《大兴安岭成矿带突泉-翁牛特地区基础地质综合研究与片区总结》 编号:DD20160048-01

《大兴安岭区域地质调查片区总结与服务产品开发》 编号:DD20160345-17

《太平洋构造域北段构造格局、演化历史和1∶250 万编图》 编号:DD20160343-08

《古亚洲构造域东段构造格局、演化历史和1∶250万编图》 编号:DD20160343-09

《东北基础地质综合研究与片区总结》 编号:1212011220435

详细信息
    作者简介:

    汪岩(1968-),男,教授级高级工程师,从事区域地质调查与火成岩研究工作。E-mail:wy68413@163.com

    通讯作者:

    钱程(1985-),男,硕士,工程师,从事区域地质与中新生代构造研究。E-mail:qch1985123@163.com

  • 中图分类号: P588.12+1;P586

The discovery of orbicular acid hypabyssal rocks in Wulagaisumu area of Inner Mongolia and their petrographic characteristics

  • 摘要:

    在大兴安岭乌拉盖地区发现酸性浅成球状岩石组合。球状岩石由主岩、球状体和球间基质组成。依据球状体球壳及球核的差异,可分为无壳层球粒、单壳层球状体和多壳层球状体3 种类型。无壳层球粒分布于碱性流纹斑岩和微细粒花岗岩中,直径0.5~2mm,无核,由放射状长英质和铁质纤维及针柱状碱性闪石相间分布构成。单壳层球状体分布于碱性流纹斑岩中,直径0.5~2cm,内部具放射状、扇形结构,由多个球粒相互连接构成,外壳较薄,表现为针柱状碱性闪石沿球状体切向方向环绕。多壳层球状体分布于碱性流纹斑岩中,直径2~8cm,球状体由内、中和外部层构成:内部层具圈层结构,由长英质和暗色矿物隐晶集合体及角闪石组成;中部层由大量叠瓦式、雨滴状气孔杏仁体及其间的长英质隐晶集合体组成;外部层为云朵状、棉絮状、放射状长英质隐晶集合体组成。初步认为本套球状岩石为张性环境下岩浆结晶作用形成,晚期气水热液活动强烈,球状体中矿物结晶顺序由内向外。

    Abstract:

    The orbicular acid hypabyssal rocks outcropped in Ulgai area of Da Hinggan Mountains were discovered for the first time. They are composed of host rock (micro fine-grained graphic granite), orbicular rocks and matrix among orbicular rocks (alkaline rhyolite porphyry and micro fine-grained granite). Based on the differences between orbicular rocks'concentric shells and nuclear bulges, the authors divided the orbicular rocks into three types, i.e., spherules with non-shell layer, orbicular rocks with single shell layer, and orbicular rocks with multiple shell layers. Spherules with non-shell layer and non nuclear, whose diameters are between 0.5mm and 2mm, are distributed in alkaline rhyolite porphyry and micro fine-grained granite and are composed of radial felsic fiber, iron fiber and needle columnar alkali amphibole in alternate distribution. Orbicular rocks with single shell layer, whose diameters are between 0.5cm and 2cm, are distributed in alkaline rhyolite porphyry. With thin single shell layer presented in the form of long and needle columnar alkali amphibole around orbicular rocks'tangential direction, the orbicular rocks, composed of multiple spherules, exhibit radial and sector structure. However, orbicular rocks with multiple shell layers, whose diameters are between 2cm and 8cm, are distributed in alkaline rhyolite porphyry and can be divided into inner, middle and outer layer. The inner layer, composed of felsic and dark mineral cryptocrystalline aggregates and amphibole, has obvious layering structure. The middle layer is composed of a large quantity of stomatal amygdales in imbricate and raindrop forms, with felsic cryptocrystalline aggregates between them. The outer layer is composed of felsic cryptocrystalline aggregates in the cloud-like, cotton wool and radial forms. According to these petrographic characteristics, the authors preliminarily hold that the orbicular acid hypabyssal rocks were formed by magmatic crystallization in an extensional environment, the gas-rich hydrothermal fluid activity was strong at the late stage, and the minerals in orbicular rocks might have crystallized from the inner part to the outer part.

  • 大兴安岭北部额尔古纳地块大地构造位置上处于兴蒙造山带东段,是夹于西伯利亚板块和华北板块之间的众多微陆块之一(图 1).额尔古纳地块以“兴华渡口群”前寒武纪变质岩系为结晶基底[1-3],其时代曾定为古—中元古代[4-5].近年的区域地质调查对原划分的兴华渡口岩群进行了重新厘定,并划分出表壳岩和变质深成侵入岩.通过锆石U-Pb同位素定年,揭示额尔古纳地块东南侧出露的兴华渡口岩群形成于新元古代[6].变质深成侵入岩与兴华渡口岩群共同遭受了变质变形改造,两者共同构成额尔古纳地块和兴安地块的结晶基底[7].本次研究发现,在富西里、玻乌勒山等地区,兴华渡口群呈断(岩)块状,与新元古代侵入岩相伴产出,在局部地区发现兴华渡口群呈捕虏体产于新元古代侵入岩中(图 1).因此,对新元古代侵入岩的研究对探讨大兴安岭北部额尔古纳地块的基底时代和性质,以及本区早期的地质演化具有重要意义.本文对大兴安岭北段玻乌勒山地区的斜长角闪岩-片麻状花岗岩进行了锆石U-Pb定年和岩石地球化学分析,进一步确认了该区新元古代岩浆事件的存在,为该地块早前寒武纪地壳形成演化研究提供了年代学证据.

    图  1  中国东北地区构造简图(a)及大兴安岭玻乌勒山地区地质简图(b)(图a 据参考文献[1],图b 据参考文献1 2 修改)
    1—第四系;2—上侏罗统玛尼吐组;3—早白垩世石英二长岩;4—晚石炭世二长花岗岩;5—新元古代(片麻状)二长花岗岩;6—新元古代斜长角闪岩;7-兴华渡口群捕虏体;8—采样位置;9—角度不整合界线.①—喜桂图-塔源断裂;②—贺根山-黑河断裂;③—索伦-西拉木伦-长春缝合带;④—嘉荫-牡丹江断裂;⑤—伊通-依兰断裂;⑥—敦化-密山断裂
    Figure  1.  Tectonic sketch map of NE China (a) and geological sketch mapof Bowuleshan area, Da Hinggan Mountains(b)

    研究区位于额尔古纳地块的南缘,南边临近兴安地块,出露的地层有兴华渡口群、志留系—奥陶系大乌苏杂岩和中生代火山岩系.岩浆岩有前寒武纪片麻状花岗岩-斜长角闪岩、古生代二长花岗岩和中生代二长花岗岩.片麻状花岗岩和斜长角闪岩体分布于玻乌勒山红旗沟一带,北部被古生代和中生代侵入岩侵入,东、西两侧被中生代火山岩覆盖,岩体北部为斜长角闪岩,南部为片麻状花岗岩,两者接触关系模糊不清.斜长角闪岩体出露面积为4.37km2,片麻状花岗岩体出露面积11.77km2.斜长角闪岩与片麻状花岗岩与兴华渡口群相伴产出,并且三者片麻理方向一致,表明其片麻状构造为后期构造事件所致.

    斜长角闪岩新鲜面呈黑绿色,中-细粒柱状变晶结构,块状构造、片麻状构造.主要矿物组成为斜长石(20%~50%)、角闪石(40%~60%)、辉石(0~10%)、石英(<5%),斜长石为中-拉长石,部分样品为更-中长石,呈半自形-他形板状、粒状,部分钠长石化,少数可见聚片双晶,部分与角闪石相间定向分布.角闪石为普通角闪石,具深绿色-浅黄绿色-浅黄色多色性,具绿帘石化,局部定向分布.个别角闪石及黑云母中嵌有浑圆状辉石残留.辉石为普通辉石,半自形柱状、柱粒状,具有弱的无色-淡黄色多色性.副矿物为锆石、榍石等.

    片麻状花岗岩新鲜面呈灰色、杂灰肉红色,片麻状构造、条带状构造和条纹状构造,片状粒状变晶结构、花岗结构.矿物成分主要由钾长石(10%~30%)、斜长石(20%~60%)、石英(15%~30%)、黑云母(5%~15%)组成.钾长石为正长石,部分为微斜长石,半自形-他形板状、板粒状.斜长石为更-中长石,半自形板状、板粒状,微弱绢云母化且较混浊.石英为他形粒状,以粒状集合体的形式存在.黑云母呈半自形-不规则片状,褐绿色-浅绿色多色性显著,均具不同程度的绿泥石次变,并析出铁质,以片状集合体断续定向分布.副矿物为绿帘石、褐帘石、锆石、榍石、磁铁矿等.

    样品全岩主量、微量元素和Sr-Nd 同位素分析均在河北省区域地质矿产调查研究所完成.其中主量元素采用熔片法X-射线荧光光谱法(XRF)测定,分析误差优于2%~3%;微量和稀土元素用Teflon熔样罐进行熔样,然后采用Finnigan MAT 公司生产的双聚焦高分辨等离子体质谱仪ICP-MS 进行测定,分析误差优于10%.测年样品在河北省区域地质矿产调查研究所进行粉碎,并用浮选和电磁选法进行分选,在双目镜下选出晶形较好的锆石,然后将锆石粘贴在环氧树脂表面,打磨抛光后露出锆石的表面,制成样靶.对测试样靶中的锆石进行透射光、反射光和阴极发光(CL)照相,采用LAMC-ICP-MS 仪器对锆石进行U-Pb 测年分析.

    图  2  大兴安岭玻乌勒山片麻状花岗岩(a)和斜长角闪岩(b)显微照片
    Pl—斜长石;Kfs—钾长石;Q—石英;Hbl—普通角闪石;Aug—普通辉石;Chl—绿泥石;Ep—绿帘石
    Figure  2.  Textures of the Bowuleshan gneissic granite (a) andamphibolite (b) from Da Hinggan Mountains

    锆石U-Pb 分析在天津地质矿产研究所同位素实验室LA- MC- ICP- MS 仪器上完成,利用193nm 激光器对锆石进行剥蚀,采用的激光剥蚀的斑束直径为35μm, 激光能量密度为13~14 J/cm2,频率为8~10Hz, 激光剥蚀物质以氦气为载气送入Neptune, 利用动态变焦扩大色散可以同时接收质量数相差很大的U-Pb 同位素,从而进行锆石UPb同位素原位测定.采用TEMORA 作为外部锆石年龄标准.利用NIST610 玻璃标样作为外标计算锆石样品的Pb、U、Th 含量.样品信号采集时间为60s(其中20s 为空白的测定).对分析数据的离线处理采用软件ICPMSDataCal[8-9]和Isoplot 程序完成,详细的数据处理方法见参考文献[810].

    本次对玻乌勒山片麻状花岗质岩体和斜长角闪岩体的2 件样品进行了锆石U-Pb 定年(表 1).片麻状花岗岩(SPM4TC07)样品采自玻乌勒山红旗沟,地理坐标为北纬51°50.034′、东经124°56.083′.用于分析测试的锆石均呈自形,无色透明,多呈短柱状,少数呈长柱状,长50~300μm, 长宽比2∶1~1∶1,部分可达3∶1,锆石明显发育振荡环带结构(图 3-a),多数分析点Th/U 值大于0.3,表明其为岩浆结晶锆石.有少量变质成因锆石,由于普通铅含量较高,并未测得有效数据,因此分析点主要选择具有明显振荡环带的区域.该样品总共测试了49 个分析点,个别分析点偏离谐和曲线.谐和线上48 个分析点的206Pb/238U 年龄集中在908~927Ma 之间,年龄加权平均值为915±3Ma(MSWD=0.15)(图 4-a),代表岩石的形成年龄.

    表  1  玻乌勒山片麻状花岗岩和斜长角闪岩的LA-ICP-MS 锆石U-Th-Pb 同位素分析结果
    Table  1.  LA-ICP-MS zircon U-Th-Pb data of the Bowuleshangneissic granite and meta-gabbro
    分析点元素含量/10-6Th/U同位素比值年龄/Ma
    206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U207Pb/235U
    PbU测值测值测值测值测值
    SPM4TC07,片麻状花岗岩,206Pb/238U表面年龄加权平均值为915±3Ma,MSWD=0.15;北纬51°50.034′、东经124°56.083′
    110610.7190.15150.00161.4460.0430.06930.0021909990827
    28480.4550.15190.00171.4530.0620.06940.00299121091139
    3261550.6560.15190.00151.4540.020.06940.0009912991113
    412680.6110.15240.00161.4560.030.06930.0014915991319
    5321641.3370.15290.00171.4510.0190.06890.00089171091112
    615950.5210.15240.00171.460.0290.06950.00149151091418
    712770.2590.15290.00231.4580.0350.06920.00169171491422
    815850.8920.15330.00161.4730.0260.06970.00129191092016
    917980.7080.15240.00151.470.030.070.0014915991819
    1011660.660.15470.00181.4880.040.06980.00179271192625
    11351980.9150.1540.00171.490.0170.07020.00079241092611
    1214900.5590.15360.00161.4770.0250.06980.00119211092116
    1315890.6680.1530.00161.4670.0230.06960.0019181091714
    1414860.7880.15170.00151.4630.0250.06990.0012911991516
    15181080.7370.15190.00161.4660.0240.070.00119121091716
    168510.6990.15170.00161.4520.0530.06940.0024910991133
    177480.4070.15190.00161.4540.070.06950.00339111091244
    1810610.6080.1530.00161.4730.0530.06990.0025918992034
    1911660.6090.15120.00151.4550.0550.06980.0026908991235
    20211410.1680.15150.00181.4690.0240.07030.00099101191815
    2112750.5590.15190.00161.4740.0350.07040.00179121092022
    2212830.140.15290.00191.4690.0320.06970.00149171191820
    23161000.4570.15290.00161.4820.0280.07030.00139171092318
    2410650.4590.15190.00161.4750.0580.07040.00279121092036
    25513390.2580.15290.00151.4680.0160.06970.0007917991810
    268470.490.15330.00161.4740.0790.06970.00379201092049
    278470.540.15240.00161.4590.0620.06940.00299151091439
    2815930.5480.15180.00181.470.0250.07020.00119111191816
    2915930.6880.15270.00151.4630.0280.06950.0013916991518
    3011700.5520.15250.00161.4650.030.06970.0014915991619
    3115940.5380.15230.00171.460.0250.06950.00119141091416
    32281990.0270.15170.00161.450.0230.06930.00099101091015
    335320.4160.15260.00181.4530.0650.06910.00319151191141
    348500.6120.15340.00171.4680.0460.06950.00229201091829
    3513830.4560.15280.00151.4710.030.06990.0014917991919
    3615980.4890.15260.00171.4610.0230.06950.00119151091515
    37372320.530.15180.00181.4550.0180.06950.00069111191212
    38191350.0120.15290.00161.480.0240.07020.0019171092315
    SPM4TC07,片麻状花岗岩,206Pb/238U表面年龄加权平均值为915±3Ma,MSWD=0.15;北纬51°50.034′、东经124°56.083′
    395440.010.13290.00141.3320.0640.07270.0034805986041
    40713851.4270.15240.00161.4720.0140.07010.0005914109199
    4112750.4330.15220.00171.4590.0320.06950.00169131091420
    42342200.3640.15250.00191.4680.0190.06980.00069151191712
    43171030.7690.15170.00151.450.0220.06940.001910991014
    44181080.7810.1520.00161.4650.0210.06990.001912991613
    45271680.4640.15230.00251.4730.0270.07020.00089141591917
    468580.0130.15210.00161.5030.0690.07170.00329131093243
    47151000.4170.15260.00161.4640.0220.06960.00099161091614
    4815940.6170.15210.00181.4570.0270.06950.00129131191317
    49935750.5620.15240.00161.4610.0140.06950.000591599159
    HQG,斜长角闪岩,206Pb/238U表面年龄加权平均值为904±4Ma,MSWD=0.54;北纬51°52.936′、东经124°51.364′
    1141030.0150.15010.00161.4340.0260.06920.00129021090317
    2372660.0060.15070.00161.4420.0210.06940.00099051090713
    33180.1980.14910.0031.4230.1860.06920.009589618899117
    4180.1290.15210.00271.4650.2520.06980.013791316916158
    52130.0610.14370.00221.3490.1960.06810.010486613867126
    6131070.0250.13270.00161.2040.0360.06580.0019803980324
    77500.1220.15130.00161.4510.0380.06960.0017908991024
    91100.1110.15150.00271.460.2180.06990.010990916914137
    810700.0850.15020.0021.4390.0450.06950.00189021290628
    104320.0350.14210.00151.3330.0650.06810.0033857986042
    112120.1120.14780.00211.4050.1610.0690.008288912891103
    12322240.0590.15150.00231.460.0330.070.00119091491421
    133140.0510.18230.00293.9470.2490.1570.00981080171623103
    14181310.0130.150.00171.4240.0230.06890.0019011089915
    152120.0680.13750.0021.2780.1420.06740.00768301283693
    16292040.3160.15090.00161.4350.0220.0690.00099061090414
    176450.0520.15160.00191.4610.050.06990.00249101291531
    182180.0540.14140.00181.3290.1010.06820.00528521185865
    192110.0620.15450.00231.5040.1790.07060.008492614932111
    2012870.0410.15030.0021.4270.0330.06890.00149031290021
    21171300.0190.13790.00151.2670.0210.06660.001833983114
    22322280.0040.1510.00181.4350.0220.06890.00099071190414
    23251770.0110.150.00171.4330.0230.06930.0019011090315
    252130.0730.15090.00271.4440.230.06950.011490616908145
    26443200.0630.14630.00151.3730.0190.06810.0009880987713
    27161130.0340.15110.00151.4530.0280.06980.0013907991118
    28141010.010.15140.00161.4580.0290.06980.0013909991318
    292150.0810.15180.0021.4650.1380.070.00669111291687
    302110.1180.15930.00241.570.1670.07150.007795315959102
    HQG,斜长角闪岩,206Pb/238U表面年龄加权平均值为904±4Ma,MSWD=0.54;北纬51°52.936′、东经124°51.364′
    3112870.0070.14880.00151.4180.0360.06920.0017894989723
    323180.110.13810.00181.2790.10.06720.00518341183766
    339660.0130.15210.00171.470.0340.07020.00169121091822
    3412880.0960.14740.00161.3980.0320.06880.00168861088821
    353200.0460.15250.0021.4620.0920.06960.00449151291558
    362120.0770.14790.00211.4030.1620.06880.008288913891103
    375380.0370.15010.00161.4330.050.06930.00249021090332
    382110.1390.15160.00231.4620.1880.070.009291014915118
    393140.0750.20010.00242.2040.1480.07990.0054117614118379
    405330.040.15080.00221.4410.0740.06930.00329051390647
    4110700.0180.14830.00171.420.030.06950.00138911089819
    422100.1670.15070.00231.4510.1850.06990.009390514911116
    下载: 导出CSV 
    | 显示表格
    图  3  玻乌勒山片麻状花岗岩(a)和斜长角闪岩(b)代表性锆石CL 图像
    Figure  3.  Representative CL images for zircons from the Bowuleshangneissic granite (a) and amphibolite (b)
    图  4  玻乌勒山片麻状花岗岩(a)和斜长角闪岩(b)锆石U-Pb 年龄谐和图
    Figure  4.  U-Pb concordia diagrams of zircons from Bowuleshangneissic granite (a) and amphibolites (b)

    斜长角闪岩(HQG)样品采自红旗沟,地理坐标为北纬51°52.936′、东经124°51.364′.矿物组合为角闪石(50%)+斜长石(48%)+辉石(2%).多数锆石具有核边结构,核部可见振荡环带,发育变质增生边,部分锆石为无核边结构的变质锆石.锆石多呈浑圆状,少数呈短柱状,大小为80~130μm(图 3-b).锆石样品总共分析了42 个测点,30 个分析点选择在核部或具有明显振荡环带的区域,12 个分析点选择在边部变质增生边及无核边结构的变质锆石上,多数锆石的Th/U 值小于0.1,部分具有较高的Th/U 值(达0.3).除个别测点偏离谐和线外,绝大多数测点落在谐和线上及其附近,206Pb/238U 年龄主要集中在889~915Ma 之间,核部29 个分析点的206Pb/238U 年龄加权平均值为904 ± 4Ma(MSWD=0.54)(图 4-b),代表岩石的形成年龄,1 个测点207Pb/235U 年龄为1183±79Ma, 为捕获的老锆石;增生边和变质锆石年龄主要在803~886Ma 之间,可能代表了后期的多次变质事件,同时其Th/U 值较低.

    斜长角闪岩SiO2 含量变化范围较小(45.22%~49.16%),具富Mg(MgO=6.34% ~10.00%)、贫碱(K2O+Na2O=2.15%~3.40%)和高钛(TiO2=0.75%~1.57%)的特征,为亚碱性系列(图 5);σ=1.52~2.68,平均值为1.91,为钙碱性系列;Mg#为50.1~63.8,固结指数SI 为30.4~43.8,接近原始玄武岩浆(约40),表明其分离结晶程度较低.具有较高的Na2O/K2O值(2 个样品高达5.3、5.5,另外2 个样品为1.2、1.5),显示钠质钙碱性岩浆岩的特征.

    图  5  玻乌勒山片麻状花岗岩与斜长角闪岩TAS 图[11](a)和SiO2-K2O 图[12](b)
    1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗闪长岩;6—花岗岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩;13—副长石辉长岩;14—副长石二长闪长岩;15—副长石二长正长岩;16—副长正长岩;17—副长深成岩;18—霓方钠岩/磷霞岩/粗白榴岩
    Figure  5.  Diagrams of TAS (a) and SiO2-K2O(b) from theBowuleshan gneissic granite and amphibolite

    酸性端元片麻状花岗岩SiO2 含量为61.85%~67.63% ,全碱含量变化较大(K2O + Na2O=4.21% ~9.29%),在TAS 图上投入花岗岩-石英二长岩和花岗闪长岩区域(图 5-a).由于岩石有蚀变,岩石定名以镜下实际矿物含量为准,其矿物含量相当于二长花岗岩.K2O 含量变化较大(0.46%~4.73%).具有低Mg(MgO=1.40%~1.88%)、低Ti(TiO2=0.62%~0.72%)的特征,σ=0.72~4.58,平均为2.33,铝饱和指数A/CNK=0.89~1.01,属于偏铝质钙碱性系列;Mg#值为36.9~47.9.

    斜长角闪岩Ni、Cr、Co含量较高(Ni=32.3×10-6~114×10-6,Cr=112×10-6~442×10-6,Co=37.3×10-6~51.8×10-6),稀土元素总量低(ΣREE=37.36×10-6~85.75×10-6).在球粒陨石标准化稀土元素配分图上,显示出较平坦的配分模式,轻、重稀土元素分异较弱(图 6-a),(La/Yb)N=0.90~1.40,平均值为1.15,重稀土元素(HREE)分异程度轻微,有轻微的正Eu异常(δEu=1.14~1.29).在原始地幔标准化微量元素蛛网图上,除大离子亲石元素Sr、K、Rb、Ba和Pb明显富集外,其余元素含量类似于或略低于N-MORB(正常型洋中脊玄武岩),且与N-MORB 曲线平行(图 6-b),说明斜长角闪岩来源于类似N-MORB的亏损地幔源区.不同程度亏损高场强元素Th、Nb、Ti、P.斜长角闪岩中2个样品为Ti轻微负异常,2个样品为轻微正异常,可能与其含榍石有关.

    图  6  玻乌勒山斜长角闪岩-片麻状花岗岩球粒陨石标准化稀土元素曲线(a、c)及原始地幔标准化微量元素蛛网图(b、d)(球粒陨石标准化值、原始地幔标准化值、OIB 及N-MORB 据参考文献[13])
    Figure  6.  Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized traceelement spider diagram (b, d) of the Bowuleshan amphibolite and gneissic granite

    大乌苏片麻状花岗岩具有较低的稀土元素总量(ΣREE=142.23×10-6~155.82×10-6),轻、重稀土元素比值(LREE/HREE)主要为5.02~5.75(样品Pm4TC07 为1.41),轻稀土元素相对于重稀土元素富集,有1 个样品(PM4TC07)重稀土元素含量明显高于其他样品,与较多褐帘石、绿帘石等副矿物有关,推测为后期蚀变过程中外来物质的交换造成的.稀土元素配分曲线显示轻稀土元素明显右倾(图 6-c),具有较弱的负Eu 异常(δEu=0.77~0.80)、轻、重稀土元素分馏特征较明显(LaN/YbN =2.57~13.58,平均值为8.17).以明显亏损P、Ti、Nb、Ta, 富集Rb、Ba、Pb、K 为特征(图 6-d).

    斜长角闪岩在原岩恢复图解(图 7-a)中均落入火成岩区域,说明原岩属正变质岩.在TAS图(图 5-a)上为亚碱性辉长岩/玄武岩,在Nb/Y-SiO2图解(图 7-c)中仍为亚碱性玄武岩,原岩应为玄武岩.在判别热液蚀变程度的AI-CCPI 图解中(图 7-d),左下方为区域成岩蚀变,右上方为热液蚀变,中间方框为弱蚀变区域,样品点基本落入中间方框弱热液蚀变区域及上方,其REE不活跃,高场强元素Th、Nb、Ta、Zr等一般不活动[18],说明斜长角闪岩的以上元素组分特征可反映原岩成分.

    图  7  玻乌勒山斜长角闪岩A-K 相关图解(a)[14]、Si-((al+fm)-(c+alk))图解(b)[15]、Nb/Y-SiO2图解(c)[16]和AI-CCPI 图解(d)[17]
    (K=100K2O/(K2O+Na2O),A=100Al2O3/( Al2O3+CaO+K2O+Na2O);al、fm、c、alk 为尼格里参数,al=100%×Al2O3/Σ、fm=100%×(FeO2+Fe2O3+MgO+MnO)/Σ、c=100%×CaO/Σ、alk=100%×(Na2O+K2O)/Σ、Σ=al+fm+c+alk; 绿泥石-碳酸盐-黄铁矿指数CCPI=100(MgO+FeO)/(MgO+FeO+Na2O+K2O),Ishikawa 变化指数AI=100(K2O+MgO)/(K2O +MgO+ Na2O+CaO))
    Figure  7.  The diagram of A-K (a), Si-((al+fm)-(c+alk))(b),Nb/Y-SiO2 (c)and AI-CCPI (d) of amphibolite in Bowuleshan

    本区斜长角闪岩贫Si、富Mg(6.34%~10.00%),Cr 含量较低(112×10-6~442×10-6),暗示原始岩浆受到地壳混染比例较小,可能由分离结晶作用引起.Cr 含量较低,指示原始岩浆过程中发生了尖晶石、斜方辉石、单斜辉石、石榴子石等矿物相的分离结晶.Mg#值较高(54.1~67.5),反映原始岩浆具幔源原生玄武岩浆特征,在上升过程中经历的结晶分异程度较低.固结指数SI 为30.4~43.8,表明其分离结晶的程度较低.

    本区斜长角闪岩明显亏损Th、Nb、Zr, 相对富集U、Ta、Hf、Nb 与Ta, 具很低的Zr/Hf、Nb/Ta 和Th/U 值.明显亏损Nb, 但没有亏损Ta 和Ti, 说明这些元素的亏损虽然在岩石形成时受俯冲流体改造影响,但更可能与源区性质有关.Zr-Hf、Nb-Ta等元素组具有同样的价态(如Nb 和Ta 为5+,Zr 和Hf 为4 +)和几乎相近的离子半径(如,RNb/RTa=1.000;在配位数为6、7、8、和12 时,RZr/RHf=1.006~1.026)[19],因而具有相同的地球化学性质.一般认为,在岩浆部分熔融及结晶过程中不发生分异,其比值接近于球粒陨石值的比值(约36.30 和17.57).但是,近年的研究表明,这2 个元素组比值在一些岩石中确实有明显变化.Niu 等[20-21]在东太平洋脊一侧的MORB(洋中脊玄武岩)型海山玄武岩中发现其比值有明显的变化,如Zr/Hf=25~50 和Nb/Ta=9~18.熔融形成MORB 熔融残留的深海橄榄岩,其Zr/Hf(2.5~335)和Nb/Ta(1~170)值具有巨大的变化[22].由于原子质量的差异,Zr-Hf 和Nb-Ta(包括Th-U 等)的分异现象被解释为质量相关的分异(mass-dependent fractionation)[2123].而关于深海橄榄岩的成因,虽然存在较大的争议,但主流观点认为其与MORB 为地幔部分熔融的2 个端元,代表了对流地幔部分熔融后的残留体[2224].玻乌勒山斜长角闪岩极低的Zr/Hf、Nb/Ta 和Th/U 值记录了其源区具有类似MORB 环境的特征,加之其球粒陨石标准化配分图上平坦的配分模式和类似于N-MORB 的微量元素特征,表明斜长角闪岩原岩岩浆来源于亏损地幔.

    斜长角闪岩样品明显富集大离子亲石元素(LI-LE)Sr、K、Rb、Ba 和Pb, 显示出消减带岩浆的特征.俯冲洋壳脱水,产生富集LILEs 的流体进入上覆的地幔楔,发生交代作用,使地幔楔岩石部分熔融,形成消减带岩浆岩[25-26].另外,从斜长角闪岩的稀土元素配分模式图可见,负Ce 异常较弱-无异常,说明Ce 含量在岩体中受变质作用影响较小.俯冲板片来源的流体的Ce/Pb值可以低于0.1[27],本文Ce/Pb值为0.12~4.7,远低于N-MORB的Ce/Pb值(25)[13],证明有俯冲板片来源的流体加入到软流圈地幔中.可以认为,斜长角闪岩微量元素富集的特征主要与俯冲板片来源的流体/熔体交代作用有关.此外,不相容元素La-Ta-Th-Sm 等在地幔物质部分熔融过程中只有微小变化,可用来指示源区特征[28].研究表明,来自深部地幔物质的岩浆具有低的La/Ta 值(一般为8~15),而受到岩石圈地幔混染后该比值将迅速增加(一般大于25),但La/Sm 值变化不大,如果混染了地壳物质,则La/Sm 值将迅速增高(一般大于5)[29].玻乌勒山斜长角闪岩具有低La/Ta 值(4.43~11.70)、Th/Ta 值(0.29~0.81)(原始地幔Th/Ta=2.3,大陆地壳[30]Th/Ta=10)和低La/Sm 值(0.65~1.56)的特征,表明混染物不可能是上地壳物质,而是与俯冲有关的物质.斜长角闪岩在Zr-Zr/Y 图解中主要位于岛弧玄武岩(IAB)区(图 8-a),在Ta/Hf-Th/Hf 图解中则为N-MORB 到E-MORB区(图 8-b),斜长角闪岩的微量元素特征部分保留了亏损地幔特征,同时也记录了消减带岩浆作用的信息,反映了被俯冲改造的岩石圈地幔的地球化学特征.

    表  2  玻乌勒山片麻状花岗岩与斜长角闪岩主量、微量、稀土元素和Sr-Nd 同位素分析结果
    Table  2.  Major, trace elements, REE and Sr-Nd isotopic compositionsfor Bowuleshan gneissic granite and amphibolite
    样号
    岩性
    PM5TC
    3-1
    PM4TC
    07
    PM5TC
    04
    PM25TC9HQG1HQG3HQG4
    片麻状花岗岩斜长角闪岩
    SiO261.8567.6367.347.8549.1645.2246.02
    Al2O316.8613.5915.4213.815.6315.0814.68
    TiO20.720.680.621.570.751.050.77
    Fe2O33.12.671.564.124.644.414.52
    FeO1.463.091.849.136.446.395.58
    CaO2.854.771.9410.9910.3911.9813.54
    MgO1.41.881.337.226.34109.56
    K2O4.730.463.220.440.521.090.85
    Na2O4.553.764.932.332.881.351.3
    MnO0.1010.1190.080.2160.240.1610.165
    P2O50.2940.1620.1790.1410.0650.0490.033
    LOI1.831.111.352.032.83.022.78
    总和99.7699.9199.7999.8499.8699.8199.8
    FeOT4.255.493.2512.8410.6210.369.65
    A/CNK0.950.891.020.570.650.60.53
    Mg#36.937.842.350.151.563.263.8
    SI9.1515.810.431.130.44343.8
    Rb/Sr0.220.070.130.030.030.170.09
    σ4.580.722.741.581.882.681.52
    Y17.1534.9318.0327.814.831.219.7
    La41.0113.0137.355.572.111.681.53
    Ce85.7742.2575.2914.84.553.622.95
    Pr10.334.159.072.380.730.810.58
    Nd37.4717.8431.5512.13.775.453.8
    Sm6.294.825.23.571.422.591.62
    Eu1.441.241.161.380.651.080.73
    Gd4.84.874.083.791.663.322.11
    Tb0.71.040.660.790.390.80.49
    Dy3.626.553.425.432.785.893.67
    Ho0.641.370.651.10.571.230.77
    Er1.984.42.052.941.613.472.16
    Tm0.310.730.360.50.290.580.37
    Yb1.964.492.253.21.83.592.26
    Lu0.520.540.290.430.250.520.31
    Li16.667.9110.867.9123.338.824.4
    Be2.952.362.140.520.570.350.48
    Sc8.0620.215.2844.245.447.633.9
    V61.664.553.9335338313221
    Cr8.620.38.8337112353442
    Co9.215.86.947.341.651.837.3
    Ni4.37.97.254.732.3121114
    Ga20.2717.9420.3818.222.519.315.9
    Rb123.315.946.87.2513.646.929.6
    Sr555.8234.9357.2220518273324
    Zr311.3230.3278.710230.632.327.7
    Nb15.078.2515.064.951.030.510.66
    Mo0.170.20.260.40.240.370.3
    Ba893.8150.6810.596.5176300341
    Hf7.658.914.945.991.652.241.74
    Ta0.940.551.080.480.340.380.17
    Pb19.8623.13.1210.69.423.2
    Th8.935.1114.520.380.170.110.13
    U1.60.72.010.150.0870.0860.1
    Cl44.79363.857.93779.951.9
    F530290408412360564480
    ΣREE214142.24191.4285.7537.3665.8343.05
    LREE/HREE5.751.415.020.870.550.30.35
    (La/Yb)N8.382.5713.581.40.90.350.52
    δEu0.80.780.771.141.291.131.2
    87Sr/86Sr0.704774
    87Sr/86Sr(i)0.703387
    143Nd/144Nd0.512657
    εNd(915Ma)3.52
    TDM2(Ga)1.28
    注:A/CNK=(Al2O3)/(CaO+K2O+Na2O);Mg#=100×Mg2+/(Mg2++Fe2++Fe3+);δEu=EuN/[(GdN+SmN)/2];“N”表示相对于球粒陨石标准化值;固结指数(SI)=MgO×100/(MgO+FeO+F2O3+Na2O+K2O);主量元素含量单位为%, 微量和稀土元素含量为10-6
    下载: 导出CSV 
    | 显示表格
    图  8  玻乌勒山斜长角闪岩微量元素成分构造判别图
    a—Zr-Zr/Y 图[31];b—Ta/Hf-Th/Hf 图[32].WPB—板内玄武岩;IAB—岛弧玄武岩;MORB—洋中脊玄武岩;Ⅰ—板块发散边缘N-MORB 区;Ⅱ—板块汇聚边缘(Ⅱ1—大洋岛弧玄武岩区;Ⅱ2—陆缘岛弧及陆缘火山弧玄武岩区);Ⅲ—大洋板内洋岛、海山玄武岩区及T-MORB(过渡型地幔)、E-MORB 区;Ⅳ—大陆板内(Ⅳ1—陆内裂谷及陆缘裂谷拉斑玄武岩区;Ⅳ2—陆内裂谷碱性玄武岩区;Ⅳ3—大陆拉张带或初始裂谷玄武岩区);Ⅴ—地幔热柱玄武岩区
    Figure  8.  Trace element discrimination diagram for the tectonic setting of theamphibolite from the Bowuleshan intrusive rocks

    笔者认为,斜长角闪岩的成因:在消减带板块边缘背景下,洋壳及上覆沉积物在岛弧环境下俯冲脱水,流体上升交代上覆亏损的地幔楔,引起亏损地幔部分熔融,形成稀土元素平坦型甚或亏损型的玄武质岩浆[33],通过岛弧或弧后盆地喷出,形成既有洋中脊性质也有岛弧性质的玄武质岩石.新元古代期间,额尔古纳地块之下存在亏损地幔,至少在约904Ma 之前由扩张开始转化为俯冲消减.

    Taylor 等[2834]认为,地球演化过程中K 和Rb 不断向上迁移进入硅铝层,所以上地幔越来越亏损K 和Rb, Sr 主要富集在斜长石中代替Ca, 花岗岩的高Rb/Sr 值高一方面说明岩浆演化程度很高,另一方面说明源岩可能主要来自地壳.本区片麻状花岗岩Rb/Sr 值为0.1~0.22,平均值为0.11,低于整个陆壳的平均值(0.24)[35]和中国东部上地壳平均值(0.31)[36],可能说明本区片麻状花岗岩源区演化程度较低.然而,稀土元素总量较低(142.23×10-6~214.00×10-6)、(La/Yb)N 平均值为8.17,富集轻稀土元素和较弱的负Eu 异常(δEu=0.77~0.80).岩石学和地球化学特征表明,片麻状花岗岩为钙碱性I型花岗岩,其源区物质应该是先期形成的火成岩.微量元素显示为富集大离子亲石元素Rb、Ba、K 和Pb, 明显亏损高场强元素P、Ti、Nb、Ta 的特征,表明形成于俯冲环境.片麻状花岗岩以t=915Ma 计算,其初始锶比值低87Sr/86Sr(i)=0.703387,具有幔源型花岗岩的特征,应为壳幔混源型;εNd(t)为正值(3.52),εNd(t)>0 的花岗岩不一定是大陆地壳增生的标志,也可能指示花岗岩浆源自年轻的初生地壳.大兴安岭的花岗岩类,包括中亚-兴蒙造山带的花岗岩类普遍具有较高的εNd(t)值[37-38],其成因主要有以下模型:高度分异的幔源岩浆或新生的基性地壳与古老地壳物质混合[39];新元古代初生地壳深熔形成[40].一般认为,由地幔部分熔融直接形成中酸性岩浆的可能性极小[41].大乌苏片麻状花岗岩的源区物质应该主要是年轻地壳物质,受幔源岩浆底侵而熔融形成.结合其两阶段Nd 模式年龄(TDM2=1.28Ga),推测其源区物质主要为中—新元古代期间从亏损地幔增生的地壳物质.

    目前关于东北大兴安岭地区显生宙的地质演化问题研究程度较高,但对新元古代等岩浆事件及区域演化的研究相对缺乏.本次研究的斜长角闪岩-片麻状花岗岩岩体位于玻乌勒山地区(图 1),1∶20 万塔源幅区调项目将其划分为华力西期花岗岩质侵入岩,1∶25 万兴隆幅区调项目将其划分为二叠世侵入岩,未对此岩体进行年代学及岩石地球化学研究.本次研究发现,大乌苏地区岩体由片麻状花岗岩和斜长角闪岩组成,其中片麻状花岗岩形成年龄为915±3Ma, 斜长角闪岩形成年龄为904±4Ma, 时代为新元古代而不是前人认为的晚古生代,两者侵入时间接近,是新元古代晋宁期岩浆活动的产物.区域上,额尔古纳地块分布的新元古代岩浆活动也有不少纪录,如前人获得三道梁花岗岩的Sm-Nd 等时年龄为997.3Ma[42];1∶20 万区域地质调查报告中二十五站花岗岩体的K-Ar 稀释法年龄为920.95±32.7Ma; 武广等[43]对阿木尔林业局绿林林场的细粒花岗闪长岩和二云母石英片岩进行的SHRIMP 锆石U- Pb 定年,分别获得了800~900Ma 的残留锆石年龄和892Ma 的变质年龄,认为研究区确实存在晋宁期的岩浆热事件;富西里地区获得815.4±6.2Ma 锆石U-Pb 年龄的石英二长闪长岩[44];Wu 等[39]获得多组新元古代花岗质岩石的锆石U-Pb 年龄,如满归的碱长花岗岩(927±13Ma)、齐乾的二长花岗岩(819±6Ma)、碧水的碱长花岗岩(795±13Ma)和花岗闪长岩(792±5Ma)[45];满洲里—额尔古纳地区的黑云二长花岗岩(894 ± 13Ma 和880±10Ma),地球化学特征为富集大离子亲石元素和轻稀土元素,亏损高场强元素和重稀土元素,具有正的εHf(t)值(4.3~8.3)和接近于岩石形成年龄的两阶段模式年龄(TDM2=1.2~1.5Ga)[46],与本区片麻状花岗岩一样可能来源于中—新元古代地幔来源的新生地壳物质.

    同时代的碎屑锆石在额尔古纳地块新元古代及之后的地层中也有少量记录,如内蒙古东北部的额尔古纳河群和乌宾敖包组岩浆成因的碎屑锆石出现了~738Ma、~760Ma、~792Ma、~837Ma、~890Ma、~964Ma 和~1050Ma 的峰值年龄[47];李明[48]对东北现代河流碎屑锆石U-Pb 年代学和Hf 同位素研究认为,中—新元古代岩浆锆石在现今中国东北地区内部各地表现为零星出现,亏损地幔模式年龄显示该时期是地壳形成的主要阶段,中新元古代—早古生代末是从亏损地幔增生到大兴安岭区域地壳事件的最强烈阶段[49].

    斜长角闪岩具有亏损地幔性质,同时也记录了消减带岩浆作用的信息,为活动大陆边缘背景下,经过岛弧岩浆抽提的亏损地幔源区发生重新熔融形成.在额尔古纳地块,该时期的岩浆岩和晚期地层的碎屑锆石年龄峰值基本可以对应,时间上对应于中国新元古代大陆拼合和Rodinia 超级大陆裂解-碰撞事件[50-51].空间关系上,额尔古纳等中国东北各地块与西伯利亚克拉通具有构造亲缘性,曾是西伯利亚南缘Sayang-Baikal 造山带的组成部分[52],西伯利亚与波罗的、非洲和南美地块群位于劳伦大陆[53],劳伦大陆则是Rodinia 超级大陆的中心.同时,与本区相伴出露的兴华渡口群(韩家园子和新林地区)被识别为一套活动大陆边缘的火山-沉积建造,构造环境并非稳定的盖层发育阶段[5];本区新元古代早期(915~904Ma)的岩浆事件处于俯冲消减带的活动大陆边缘构造环境,笔者认为其是Rodinia 超大陆聚合事件的响应,后期变质事件(803~886Ma)可能与Rodinia 超大陆裂解有关.

    (1) 在大兴安岭北段玻乌勒山地区获得了新元古代岩浆活动纪录的年龄,斜长角闪岩为904±4Ma, 片麻状花岗岩为915±3Ma.

    (2) 斜长角闪岩具有亏损地幔性质,同时也记录了消减带岩浆作用的信息,为活动大陆边缘背景下经过岛弧岩浆抽提的亏损地幔源区发生重新熔融形成;片麻状花岗岩则为新生地壳物质的熔融形成.

    (3) 结合区域上的岩浆活动纪录和后期地层碎屑锆石的特征,认为新元古代期间额尔古纳地块南缘为活动大陆边缘背景,915~904Ma 的岩浆作用是Rodinia 超大陆聚合事件的响应,后期变质事件(803~886Ma)可能与Rodinia 超大陆裂解有关.

    致谢: 成文过程中得到中国地质调查局发展研究中心李仰春教授级高工的精心指导和帮助,审稿专家提出宝贵意见, 在此一并表示感谢.
  • 图  1   乌拉盖苏木地区地质略图及球状岩出露位置

    1—下奥陶统铜山组;2—上志留统卧都河组;3—上石炭统-下二叠统宝力高庙组;4—中侏罗统塔木兰沟组;5—上侏罗统满克头鄂博组;6—上侏罗统玛尼吐组;7—上新统百岔河组;8—上新统五岔沟组;9—上更新统;10—全新统;11—中奥陶世石英闪长岩;12—下二叠统石英闪长岩;13—晚侏罗世黑云母正长花岗岩;14—晚侏罗世少斑状正长岩;15—晚侏罗世花岗斑岩;16—地质界线;17—推测断层;18—球状岩产出位置

    Figure  1.   Geological sketch map of Wulagaisumu area, showing the position of the exposed orbicular rocks

    图版Ⅰ   a.灰紫色单壳层球粒流纹斑岩;b.肉红色单壳层球粒流纹斑岩;c.浅灰绿色单壳层球状流纹斑岩;d.深灰色多壳层球状流纹斑岩;e.灰绿色多壳层球状流纹斑岩;f.多壳层球状流纹斑岩中扁豆状球状体;g.单壳层球状流纹斑岩过渡为球粒流纹斑岩;h.肉红色无明显壳层球粒文像花岗岩;i.灰紫色无明显壳层球粒钠闪石花岗岩;j.灰紫色、灰白色球粒流纹岩(球粒稀疏偏小)

    图版Ⅱ   a.无壳层或隐约壳层球粒及球粒间基质(+);b.基质中的显微嵌晶结构(+);c:无壳层球粒聚集特征(+);d.被微裂隙分割成雁行式暗色的矿物(-);e.球内多球粒相连特征及隐晶质球核(-);f.球体的单、薄壳层及球间基质特征(+)

    图  2   球状微细粒花岗岩显微镜下特征

    a.球粒微细粒文像花岗岩(+);b.球粒微细粒钠闪石花岗岩(+)

    Figure  2.   Micro-section photos of spherule micro fine-grained granite

    图  3   微细粒文象花岗岩显微镜下特征

    Figure  3.   Micro-section photos of microfine-grained graphic granite

    图版Ⅲ   a.球状体内部层呈明显圈层构造及3 个亚层特征;b.内部层亚1 层气孔中充填的粒状石英及针柱状、放射状角闪石; c.球状体中部层叠瓦式、雨滴状等气孔杏仁体;d.球状体外部层云朵状长英质隐晶集合体上点缀放射状杏仁体;e.球状体外部层长英质成分不均匀分布呈现的圈层;f.球状体外部层中碱性流纹斑岩捕虏体

    表  1   部分国内外典型球状岩成因对比

    Table  1   Genetic comparison between typical orbicular rocks in China and abroad

    岩体岩性结构成因
    乌拉盖苏木球状岩球状流纹斑岩、球状微细粒
    (文象)花岗岩
    单壳层、多壳层、无壳层岩浆结晶作用,交代作用,原生结晶岩塑性固结,岩
    浆运移过程中快速结晶
    黄陵球状花岗闪长岩[7]球状花岗闪长岩单壳层、多壳层、无壳层岩浆结晶作用,交代作用
    石角-璜山复式岩体[3]球状超镁铁质岩多壳层中深地壳环境岩体接触带结晶作用
    滦平球状闪长岩[4]球状闪长岩单壳层、多壳层岩浆结晶作用,交代作用,岩浆同化作用+结晶作用
    Baskil岛弧岩体[8]球状辉长岩多壳层原生结晶岩塑性固结,岩浆运移过程中快速结晶
    Loreto岩体[15]球状辉长岩无壳层绝热过冷的环境中结晶
    Huaco花岗岩[9]球状花岗岩多壳层过冷的熔体中异相成核结晶
    Ploumanach复式岩体[16]球状花岗岩无壳层绝热空间存在温度接近液相线岩浆
    下载: 导出CSV
  • Leveson D J. Orbicular rocks: A review[J]. Geological Soeicely of Amercica Bulletin. 1966, 77(4): 409-426. doi: 10.1130/0016-7606(1966)77[409:ORAR]2.0.CO;2

    杨忠芳,徐景奎.地质珍品——球状岩[J].地质地球化学,1989,2: 30-32. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198902006.htm
    周新民,朱云鹤,陈建国.超镁铁球状岩的发现及其成因研究[J].科学通报,1990,35(8):604-606. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199008012.htm
    马芳,穆志国,刘玉琳.河北滦平球状闪长岩年代学及其地质意义[J].地质论评,2004,50(4):360-364. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200404003.htm
    马芳,穆治国,刘玉琳.滦平球状闪长岩岩相学特征和球状构造成因探讨[J].岩石学报2004,20(6):1424-1432. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406011.htm
    马芳,穆志国,刘玉琳,等.河北滦平球状闪长岩岩石地球化学特征与源区性质探讨[J].地球化学,2004,34(6):593-601. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200406006.htm
    魏运许,赵小明,杨金香,等.湖北黄陵球状花岗闪长岩的发现及其岩相学特征[J].地质通报,2015,34(8):1541-1549. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20150813&journal_id=gbc

    Yazgan E, Mason R. Orbicular gabbro from near Baskil, southeastem TurKey[J]. Mimeralogica Magazine, 1988, 52(365): 161-173. doi: 10.1180/minmag

    Grosse P, Toselli A J, Rossi J N, et al. Petrology and geochemistry of the orbicular granitoid of Sierra de Velasco (NW Argentina) and implications for the origin of orbicular rocks[J]. Geological Magzine, 2010, 147(3): 451-468. doi: 10.1017/S0016756809990707

    Leveson D J. Orbicular rocks of the Lonesome Mountain Area, Beartooth Mountains, Montana and Wyoming[J]. Geological Soriety of Americ Bulletio, 1963, 74(8): 1015-1040. doi: 10.1130/0016-7606(1963)74[1015:OROTLM]2.0.CO;2

    张招崇,李兆鼐.耗散结构理论及其在火成岩岩石学中的意义[J]. 岩石矿物学杂志,1991,10(3):221-227. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199103004.htm
    吴福元,林强.耗散结构在地质学中的应用及其评述[J].长春地质学院学报,1992,22(1):31-38. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ199201005.htm
    肖文丁,吴金平,李才伟.岩石矿物学的自组织现象[J].地球科学(中国地质大学学报),1996,21(6):567-569. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX606.000.htm
    王孝磊,舒徐洁,邢光福,等.浙江诸暨地区石角-璜山侵入岩LAICP-MS锆石U-Pb年龄——对超镁铁质球状成因的启示[J].地质通报,2012,31(1):75-81. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20120108&journal_id=gbc

    Piboule M, Soden L, Amosse J, et al. Role of diabatic underrooling in the genesis of orbicular gabbros from CorsicaêC ê ∥ Comptes Rendus De 1 Academie des Sciences, Serie Ⅱ,1989, 309(7): 713-718.

    De Citre S, Gasquet D, Mariganc C. Genesis of orbicular granitic rocks from the Ploumanac h Plutonic Complex (Brittany, France): Petrographical, mineralogical and geochemical constraints[J]. European Journal of Mineralogy, 2002, 14(4): 715-731. doi: 10.1127/0935-1221/2002/0014-0715

图(6)  /  表(1)
计量
  • 文章访问数:  2280
  • HTML全文浏览量:  266
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-10
  • 修回日期:  2017-01-19
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2017-02-28

目录

/

返回文章
返回