• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

碱性岩相关铜-金(钼) 矿床的研究进展

王丰翔, 裴荣富, 江思宏, 邱慧远, 刘翼飞, 赵元艺

王丰翔, 裴荣富, 江思宏, 邱慧远, 刘翼飞, 赵元艺. 2017: 碱性岩相关铜-金(钼) 矿床的研究进展. 地质通报, 36(1): 140-153.
引用本文: 王丰翔, 裴荣富, 江思宏, 邱慧远, 刘翼飞, 赵元艺. 2017: 碱性岩相关铜-金(钼) 矿床的研究进展. 地质通报, 36(1): 140-153.
WANG Fengxiang, PEI Rongfu, JIANG Sihong, QIU Huiyuan, LIU Yifei, ZHAO Yuanyi. 2017: The progress in the study of Cu-Au (Mo) deposits related to alkaline rocks. Geological Bulletin of China, 36(1): 140-153.
Citation: WANG Fengxiang, PEI Rongfu, JIANG Sihong, QIU Huiyuan, LIU Yifei, ZHAO Yuanyi. 2017: The progress in the study of Cu-Au (Mo) deposits related to alkaline rocks. Geological Bulletin of China, 36(1): 140-153.

碱性岩相关铜-金(钼) 矿床的研究进展

基金项目: 

中国地质调查局项目《“一带一路”资源潜力综合分析与成果应用》 12120115065901

《中蒙边境大型-特大型铜-金、铀和稀有金属矿集区对比研究》 12120115066201

详细信息
    作者简介:

    王丰翔(1984-), 男, 在读博士生, 矿产普查与勘探专业, 从事大矿-超大矿研究。E-mail:wfx0316@163.com

    通讯作者:

    赵元艺(1966-), 男, 博士, 研究员, 从事矿床学和地球化学研究。E-mail:yuanyizhao2@sina.com

  • 中图分类号: P618.41;P618.51

The progress in the study of Cu-Au (Mo) deposits related to alkaline rocks

  • 摘要:

    由于超过20%的大型-超大型铜-金(钼)矿床与碱性岩浆有关,因此,该类矿床引起矿床学家的广泛关注。碱性岩有关的铜-金矿床的成矿岩体、物化条件及围岩种类各具特色,成矿成因类型多样,主要的成因类型为斑岩型铜-金(钼)、浅成低温热液脉型金-铜(钼)。总体上,该类矿床的矿化和蚀变具有一定的特征:该类矿床多产出在伸展环境下、均富碲化物矿化、有大量的钾质交代作用、含有氟矿物质和钒云母等,成矿蚀变亦有一定的规律。长英质岩石中经常发生钾长石蚀变,而绢云母、碳酸盐和钾长石的混合蚀变常出现在中基性侵入岩中,水热合成石英和酸性蚀变十分罕见。这种特征矿化可能与碱性岩浆流体演化有关,这种流体富含CO2,且在高氧逸度、低硫逸度条件下释放。在伸展背景下的碱性-钙碱性省寻找此类矿床具有巨大的勘查潜力,尤其在碱性岩体中心及其外围可能形成勘探的靶区。在中国与碱性岩有关的金矿床亦有广阔的找矿前景, 在借鉴国外寻找此类矿床经验的同时,仍需加强对与矿化作用有关的岩浆体活动的研究。

    Abstract:

    Cu-Au (Mo) deposits related to alkaline rocks have attracted more and more attention throughout the world, because more than 20% of the world-class Au-Cu (Mo) deposits are associated with shoshonitic and alkaline rocks. Although they include most of the usual types of Au-Cu (Mo) deposits such as porphyry type and gold-rich epithermal deposits, they share the same characteristics of mineralization and alteration on the whole. As a group, these deposits are characterized by Te-rich mineralization, abundant K metasomatism and minerals such as fluorite and roscoelite. Most of these unique mineralization characteristics may be attributed to the evolution of composition of orerelated alkaline magmas, and the fluids were under the condition of CO2-richness, relative oxidation and low sulfidation. Most Cu-Au (Mo) deposits developed in alkaline provinces in a stretching environment also constitute exploration targets in and around alkaline igneous centers. The perspectives of Cu-Au (Mo) deposits related to alkaline rocks in China are tremendous. To better find new deposits of this type, researchers should pay more attention to petrogenesis and their relation to Cu-Au mineralization.

  • 西藏神公地区位于冈底斯构造带南部,分布有大量的钙碱性系列火成岩,形成于晚侏罗世—古近纪,其中以林子宗群中酸性火成岩为主体岩系,该套岩系自下而上划分为典中组、年波组、帕那组。以往研究表明[1-3],该套火成岩系的形成与新特提斯洋俯冲闭合及随后的印度-欧亚大陆碰撞事件关系密切,蕴含丰富的陆块碰撞的动力学信息,因此得到广泛的关注。

    近年来,典中组火成岩的喷发时间及形成环境的研究一直是印度-欧亚板块碰撞活动研究的热点。周肃等[4]利用Ar-Ar定年得到林周盆地典中组火成岩的年龄值为64.4~60.5Ma;聂国永等[5]通过堆龙德庆县马区典中组底部底砾岩的研究认为,印度-欧亚大陆的碰撞时限约为65Ma;胡新伟等[6]测得措勤地区典中组火成岩的K-Ar同位素年龄值为63.9Ma,且稀土元素特征表现为轻稀土元素富集,负Eu异常,微量元素Rb、Ba、K、Th、U富集,Ti、P、Sr、Ta亏损,并认为典中组火成岩源于俯冲带幔源基性岩浆与陆壳重熔酸性岩浆的不同比例混合;梁银平等[7]利用U-Pb测年得到朱诺地区典中组上部流纹质凝灰岩的年龄值为64.8±1.6Ma,并指出典中组火成岩具有岛弧火成岩的特点。

    本文在前人研究成果的基础上,对冈底斯构造带神公地区典中组顶底中酸性火成岩进行了锆石U-Pb同位素定年及主量、稀土和微量元素测试,进一步厘定该地区典中组火成岩的形成时限,同时探讨其构造环境意义,为青藏高原的构造演化提供新的依据。

    冈底斯构造带位于青藏高原南部,呈近东西向展布,长约2000km,北以班公湖-怒江结合带为界,南以印度河-雅鲁藏布江缝合带为界,构成南北宽100~300km的带状岩浆岩分布区,指示了裂隙式喷发的特征[8]。研究区位于冈底斯构造带的次一级构造单元隆格尔-工布江达弧背断隆带的神公地区(图 1),区内白垩纪—古近纪中酸性火成岩广泛分布,记录了印度-欧亚板块碰撞过程的岩浆活动信息。晚侏罗世末期,欧亚陆块南缘的特提斯洋开始向北俯冲消减,至晚白垩世,俯冲消减持续进行,海水下降明显,沉积了一套海相-陆相红色砂泥岩,至晚白垩世末期,特提斯洋俯冲消减速度加快,最终形成岛弧背景下的火山喷发活动。

    图  1  研究区构造位置地质简图
    Figure  1.  Simplified geological map of the tectonic location of the study area

    典中组中酸性火成岩厚度为635.7~1200m,岩石类型主要包括安山岩、流纹岩、英安岩,以及相应的火山碎屑岩,另少见火山集块岩,与下伏晚白垩世设兴组紫红色泥砂岩之间呈角度不整合接触关系,底部局部可见底砾岩,上部与年波组火山-沉积岩系呈平行不整合接触。

    研究区典中组火成岩出露面积广,主要为一套中酸性火成岩,岩石类型主要有英安岩、安山岩、流纹岩,以及相应的火山碎屑岩。另外,在底部可见基性玄武安山岩。对主要岩石类型简要描述如下。

    英安岩:灰绿色,斑状结构,块状构造,斑晶含量约25%,几乎都由石英组成,偶见斜长石斑晶,基质含量约75%,主要由隐晶长英质成分组成,部分硅化重结晶形成细粒集合体状石英和少量鳞片状绢云母,集合体状石英多呈完全长条状(图 2-ad)。

    图  2  研究区中组主要火成岩类型
    a—灰绿色英安岩;b—浅灰绿色玄武安山岩;c—安山岩,具斑状结构,基质显微嵌晶结构;d—英安岩,具斑状结构,基质显微嵌晶结构。Pl—斜长石;Bt—基性斜长石
    Figure  2.  The main igneous rock types of Dianzhong Formation in the study area

    玄武安山岩:浅灰绿色,斑状、聚斑结构,基质为玻基交织结构,块状构造。主要由斑晶和基质组成。斑晶:斜长石占10%~20%,呈自形板状晶及聚斑产出,轻微碳酸盐化,具环带结构,以中性斜长石为主;基质占70%~80%,由微细晶斜长石和玻璃质、铁质、磁铁矿和少量橄榄石组成,组成玻基交织结构,橄榄石呈半自形粒状细晶产出(图 2-b)。

    安山岩:浅灰色,斑状结构,基质具微晶结构,块状构造。主要由斑晶、基质组成。斑晶:斜长石微晶,占25%~30%,半自形柱状,碎裂纹发育,有隐约的环带构造,偶见角闪石,半自形柱状;基质以斜长石微晶为主,占60%~65%,呈定向-半定向排列,有强绿帘石化、绿泥石化,少见微小的杏仁体,由绿泥石、硅质充填(图 2-c)。

    以神公地区典中组火成岩为研究对象,采集火成岩样品12件。选取顶底的DPM013TW19(英安岩)、DPM013TW25(玄武质安山岩)样品进行LAICP-MS锆石U-Pb同位素测试,测试结果见表 1。同时,对10件样品分别进行主量、微量和稀土元素测试,测试结果见表 2

    表  1  典中组火成岩LA-ICP-MS锆石U-Th-Pb测试分析结果
    Table  1.  LA-ICP-MS zircon U-Th-Pb data of Dianzhong Formation igneous rocks
    测点号 Pb Th U Th/U 同位素比值 锆石年龄/Ma
    含量/10-6 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
    DMP013TW25玄武安山岩
    1 2.44 186 183 1.01 0.0726 0.0064 0.0101 0.0002 71.2 6.1 64.7 1.4
    2 3.15 252 252 1.00 0.0693 0.0033 0.0097 0.0001 68.0 3.1 62.2 0.9
    3 2.01 166 161 1.03 0.0687 0.0035 0.0098 0.0001 67.5 3.3 62.9 0.8
    4 2.75 240 201 1.20 0.0687 0.0042 0.0101 0.0002 67.4 4.0 64.8 1.1
    5 2.59 245 195 1.26 0.0667 0.0036 0.0100 0.0001 65.5 3.4 64.3 0.8
    6 3.61 327 265 1.23 0.0698 0.0038 0.0104 0.0001 68.5 3.6 66.7 0.9
    7 2.60 223 192 1.16 0.0677 0.0035 0.0106 0.0001 66.5 3.4 67.7 0.9
    8 2.35 216 171 1.26 0.0703 0.0043 0.0105 0.0002 69.0 4.1 67.3 1.0
    9 2.37 229 178 1.29 0.0639 0.0029 0.0100 0.0001 62.9 2.7 64.2 0.7
    10 2.44 208 185 1.12 0.0679 0.0030 0.0102 0.0001 66.7 2.9 65.6 0.7
    11 4.89 326 395 0.83 0.0666 0.0019 0.0102 0.0001 65.5 1.8 65.5 0.5
    12 2.60 213 198 1.08 0.0656 0.0026 0.0103 0.0001 64.5 2.5 66.2 0.7
    13 2.21 177 169 1.05 0.0697 0.0032 0.0104 0.0001 68.4 3.1 66.4 0.8
    14 2.55 205 199 1.03 0.0673 0.0029 0.0102 0.0001 66.1 2.8 65.7 0.7
    15 1.82 140 143 0.98 0.0671 0.0034 0.0102 0.0001 66.0 3.2 65.6 0.8
    DMP013TW19英安岩
    1 11.63 856 1074 0.80 0.0591 0.0015 0.0092 0.0001 58.3 1.5 59.0 0.5
    2 18.64 1742 1726 1.01 0.0591 0.0012 0.0088 0.0001 58.3 1.2 56.3 0.4
    3 15.45 1287 1420 0.91 0.0605 0.0013 0.0088 0.0001 59.6 1.3 56.2 0.4
    4 19.06 2034 1686 1.21 0.0586 0.0012 0.0089 0.0001 57.9 1.2 57.2 0.4
    5 19.15 1776 1739 1.02 0.0596 0.0012 0.0089 0.0001 58.7 1.1 57.4 0.4
    6 13.55 1345 1203 1.12 0.0609 0.0015 0.0092 0.0001 60.1 1.5 58.9 0.5
    7 17.80 1486 1674 0.89 0.0576 0.0011 0.0089 0.0001 56.9 1.1 56.9 0.4
    10 20.10 1553 1863 0.83 0.0623 0.0012 0.0090 0.0001 61.4 1.2 57.9 0.4
    11 29.39 3774 2441 1.55 0.0594 0.0010 0.0088 0.0001 58.6 1.0 56.7 0.4
    12 19.98 1744 1832 0.95 0.0600 0.0012 0.0089 0.0001 59.1 1.1 57.2 0.4
    13 20.97 2026 1922 1.05 0.0574 0.0011 0.0088 0.0001 56.6 1.1 56.4 0.4
    14 13.62 975 1251 0.78 0.0614 0.0015 0.0092 0.0001 60.5 1.4 59.0 0.5
    16 18.79 1730 1679 1.03 0.0609 0.0013 0.0090 0.0001 60.0 1.2 57.6 0.4
    18 14.83 830 1419 0.59 0.0604 0.0014 0.0092 0.0001 59.5 1.3 59.2 0.5
    19 21.17 2025 1863 1.09 0.0572 0.0012 0.0091 0.0001 56.5 1.1 58.2 0.4
    20 23.78 1976 2136 0.93 0.0597 0.0011 0.0090 0.0001 58.9 1.0 57.6 0.4
    下载: 导出CSV 
    | 显示表格
    表  2  典中组火成岩主量、微量、稀土元素测试分析结果
    Table  2.  Analytical results of major elements, trace elements and REE in Dianzhong Formation igneous rocks
    样品号 XT-01 XT-02 XT-03 XT-04 XT-05 XT-06 XT-07 XT-08 XT-09 XT-10
    岩性 安山岩 流纹岩 安山岩 安山岩 安山岩 英安岩 英安岩 流纹岩 流纹岩 粗面岩
    SiO2 60.58 73.97 59.57 60.72 61.36 69.08 68.45 74.13 70.28 66.57
    TiO2 0.65 0.12 0.99 0.85 0.92 0.63 0.53 0.27 0.27 0.31
    Al2O3 15.12 13.88 16.34 16.00 15.49 15.02 14.42 13.17 14.73 15.79
    CaO 4.52 0.42 3.71 4.29 4.38 0.77 2.17 0.32 1.56 1.90
    Fe2O3 2.16 0.22 5.03 3.54 3.94 2.59 0.80 1.69 1.28 1.34
    FeO 3.14 1.39 2.04 2.64 2.48 1.20 3.88 0.85 1.10 2.54
    Na2O 3.03 2.53 4.12 3.41 3.32 2.83 3.11 2.60 3.67 3.30
    K2O 2.30 5.43 2.12 3.15 2.21 4.89 4.18 5.67 5.77 5.56
    P2O5 0.43 0.20 0.25 0.25 0.25 0.19 0.14 0.11 0.08 0.11
    H2O+ 1.95 1.09 0.01 1.79 0.01 2.22 1.34 0.78 0.59 0.98
    CO2 0.26 0.13 0.21 0.62 0.10 0.18 0.04 0.09 0.26 0.13
    总量 94.16 99.37 94.39 97.25 94.47 99.59 99.06 99.68 99.58 98.52
    Na2O+K2O 5.34 7.95 6.23 6.56 5.53 7.73 7.29 8.26 9.44 8.87
    K2O/Na2O 0.76 2.15 0.51 0.92 0.67 1.73 1.34 2.18 1.57 1.68
    La 89.63 19.36 37.91 49.87 35.13 88.71 94.02 120.23 81.92 107.53
    Ce 122.40 33.55 75.87 80.52 67.37 130.86 132.86 152.44 101.00 141.84
    Pr 16.70 4.28 8.22 10.77 7.83 13.60 17.14 17.58 12.75 18.05
    Nd 61.67 15.06 30.74 40.02 32.18 43.93 61.43 53.50 42.44 62.21
    Sm 10.60 3.13 6.06 6.85 5.86 6.52 10.30 7.83 6.63 9.83
    Eu 2.11 0.63 1.54 1.56 1.46 1.31 2.10 0.94 1.10 1.73
    Gd 7.87 2.78 5.76 6.17 4.95 5.79 8.95 6.68 4.97 7.23
    Tb 1.19 0.55 0.92 1.06 0.86 0.95 1.55 1.12 0.76 1.06
    Dy 5.30 2.45 5.22 5.22 4.97 4.50 7.72 5.57 3.41 4.62
    Ho 0.96 0.45 0.98 1.06 0.99 0.86 1.49 1.11 0.65 0.85
    Er 2.62 1.10 3.06 2.91 2.94 2.52 4.21 3.19 1.86 2.47
    Tm 0.42 0.21 0.49 0.49 0.46 0.42 0.69 0.54 0.31 0.41
    Yb 2.56 1.08 3.33 3.13 3.07 2.61 4.12 3.41 1.94 2.74
    Lu 0.38 0.16 0.48 0.43 0.44 0.37 0.56 0.48 0.27 0.38
    ƩREE 324.44 84.78 180.57 210.07 168.52 302.95 347.13 374.62 260.01 360.97
    LREE/HREE 14.23 8.67 7.92 9.26 8.02 15.81 10.86 15.95 17.35 17.25
    δEu 0.74 0.70 0.86 0.79 0.89 0.70 0.72 0.42 0.61 0.65
    (La/Yb)N 20.75 10.64 6.77 9.46 6.80 20.21 13.56 20.96 25.13 23.30
    (La/Sm)N 5.28 3.87 3.91 4.55 3.75 8.50 5.70 9.60 7.72 6.84
    (Gd/Yb)N 1.88 1.58 1.06 1.21 0.99 1.36 1.33 1.20 1.58 1.62
    Rb 258.23 347.34 87.21 129.19 53.23 284.46 166.71 381.11 389.52 340.45
    Th 40.58 17.22 14.53 14.82 12.60 45.05 23.16 79.09 65.02 55.65
    U 9.01 5.68 3.61 2.73 3.52 4.77 2.58 2.81 14.78 13.62
    Hf 7.10 2.83 5.02 5.78 5.60 7.89 12.66 6.89 6.73 8.37
    Zr 179.44 61.98 153.13 210.97 126.79 266.02 484.43 188.95 202.28 186.32
    Sr 1091.50 54.44 356.04 397.59 441.04 220.30 203.97 87.84 422.45 723.20
    V 106.22 8.84 113.52 89.26 124.10 51.02 28.05 18.57 25.30 52.23
    Pb 35.38 76.15 25.29 32.58 20.35 64.26 44.50 51.07 60.49 51.39
    Co 19.04 0.85 15.13 8.92 17.64 6.61 4.47 2.77 2.43 4.36
    Y 30.87 12.32 28.41 29.67 28.76 24.52 49.16 33.31 20.14 28.22
    Nb 13.95 12.95 11.03 10.38 11.25 8.14 13.81 17.79 7.26 24.65
    Tb 0.49 0.55 1.13 1.06 0.93 0.95 1.55 1.12 0.76 0.73
    Zn 58.63 24.50 96.54 82.98 60.73 73.77 95.64 30.56 45.30 71.43
    Sb 0.84 1.36 0.53 0.47 0.64 1.15 0.32 0.50 0.75 1.35
    Ta 0.92 0.67 0.76 0.73 0.71 0.65 1.01 1.24 0.58 1.43
    Rb/Sr 0.24 6.38 0.24 0.32 0.12 1.29 0.82 4.34 0.92 0.47
    Nb/Ta 15.16 19.33 14.51 14.21 15.84 12.52 13.67 14.35 12.51 17.23
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV 
    | 显示表格

    在中国地质大学地质过程与矿产资源国家重点实验室使用激光剥蚀等离子体质谱仪分析完成锆石U-Pb同位素测试,激光束直径32μm,以氦为载气,以标准锆石91500为外标进行同位素分馏校正,数据采用ICPMSDataCal10.2软件处理,详细的实验操作见Liu等[9]。主量、微量、稀土元素均在西南冶金地质测试中心完成,其中主量元素采用XRF法测定,微量、稀土元素采用ICP-MS法测定。

    典中组底部和顶部玄武安山岩样品DPM013TW25和英安岩样品DPM013TW19的锆石特征相似,均呈无色透明、长柱状或短柱状,且自形程度较高,在CL图像上可见明显岩浆成因特征的振荡生长环带(图 3)。另外,底部样品DPM013TW25锆石的Th/U值为0.83~1.29,平均值为1.04;顶部样品DPM013TW19锆石的Th/U值为0.59~1.55,平均值为0.79(表 1),也反映了岩浆成因特征[10]

    图  3  典中组火成岩锆石阴极发光图像
    Figure  3.  Cathodoluminescence images of zircons from Dianzhong Formation igneous rocks

    测试结果表明,底部样品(DPM013TW25)15个测点的206Pb/238U年龄值分布于62.2~67.7Ma之间,在U-Pb谐和图(图 4-a)上,这些测点均落于谐和线上或其附近,给出的206Pb/238U年龄加权平均值为65.37±0.58Ma(2σ;MSWD=1.7),指示了典中组底部火成岩的形成时代,代表了典中组岩浆活动的起始时间,同时,也代表了林子宗火成岩最初的形成年龄。顶部样品(DPM013TW19)16个测点的206Pb/238U年龄值分布于56.2~59.2Ma之间,在UPb谐和图(图 4-b)上,这些测点均落于谐和线上或附近,给出的206Pb/238U年龄加权平均值为57.42±0.20Ma(2σ;MSWD=4.9),指示了典中组顶部火成岩的形成时代,同时也代表了典中组岩浆活动的终止时间。

    图  4  典中组火成岩锆石U-Pb谐和图
    a—典中组底部玄武安山岩样品DPM013TW25;b—典中组顶部英安岩样品DPM013TW19
    Figure  4.  Zircon U-Pb concordia diagrams of Dianzhong Formation igneous rocks

    本次研究选取研究区典中组10件火成岩样品分别进行主量、微量和稀土元素分析,测试结果见表 2

    主量元素测试结果表明,典中组火成岩样品的SiO2含量为60.58%~74.13%,平均值为66.47%,Al2O3含量为13.17% ~15.79%,平均值为14.99%,全碱(Na2O+K2O)含量为5.35%~9.44%,平均值为7.32%,里特曼组合指数为1.63~3.34,平均值为2.33,属钙碱性系列岩石。在TAS图解(图 5-a)中,典中组火成岩样品点落入中酸性火成岩区域,位于亚碱性岩石范围;在Na2O-K2O图解(图 5-b)中,除2个样品外,其余样品点均落在钾玄岩范围。K2O/Na2O值介于0.51~2.18之间,平均值为1.35,而钾玄岩的出现被认为是大洋岩石圈俯冲结束,陆内汇聚开始的重要标志[7, 13]。总体看,研究区典中组火成岩样品与杨辉等[14]报道的西藏马乡地区和胡新伟等[6]报道的西藏措勤地区典中组火成岩类似,以钙碱性系列岩石为主,显示富碱、富硅的特征。

    图  5  典中组火成岩TAS图解(a)及K2O-Na2O图解(b)
    (a底图据参考文献[11], b底图据参考文献[12])
    Pc—苦橄玄武岩;B—玄武岩;O1—玄武安山岩;O2—安山岩;O3—英安岩;R—流纹岩;S1—粗面玄武岩;S2—玄武质粗面安山岩;S3—粗面安山岩;T—粗面岩、粗面英安岩;F—副长石岩;U1—碱玄岩、碧玄岩;U2—响岩质碱玄岩;U3—碱玄质响岩;Ph—响岩;Ir—碱性(上方)和亚碱性(下方)分界线
    Figure  5.  TAS (a) and K2O-Na2O (b) diagrams of Dianzhong Formation igneous rocks

    稀土元素因地球化学性质相似,在地质作用过程中往往表现为相似的地球化学行为,具有良好的成岩指示信息,而广泛应用于成岩流体性质及成岩环境分析的研究中[15]。研究区典中组10个火成岩样品的稀土元素分析结果如表 2所示。稀土元素总量(∑REE)普遍偏高,除1个样品较低(84.78×10-6)外,其余样品的∑REE值多为168.52×10-6~374.62×10-6,平均值为281.03×10-6;轻、重稀土元素比值偏大,在7.92~17.35之间,平均值为12.53,(La/Yb)N值分布在6.77~25.13之间,平均值为15.76,反映轻重稀土元素经历了较强的分馏作用,呈现轻稀土元素富集、重稀土元素相对亏损的特征。另外,(La/Sm)N值在3.75~9.60之间,(Gd/Yb)N值在0.99~1.88之间,反映LREE(轻稀土元素)相对HREE(重稀土元素)经历了更高程度的分馏作用。

    从稀土元素球粒陨石标准化配分图解(图 6-a)可以看出,研究区典中组火成岩稀土元素配分曲线表现为轻稀土元素富集、重稀土元素相对亏损的右倾形态。另外,Eu具明显的负异常,δEu值分布在0.42~0.89之间,平均值为0.71,可能与岩浆结晶分异造成的斜长石析出有关[17]。典中组火成岩样品的稀土元素组成特征与区内同时期的钙碱性中酸性火成岩类似。

    图  6  典中组火成岩稀土元素配分模式(a)和微量元素蛛网图(b)(原始地幔数据据参考文献[16])
    Figure  6.  REE patterns (a) and primitive mantle-normalized trace element patterns (b) of Dianzhong Formation igneous rocks

    研究区典中组10组火成岩微量元素测试结果见表 2,Sr、Zr、Hf、Ce等元素含量普遍偏高,且接近于贾建称等[18]测定的林子宗群火成岩微量元素值。Rb/Sr值在0.12~6.38之间,平均值为1.52,高于陆壳均质0.24[8],另外,Nb/Ta值在12.51~19.33之间,平均值为14.94,介于地幔标志值17.5[16]和地壳标志值11~12[19]之间,说明典中组火成岩的岩浆来源和地幔、地壳有关,可能为二者以不同比例混合的产物。典中组火成岩的微量元素原始地幔标准化蛛网图(图 6-b)与前人的研究结果相似[6, 14],表现为明显的“峰谷”特征,即Rb、Th、U、Pb等大离子亲石元素富集,Nb、Ta、Ti亏损,并呈“槽谷”形态。Nb、Ta、Ti的槽谷形态可能与俯冲碰撞环境有关[8, 20],且明显的Ti谷也说明有陆壳物质的混入。因此认为,典中组火成岩是在俯冲碰撞背景下,幔源和壳源岩浆以不同比例混合形成的。

    通过对典中组顶底岩浆锆石U-Pb同位素定年可知,典中组岩浆活动发生在65.37±0.58~57.42± 0.20Ma之间,与冈底斯构造带其他地区典中组火成岩测得的年龄值基本一致,表明典中组岩浆活动开始于晚白垩世,结束于古新世末,同时进一步确认林子宗群火成岩的形成时期为晚白垩世,与印度-欧亚板块开始发生碰撞的时间65/70Ma基本吻合[8]。主量元素分析表明,研究区典中组火成岩样品的里特曼组合指数平均值为2.33,属钙碱性系列岩石,TAS图解中,典中组火成岩样品基本分布在中酸性火成岩区域,位于亚碱性岩石范围,稀土元素组成特征也说明研究区典中组火成岩属钙碱性中酸性火成岩范畴,同时,K2O/Na2O值较高,平均值为1.35;在Na2O-K2O图解中,典中组火成岩样品基本落在钾玄岩范围,指示了俯冲造山的构造背景。结合前人的锶、氧同位素研究结果[6],典中组火成岩为壳源岩浆和幔源岩浆以不同比例混合的产物。大离子亲石元素Rb、Th、U、Pb的富集,Nb、Ta、Ti等元素的亏损进一步说明俯冲背景下岩浆中陆壳物质的混入。前人[6, 17]对冈底斯地区典中组火成岩形成的构造环境分析结果表明,典中组火成岩在相关图解中落入火山弧区域,指示其形成于俯冲造山的构造环境,且与古新世喜马拉雅特提斯洋壳向北大规模俯冲产生的远程效应有关。结合区域地质背景,认为典中组火成岩形成于印度-欧亚板块碰撞期间的白垩纪末—古近纪初,为俯冲构造背景下的造山带环境中幔源和壳源岩浆以不同比例混合的产物。

    (1)冈底斯构造带神公地区典中组底部火成岩样品DPM013TW25锆石U- Pb年龄为65.37 ± 0.58Ma,顶部火成岩样品DPM013TW19锆石U-Pb年龄为57.42±0.20Ma,指示典中组火成岩形成的年龄时限为65.37~57.42Ma,限定典中组火山活动发生在白垩纪末—古近纪初,也指示了林子宗群火成岩最开始形成的时期,同时也限定了林子宗群火成岩与下伏地层之间不整合接触面的形成时间。

    (2)典中组火成岩主要为一套钙碱性系列中酸性火成岩,与区内同时期火成岩类似,Rb、Th、U、Pb等大离子亲石元素富集,Nb、Ta、Ti等因亏损呈现“槽谷”形态,Rb/Sr值在0.12~6.38之间,Nb/Ta值在12.51~19.33之间,表明典中组火成岩中含有大量陆壳成分,为俯冲碰撞背景下的岛弧环境中幔源岩浆和壳源岩浆混合的产物,可能与新特提斯洋关闭引起的洋壳俯冲作用有关。

  • 图  1   世界范围内与碱性岩有关的典型铜-金(钼)和碱性岩省分布

    Figure  1.   Locations of Cu-Au (Mo) ore districts and regions of alkaline magmatism

    图  2   与碱性岩有关的典型铜-金(钼)矿床及与之对应的成矿岩体硅碱图(a)和与碱性岩有关铜-金(钼)的成因类型中Au含量和Au/Ag值(重量比)对比图解(b)(还显示与碱性岩有关的铜-金矿化与传统矿床(其他矿化)的比较图)

    Figure  2.   Total alkaline versus silica diagram showing the compositions of igneous rocks from alkali-associated Cu-Au (Mo) systems (a), and Au content and Au/Ag ratios (in weight) of alkaline-related Cu-Au (Mo) deposits and other types (b)

    图  3   与碱性岩有关的斑岩-浅成低温热液矿床转化示意图

    Figure  3.   Diagram showing the generalized nature of the porphyry-epithermal transition in four Cu + Au (Mo) systems related to alkaline rocks

    图  4   与碱性岩有关铜-金(钼)矿床的概念成因模式简图[4, 74]

    Figure  4.   Sketch conceptual genetic model showing the relations between emplacement of geotectonic granitoid magma and ore-forming processes of Cu-Au (Mo) deposits

    表  1   全球范围内与碱性岩有关的典型的铜-金矿床

    Table  1   Characteristics of selected gold and gold-bearing deposits related to alkaline magmatism

    矿床名称 所在国家 金属量/t 有关碱性岩石 年龄/Ma 构造背景 参考文献
    科里普柯里
    Cripple Creek
    美国科罗拉多州 Au: 834t 安山岩-碱性玄武岩(煌斑岩)火山杂岩 31~28 弧后伸展,在格兰特河陆内裂谷之前 [24]
    拉普拉塔
    La Plata Mts
    美国科罗拉多州 Cu (Au) +PGE 碱性闪长岩、二长岩,基性正长岩(+煌斑岩) 65~70 造山后伸展 [25]
    拉杜拉姆
    Ladolam
    巴布亚新几内亚 Au: 1300t 合粗面安山岩-粗安岩-成层二长闪长岩岩体 <1 俯冲后伸展 [26]
    亚波格尔
    Porgera
    巴布亚新几内亚 Au: 660t 小型碱性辉长岩和镁铁质斑岩体 6 与陆弧碰撞有关的逆冲褶皱带 [27-28]
    奥林匹克坝
    Olympic dam
    澳大利亚 Cu: 2000×104t; Au: 1200t; U: 100×104t 正长花岗岩岩体酸性和碱性镁铁质-超 1590 陆内裂谷 [27]
    帕拉博鲁瓦
    Phalaborwa
    南非 Cu-Au: 425×104t Foskorite和碳酸岩侵入体 2060 陆内伸展 [29]
    佐特曼-兰达斯基
    Zortman-Landusky
    美国蒙大拿州 Au: 120t 石英二长岩和正常岩岩盘,丁古岩岩墙 62 弧后伸展环境断坪 [30]
    恩派尔
    Emperor
    斐济 Au (Cu): 130t 碱性基性火山岩被二长岩脉 3.8~4.8 弧碎片和裂谷活动有关 [31]
    格奥克柯里可
    Galore Creek
    加拿大不列颠哥伦比亚省 Cu-Au-Ag: 125×104t, 0.4g/tAu; 1.06%Cu 碱性玄武岩、凝灰岩 三叠纪-早侏罗世 大陆增生之前或期间侵位到洋内岛弧 [32]
    金阳光
    Golden sunlight
    美国蒙大拿州 Au (Mo): 120t 石英二长岩,粗安岩,斑岩和煌斑岩 75~80 裂谷,深大断裂 [33]
    世纪城
    Central city
    美国卡罗拉多州 Au (Mo, U): 22t 淡色二长岩和正长岩,淡色二长岩脉,淡歪细晶岩 58~59 造山后伸展 [34]
    塞拉布兰卡
    Sirrra blanca
    新墨西哥州 Au-Cu-Mo 安山岩、粗面岩、二长岩、正长岩和粗安岩 新近世 瑞奥格兰德裂谷带边缘 [35]
    古纳姆布拉
    Goonumbla
    澳大利亚新南威尔士州 Cu (Au) -Zn: 15t Au 闪长岩,二长岩,石英二长岩和成矿后期的正长斑岩,晚期有基性岩脉 431~435 陆内伸展环境 [36]
    东坪
    Dongping
    中国华北克拉通 Au 正长岩岩体、粗安岩斑岩和煌斑岩岩脉 燕山期;140.3±1.4 陆内伸展环境 [37]
    下载: 导出CSV

    表  2   典型的与碱性岩有关的铜-金矿床的地质特征统计

    Table  2   Basic geological features of selected gold and gold-bearing deposits related to alkaline magmatism

    下载: 导出CSV
  • Bonham H F, Gilcs D L. Epithermal gold/silver deposits:the geothermal connection[J]. Geothermal Resources Council, Special Report, 1983, 13:257-262.

    Mutschler F E, Griffen M E, Stevens D S, et al. Precious metal deposits related to alkaline rocks in the North American Cordillera; an interpretive review[J]. South African Journal of Geology, 1985, 88(2):355-377. https://www.researchgate.net/publication/279651076_Precious_metal_deposits_related_to_alkaline_rocks_in_the_North_American_Cordillera_-_an_interpretive_review

    Müller D, Groves D I. Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits[J]. Ore Geol. Rev., 1993, 8:383-406. doi: 10.1016/0169-1368(93)90035-W

    Richards J P. Alkalic-type epithermal gold deposits-A review:Mineralogical Association of Canada Short Course Series[J]. Mineralogical Association of Canada Short Course, 1995, 23:367-400. http://www.oalib.com/references/19011613

    Johnson J P, McCulloch M T. Sources of mineralising fluids, for the Olympic Dam deposit (South Australia):Sm-Nd isotopic constraints[J]. Chem. Geol., 1995, 121:177-199. doi: 10.1016/0009-2541(94)00125-R

    Bonham H F. Models for volcanic-hosted epithermal precious metal deposits-a review[C]//Proceedings of Symposium 5, Volcanism, Hydrothermal Systems and Related Mineralization Interne. Internet Vol canol Congress.New Zealand:Univ Auckland, 1986:13-17.

    Bonham H F. Models for volcanic-hosted epithermal precious metal deposits:A review[C]//Schafer R W, Cooper J J, Vikre P G. Bulk mineable precious metal deposits of the western United States. Symp Proc. Geol. Soc. Nevada, Reno, 1988:259-271.

    Jensen E P, Barton M D. Gold deposits related to alkaline magmatism[C]//Hagemann S G, Brown P E. Gold in 2000. Rev. Econ. Geol., 2000, 13:279-314.

    聂凤军, 张辉旭.碱性岩浆活动与金矿作用[J].国外矿床地质, 1997, 3(81):1-33.

    Mutschler F E, Mooney T C. Precious-metal deposits related to alkalic igneous rocks:Provisional classification, grade-tonnage data and exploration frontiers[C]//Kirkham R V, Sinclair W D, Thorpe R I, et al. Mineral deposit modeling. Geol. Assoc. Can. Spec. Pap., 1993, 40:479-520.

    Kelley K D, Romberger S M, Beaty D W, et al. Geochemical and geochronological constraints on the genesis of Au-Te deposits at Cripple Creek, Colorado[J]. Econ. Geol., 1998, 93:981-1012. doi: 10.2113/gsecongeo.93.7.981

    张伟波, 王丰翔.国外与碱性岩有关的铜金矿床勘探工作启示[J].矿床地质, 2014, 33(增刊):1143-1144. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1574.htm

    Barker D S. Igneous rocks[M]. Prentice Hall. 1983:1-417.

    Barr D A, Fox P E, Northcote K E, et al. The alkaline suite porphyry deposits:A summary[C]//Sutherland B A. Porphyry deposits of the Canadian Cordillera. Can. Inst. Min. Metall Spec., 1976, 15:359-367.

    Richards J P, Kerrich R. The Porgera gold mine, Papua New Guinea:Magmatic-hydrothermal to epithermal evolution of an alkalic-type precious metal deposit[J]. Econ. Geol., 1993, 88:1017-1052. doi: 10.2113/gsecongeo.88.5.1017

    Cox D P, Bagby W C. Descriptive model of Au-Ag-Te veins[J]. Mineral Deposit Models US Geol. Surv. Bull., 1986, 1693:123-124.

    Semenov E I. Economic mineralogy of alkaline rocks[C]//The Alkaline rocks. Wiley, New York, 1974:543-552.

    Pell J. Mineral deposits associated with carbonatites and related alkaline igneous rocks[C]//Undersaturated Alkaline Rocks:Mineralogy, Petrogenesis, and Economic Potential, Winnipeg, Manitoba, 1996:271-310.

    毛德宝.与碱性岩有关的金矿床[J].地质与勘探, 1992, 9:13-17. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199209003.htm
    向树元, 叶俊林.新的金矿类型--与碱性岩有关的金矿床[J].矿产与地质, 1995, 2:73-76. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD502.000.htm
    王和胜.辽宁碱性岩及其相关的金矿床与找矿方向[J].辽宁地质, 1999, 16(1):57-69. http://www.cnki.com.cn/Article/CJFDTOTAL-LOAD901.008.htm
    卿敏, 卫万顺, 牛翠祎等.碱性岩型金矿床研究述评[J].黄金科学技术, 2001, (5):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ200105000.htm

    Jaireth S. Hydrothermal geochemistry of Te, Ag-Te and Au-Te in epithermal precious Metal deposits[J]. Econ. Geol., 1991, 37:20-21.

    Kerrich R, Goldfarb R, Groves D, et al. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China Series D:Earth Sciences, 2000, 43(1):1-68. doi: 10.1007/BF02911933

    Werle J L, Ikramuddin M, Mutschler F E. Allard stock, La Plata Mountains, Colorado-an alkaline rock-hosted porphyry copperprecious metal deposit[J]. Canadian Journal of Earth Sciences, 1984, 21(6):630-641. doi: 10.1139/e84-069

    Moyle A J, Doyle B J, Hoogvliet B H, et al. Ladolam gold deposit, Lihir Island[C]//Hughes F E. Geology of the mineral deposits of Australia and Papua New Guinea, Vol 2. Australas Inst Min Metall Monogr, 1990, 14:1793-1805.

    Reeve J S, Cross K C, Smith R N, et al. Olympic Dam copperuranium-gold-silver deposit[C]//Hughes F E. Geology of the mineral deposits of Australia and Papua New Guinea, vol 2. Australas Inst Min Metall Monogr, 1990, 14:1009-1035.

    Davies R M, Ballantyne G H. Geology of the Ladolam gold deposit, Lihir Island, Papua New Guinea[C]//Proc Pacific Rim Congr 87, Gold Coast, Queensland, 1987. Australasian Institute of Mining and Metallurgy, Parkville, Victoria, 1987:943-949.

    Verwoerd W J. Mineral deposits associated with carbonatites and alkaline rock[C]//Anhaeusser C R, Maske S. Mineral deposits of southern Africa. Geological Society of South Africa, Johannesburg, 1986:2173-2191.

    Russell C W. Gold mineralization in the Little Rocky Mountains, Phillips County, Montana[C]//Baker D W, Berg R B. Guidebook of the Central Montana alkalic province.Geology, ore deposits and origin. Montana Bur. Min. Geol. Spec., 1991, 100:1-18.

    Eaton P C, Setterfield T N. The relationship between epithermal and porphyry hydrothermal systems within the Tavua caldera, Fiji[J]. Econ. Geol., 1983, 88:1053-1083. https://www.researchgate.net/publication/247862945_The_relationship_between_epithermal_and_porphyry_hydrothermal_systems_within_the_Tavua_Caldera_Fiji

    Hoy T. Volcanogenic massive sulphide deposits in British Columbia[C]//McMillan W J.Ore deposits, tectonics and metallogeny of the Canadian Cordillera. Ministry of Energy, Mines and Petroleum Resources, Geol. Surv. Branch. Pap., 1991, 4:89-123. http://www.em.gov.bc.ca/mining/geoscience/publicationscatalogue/openfiles/1999/pages/1999-2.aspx

    Spry P G, Paredes M M, Foster F, et al.Evidence for a genetic link between gold-silver telluride and porphyry molybdenum mineralization at the Golden Sunlight deposit, Whitehall, Montana:Fluid inclusion and stable isotope studies[J]. Econ. Geol., 1996, 91:507-526. doi: 10.2113/gsecongeo.91.3.507

    Saunders J A. Gold deposits of the Boulder County gold district, Colorado[C]//Epithermal gold deposits-Ⅱ. US Geol. Surv. Bull., 1991:1857-1937.

    Douglass S E, Campbell A R. Characterization of alkaline rock-related mineralization in the Nogal mining district, Lincoln County, New Mexico[J]. Economic Geology, 1994, 89(6):1306-1321. doi: 10.2113/gsecongeo.89.6.1306

    Heithersay P S, Walshe J L. Endeavour 26 North:a porphyry copper-gold deposit in the Late Ordovician, shoshonitic Goonumbla volcanic complex, New South Wales, Australia[J]. Economic Geology, 1995, 90(6):1506-1532. doi: 10.2113/gsecongeo.90.6.1506

    Zhang Z, Mao J. Geology and geochemistry of the Dongpin gold telluride deposit, Heibei province, North China[J]. Int. Geol. Rev., 1985, 37:1094-1108. doi: 10.1080/00206819509465441

    Hitzman M W, Oreskes N, Einaudi M T. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits[J]. Precambrian Research, 1992, 58(1/4):241-287. http://www.sciencedirect.com/science/article/pii/0301926892901214

    Barton M D, Johnson D A. Evaporitic-source model for igneousrelated Fe oxide-(REE-Cu-Au-U) mineralization[J]. Geology, 1996, 24(3):259-262. doi: 10.1130/0091-7613(1996)024<0259:ESMFIR>2.3.CO;2

    Groves D I, Vielreicher N M. The Phalabowra (Palabora) carbonatite-hosted magnetite-copper sulfide deposit, South Africa:an end-member of the iron-oxide copper-gold-rare earth element deposit group?[J]Miner Deposita, 2001, 36:189-194. doi: 10.1007/s001260050298

    Bailey D K, Hampton C M. Volatiles in alkaline magmas[J]. Lithos, 1990, 26:157-165. doi: 10.1016/0024-4937(90)90045-3

    Kuno H. Origin of Cenozoic petrographic provinces of Japan and surrounding areas[J]. Bulletin Volcanologique, 1959, 20(1):37-76. doi: 10.1007/BF02596571

    Dickinson W R. Potash-depth (Kh) relations in continental margin and intra-oceanic magmatic arcs[J]. Geology, 1975, 3(2):53-56. doi: 10.1130/0091-7613(1975)3<53:PKRICM>2.0.CO;2

    Wilson M R, Kyser T K. Geochemistry of porphyry-hosted AuAg deposits in the Little Rocky Mountains, Montana[J]. Economic Geology, 1988, 83(7):1329-1346. doi: 10.2113/gsecongeo.83.7.1329

    Morrison G W. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 1980, 13(1):97-108. doi: 10.1016/0024-4937(80)90067-5

    Rock N M S, Groves D I, Perring C S, et al. Gold, lamprophyres, and porphyries:what does their association mean?[J]. Economic Geology Monograph, 1989, 6:609-625.

    Ashley P M, Cook N D J, Hill R L, et al. Shoshonitic lamprophyre dykes and their relation to mesothermal Au-Sb veins at Hillgrove, New South Wales, Australia[J]. Lithos, 1994, 32(3/4):249-272. https://www.researchgate.net/publication/248494675_Shoshonitic_lamprophyre_dykes_and_their_relation_to_mesothermal_Au_Sb_veins_at_Hillgrove_New_South_Wales_Australia

    Wyman D, Kerrich R. Mineralogy:lamprophyres a source of gold[J]. Nature, 1989, 322:209-210.

    Heithersay P S, O' Neill W J, Van der Helder P, et al. Goonumbla porphyry copper district-Endeavour 26 North, Endeavour 22 and Endeavour 27 copper-gold deposits[J]. Geology of the mineral deposits of Australia and Papua New Guinea, 1990:1385-1398.

    Eggler D H, Furlong K P. Petrochemical and geophysical evidence for old mantle lithosphere beneath Montana[J]. Guidebook of the central Montana alkalic province-Geology, ore deposits and origins:Montana Bureau of Mines and Geology Special Publication, 1991, 100:87-91.

    Baker D W. Central Montana alkalic province:critical review of Laramide plate tectonic models that extract alkalic magmas from abnormally thick Precambrian lithospheric Mantle[J]. Northwest Geol, 1992, 20(21):71-95.

    Zhang X, Spry P G. Petrological, mineralogical, fluid inclusion, and stable isotope studies of the Gies gold-silver telluride deposit, Judith Mountains, Montana[J]. Econ. Geol., 1994, 89(3):602-627. doi: 10.2113/gsecongeo.89.3.602

    Spry P G, Foster F, Truckle J S, et al. The mineralogy of the Golden Sunlight gold-silver telluride deposit, Whitehall, Montana, USA[J]. Mineralogy and Petrology, 1997, 59(3/4):143-164.. doi: 10.1007/BF01161857

    Saunders J A, Bookstrom A A. Tectonic setting, petrology, and mineralogy of alkalic gold telluride deposits of the Colorado Mineral Belt[J]. Geological Society of America Abstracts with Programs, 1998, 30:A300.

    聂凤军, 江思宏, 刘翼飞, 等.碱性岩浆活动与铜、金和铀成矿作用[J].矿床地质, 2010, 29(增刊):247-248. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1128.htm

    Richards J P, Ledlie I. Alkalic intrusive rocks associated with the Mount Kare gold deposit, Papua New Guinea:comparison with the Porgera intrusive complex[J]. Econ. Geol., 1993, 88:755-78 doi: 10.2113/gsecongeo.88.4.755

    Ronacher E, Richards J P, JohnstonM D. New mineralization and alteration styles at the Porgera gold deposit, Papua New Guinea. Proc Pacrim99, Bali, Indonesia[J]. Australasian Institute of Mining and Metallurgy, Parkville, Victoria, 1999:91-94.

    Ahmad M, Walshe J L. Wall-rock alteration at the Emperor goldsilver telluride deposit, Fiji[J]. Australian Journal of Earth Sciences, 1990, 37(2):189-199. doi: 10.1080/08120099008727919

    Anderson W B, Eaton P C. Gold mineralisation at the Emperor mine, Vatukoula, Fiji[J]. Journal of Geochemical Exploration, 1990, 36(1):267-296. https://www.researchgate.net/publication/238634969_Gold_mineralisation_at_the_Emperor_Mine_Vatukoula_Fiji

    Rytuba J J, McKee E H, Cox D. Geochronology and geochemistry of the Ladolam gold deposit, Lihir Island, and gold deposits and volcanoes of Tabar and Tatau, Papua New Guinea[J]. US Geological Survey Bulletin, 1993, 2039:119-126.

    Thompson T B, Trippel A D, Dwelley P C.Mineralized veins and breccias of the Cripple Creek district, Colorado[J]. Econ. Geo., 1985, 180:1669-1688. https://www.researchgate.net/publication/247862770_Mineralized_veins_and_breccias_of_the_Cripple_Creek_District_Colorado

    Lang J R, Stanley C R, Thompson J F H, et al. Na-K Ca magmatic-hydrothermal alteration in alkalic porphyry Cu-Au deposits, British Columbia[C]//Thompson J F H. Magmas, fluids, and ore deposits. Mineral Assoc Can Short Course, 1995, 23, 339-366.

    Saunders J A. Gold deposits of the Boulder County gold district, Colorado[C]//Epithermal gold deposits-Ⅱ. US Geol. Surv. Bull., 1991, 1857, 1:37-48.

    Jones G J. The Goonumbla porphyry copper deposits, New South Wales[J]. Economic Geology, 1985, 80(3):591-613. doi: 10.2113/gsecongeo.80.3.591

    Eriksson S C. Phalaborwa:a saga of magmatism, metasomatism and miscibility[C]//Carbonatites:Genesis and Evolution. Unwin Hyman, London, 1989:221-254.

    Rice C M, Harmon R S, Shepherd T J. Central City, Colorado:The upper part of an alkaline porphyry molybdenum system[J].Econ. Geol., 1985, 80:1769-1796. doi: 10.2113/gsecongeo.80.7.1769

    Wilburn D R, Bourget M R. Exploration review[J]. Mining Engineering, 2010, 62(5):38-39.

    Taylor G. Breccia formation and its relation to gold mineralisation at mount kasi, Fiji[M]. Parkville:Australasian Institute of mining and metallurgy, 1987:597-601.

    Mitchell R H, Keays R R. Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites:implications for the nature and origin of precious metal-rich intergranular components in the upper mantle[J]. Geochimica Et Cosmochimica Acta, 1981, 45(12):2425-2433. doi: 10.1016/0016-7037(81)90096-X

    Hamlyn P R, Keays R R, Cameron W E, et al. Precious metals in magnesian low-Ti lavas:Implications for metallogenesis and sulfur saturation in primary magmas[J]. Geochimica Et Cosmochimica Acta, 1985, 49(8):1797-1811. doi: 10.1016/0016-7037(85)90150-4

    Keith J D, Christiansen E H, Maughan D T, et al.The role of mafic alkaline magmas in felsic porphyry-Cu and Mo systems[C]//Lentz D R. Mineralized' intrusion related' skarn systems. Mineral Assoc Can Short Course, 1998, 26:211-243.

    Naldrett A J. Nickel sulfide deposits:classification, composition and genesis[J]. Econ. Geol., 1981, 75:628-655. http://www.oalib.com/references/19022944

    Candela P A. Controls on ore metal ratios in granite-related ore systems:an experimental and computational approach[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 1992, 83(1/2):317-326. http://specialpapers.gsapubs.org/content/272/317.short

    Richards J P. Alkalic-type epithermal gold deposits-A review[C]//Thompson J F H. Magmas, fluids, and ore deposits. Mineral Assoc Can Short Course, 1995, 23, 367-400.

    Irvine R J, Smith M J. Geophysical exploration for epithermal gold deposits[J]. Journal of Geochemical Exploration, 1990, 36(1):375-412.

    王和胜.辽宁碱性岩及其相关的金矿床与找矿方向[J].辽宁地质, 1999, 16(1):57-69. http://www.cnki.com.cn/Article/CJFDTOTAL-LOAD901.008.htm
    李文光, 王天刚, 姚仲友, 等.与碱性岩有关的浅成低温热液型金矿特征与控矿因素--以巴布亚新几内亚波尔盖拉金矿为例[J].地质通报, 2014, 33(2):308-317. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2014020316&journal_id=gbc
    袁忠信, 白鸽.中国碱性侵入岩的空间分布及有关金属矿床[J].地质与勘探, 1997, 33(1):42-48. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199701013.htm
  • 期刊类型引用(5)

    1. 黄永高,韩飞,康志强,冯佐海,李应栩,李光明. 西藏南木林盆地林子宗群火山岩年代学和地球化学特征. 地球科学. 2024(03): 822-836 . 百度学术
    2. 吴浩,徐祖阳,严维兵,郝宇杰,刘海永. 西藏中部聂尔错地区辉绿岩锆石U-Pb年龄与地球化学特征:对新特提斯洋板片断离的指示. 中国地质. 2023(06): 1804-1816 . 百度学术
    3. 曾成,闫茂强,沈志远,高强,魏俊浩,毛国正,邓永明. 西藏谢通门县切琼地区典中组流纹岩锆石U-Pb年龄、Hf同位素及地球化学特征. 大地构造与成矿学. 2022(01): 154-174 . 百度学术
    4. 周鹏,荣峰,周连河,刘恭喜,范源,万忠焱,尼玛洛卓. 冈底斯中段格达地区典中组火山岩锆石 U-Pb年龄和地球化学特征. 中国地质调查. 2022(03): 76-86 . 百度学术
    5. 王元青,李茜,白滨,张兆群,徐冉成,王晓阳,张欣玥. 中国古近纪岩石地层划分和对比. 地层学杂志. 2021(03): 402-425 . 百度学术

    其他类型引用(1)

图(4)  /  表(2)
计量
  • 文章访问数:  2822
  • HTML全文浏览量:  543
  • PDF下载量:  592
  • 被引次数: 6
出版历程
  • 收稿日期:  2016-04-05
  • 修回日期:  2016-05-18
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2016-12-31

目录

/

返回文章
返回