The progress in the study of Cu-Au (Mo) deposits related to alkaline rocks
-
摘要:
由于超过20%的大型-超大型铜-金(钼)矿床与碱性岩浆有关,因此,该类矿床引起矿床学家的广泛关注。碱性岩有关的铜-金矿床的成矿岩体、物化条件及围岩种类各具特色,成矿成因类型多样,主要的成因类型为斑岩型铜-金(钼)、浅成低温热液脉型金-铜(钼)。总体上,该类矿床的矿化和蚀变具有一定的特征:该类矿床多产出在伸展环境下、均富碲化物矿化、有大量的钾质交代作用、含有氟矿物质和钒云母等,成矿蚀变亦有一定的规律。长英质岩石中经常发生钾长石蚀变,而绢云母、碳酸盐和钾长石的混合蚀变常出现在中基性侵入岩中,水热合成石英和酸性蚀变十分罕见。这种特征矿化可能与碱性岩浆流体演化有关,这种流体富含CO2,且在高氧逸度、低硫逸度条件下释放。在伸展背景下的碱性-钙碱性省寻找此类矿床具有巨大的勘查潜力,尤其在碱性岩体中心及其外围可能形成勘探的靶区。在中国与碱性岩有关的金矿床亦有广阔的找矿前景, 在借鉴国外寻找此类矿床经验的同时,仍需加强对与矿化作用有关的岩浆体活动的研究。
Abstract:Cu-Au (Mo) deposits related to alkaline rocks have attracted more and more attention throughout the world, because more than 20% of the world-class Au-Cu (Mo) deposits are associated with shoshonitic and alkaline rocks. Although they include most of the usual types of Au-Cu (Mo) deposits such as porphyry type and gold-rich epithermal deposits, they share the same characteristics of mineralization and alteration on the whole. As a group, these deposits are characterized by Te-rich mineralization, abundant K metasomatism and minerals such as fluorite and roscoelite. Most of these unique mineralization characteristics may be attributed to the evolution of composition of orerelated alkaline magmas, and the fluids were under the condition of CO2-richness, relative oxidation and low sulfidation. Most Cu-Au (Mo) deposits developed in alkaline provinces in a stretching environment also constitute exploration targets in and around alkaline igneous centers. The perspectives of Cu-Au (Mo) deposits related to alkaline rocks in China are tremendous. To better find new deposits of this type, researchers should pay more attention to petrogenesis and their relation to Cu-Au mineralization.
-
-
图 2 与碱性岩有关的典型铜-金(钼)矿床及与之对应的成矿岩体硅碱图(a)和与碱性岩有关铜-金(钼)的成因类型中Au含量和Au/Ag值(重量比)对比图解(b)(还显示与碱性岩有关的铜-金矿化与传统矿床(其他矿化)的比较图)
Figure 2. Total alkaline versus silica diagram showing the compositions of igneous rocks from alkali-associated Cu-Au (Mo) systems (a), and Au content and Au/Ag ratios (in weight) of alkaline-related Cu-Au (Mo) deposits and other types (b)
表 1 全球范围内与碱性岩有关的典型的铜-金矿床
Table 1 Characteristics of selected gold and gold-bearing deposits related to alkaline magmatism
矿床名称 所在国家 金属量/t 有关碱性岩石 年龄/Ma 构造背景 参考文献 科里普柯里
Cripple Creek美国科罗拉多州 Au: 834t 安山岩-碱性玄武岩(煌斑岩)火山杂岩 31~28 弧后伸展,在格兰特河陆内裂谷之前 [24] 拉普拉塔
La Plata Mts美国科罗拉多州 Cu (Au) +PGE 碱性闪长岩、二长岩,基性正长岩(+煌斑岩) 65~70 造山后伸展 [25] 拉杜拉姆
Ladolam巴布亚新几内亚 Au: 1300t 合粗面安山岩-粗安岩-成层二长闪长岩岩体 <1 俯冲后伸展 [26] 亚波格尔
Porgera巴布亚新几内亚 Au: 660t 小型碱性辉长岩和镁铁质斑岩体 6 与陆弧碰撞有关的逆冲褶皱带 [27-28] 奥林匹克坝
Olympic dam澳大利亚 Cu: 2000×104t; Au: 1200t; U: 100×104t 正长花岗岩岩体酸性和碱性镁铁质-超 1590 陆内裂谷 [27] 帕拉博鲁瓦
Phalaborwa南非 Cu-Au: 425×104t Foskorite和碳酸岩侵入体 2060 陆内伸展 [29] 佐特曼-兰达斯基
Zortman-Landusky美国蒙大拿州 Au: 120t 石英二长岩和正常岩岩盘,丁古岩岩墙 62 弧后伸展环境断坪 [30] 恩派尔
Emperor斐济 Au (Cu): 130t 碱性基性火山岩被二长岩脉 3.8~4.8 弧碎片和裂谷活动有关 [31] 格奥克柯里可
Galore Creek加拿大不列颠哥伦比亚省 Cu-Au-Ag: 125×104t, 0.4g/tAu; 1.06%Cu 碱性玄武岩、凝灰岩 三叠纪-早侏罗世 大陆增生之前或期间侵位到洋内岛弧 [32] 金阳光
Golden sunlight美国蒙大拿州 Au (Mo): 120t 石英二长岩,粗安岩,斑岩和煌斑岩 75~80 裂谷,深大断裂 [33] 世纪城
Central city美国卡罗拉多州 Au (Mo, U): 22t 淡色二长岩和正长岩,淡色二长岩脉,淡歪细晶岩 58~59 造山后伸展 [34] 塞拉布兰卡
Sirrra blanca新墨西哥州 Au-Cu-Mo 安山岩、粗面岩、二长岩、正长岩和粗安岩 新近世 瑞奥格兰德裂谷带边缘 [35] 古纳姆布拉
Goonumbla澳大利亚新南威尔士州 Cu (Au) -Zn: 15t Au 闪长岩,二长岩,石英二长岩和成矿后期的正长斑岩,晚期有基性岩脉 431~435 陆内伸展环境 [36] 东坪
Dongping中国华北克拉通 Au 正长岩岩体、粗安岩斑岩和煌斑岩岩脉 燕山期;140.3±1.4 陆内伸展环境 [37] 表 2 典型的与碱性岩有关的铜-金矿床的地质特征统计
Table 2 Basic geological features of selected gold and gold-bearing deposits related to alkaline magmatism
-
Bonham H F, Gilcs D L. Epithermal gold/silver deposits:the geothermal connection[J]. Geothermal Resources Council, Special Report, 1983, 13:257-262.
Mutschler F E, Griffen M E, Stevens D S, et al. Precious metal deposits related to alkaline rocks in the North American Cordillera; an interpretive review[J]. South African Journal of Geology, 1985, 88(2):355-377. https://www.researchgate.net/publication/279651076_Precious_metal_deposits_related_to_alkaline_rocks_in_the_North_American_Cordillera_-_an_interpretive_review
Müller D, Groves D I. Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits[J]. Ore Geol. Rev., 1993, 8:383-406. doi: 10.1016/0169-1368(93)90035-W
Richards J P. Alkalic-type epithermal gold deposits-A review:Mineralogical Association of Canada Short Course Series[J]. Mineralogical Association of Canada Short Course, 1995, 23:367-400. http://www.oalib.com/references/19011613
Johnson J P, McCulloch M T. Sources of mineralising fluids, for the Olympic Dam deposit (South Australia):Sm-Nd isotopic constraints[J]. Chem. Geol., 1995, 121:177-199. doi: 10.1016/0009-2541(94)00125-R
Bonham H F. Models for volcanic-hosted epithermal precious metal deposits-a review[C]//Proceedings of Symposium 5, Volcanism, Hydrothermal Systems and Related Mineralization Interne. Internet Vol canol Congress.New Zealand:Univ Auckland, 1986:13-17.
Bonham H F. Models for volcanic-hosted epithermal precious metal deposits:A review[C]//Schafer R W, Cooper J J, Vikre P G. Bulk mineable precious metal deposits of the western United States. Symp Proc. Geol. Soc. Nevada, Reno, 1988:259-271.
Jensen E P, Barton M D. Gold deposits related to alkaline magmatism[C]//Hagemann S G, Brown P E. Gold in 2000. Rev. Econ. Geol., 2000, 13:279-314.
聂凤军, 张辉旭.碱性岩浆活动与金矿作用[J].国外矿床地质, 1997, 3(81):1-33. Mutschler F E, Mooney T C. Precious-metal deposits related to alkalic igneous rocks:Provisional classification, grade-tonnage data and exploration frontiers[C]//Kirkham R V, Sinclair W D, Thorpe R I, et al. Mineral deposit modeling. Geol. Assoc. Can. Spec. Pap., 1993, 40:479-520.
Kelley K D, Romberger S M, Beaty D W, et al. Geochemical and geochronological constraints on the genesis of Au-Te deposits at Cripple Creek, Colorado[J]. Econ. Geol., 1998, 93:981-1012. doi: 10.2113/gsecongeo.93.7.981
张伟波, 王丰翔.国外与碱性岩有关的铜金矿床勘探工作启示[J].矿床地质, 2014, 33(增刊):1143-1144. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1574.htm Barker D S. Igneous rocks[M]. Prentice Hall. 1983:1-417.
Barr D A, Fox P E, Northcote K E, et al. The alkaline suite porphyry deposits:A summary[C]//Sutherland B A. Porphyry deposits of the Canadian Cordillera. Can. Inst. Min. Metall Spec., 1976, 15:359-367.
Richards J P, Kerrich R. The Porgera gold mine, Papua New Guinea:Magmatic-hydrothermal to epithermal evolution of an alkalic-type precious metal deposit[J]. Econ. Geol., 1993, 88:1017-1052. doi: 10.2113/gsecongeo.88.5.1017
Cox D P, Bagby W C. Descriptive model of Au-Ag-Te veins[J]. Mineral Deposit Models US Geol. Surv. Bull., 1986, 1693:123-124.
Semenov E I. Economic mineralogy of alkaline rocks[C]//The Alkaline rocks. Wiley, New York, 1974:543-552.
Pell J. Mineral deposits associated with carbonatites and related alkaline igneous rocks[C]//Undersaturated Alkaline Rocks:Mineralogy, Petrogenesis, and Economic Potential, Winnipeg, Manitoba, 1996:271-310.
毛德宝.与碱性岩有关的金矿床[J].地质与勘探, 1992, 9:13-17. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199209003.htm 向树元, 叶俊林.新的金矿类型--与碱性岩有关的金矿床[J].矿产与地质, 1995, 2:73-76. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD502.000.htm 王和胜.辽宁碱性岩及其相关的金矿床与找矿方向[J].辽宁地质, 1999, 16(1):57-69. http://www.cnki.com.cn/Article/CJFDTOTAL-LOAD901.008.htm 卿敏, 卫万顺, 牛翠祎等.碱性岩型金矿床研究述评[J].黄金科学技术, 2001, (5):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ200105000.htm Jaireth S. Hydrothermal geochemistry of Te, Ag-Te and Au-Te in epithermal precious Metal deposits[J]. Econ. Geol., 1991, 37:20-21.
Kerrich R, Goldfarb R, Groves D, et al. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China Series D:Earth Sciences, 2000, 43(1):1-68. doi: 10.1007/BF02911933
Werle J L, Ikramuddin M, Mutschler F E. Allard stock, La Plata Mountains, Colorado-an alkaline rock-hosted porphyry copperprecious metal deposit[J]. Canadian Journal of Earth Sciences, 1984, 21(6):630-641. doi: 10.1139/e84-069
Moyle A J, Doyle B J, Hoogvliet B H, et al. Ladolam gold deposit, Lihir Island[C]//Hughes F E. Geology of the mineral deposits of Australia and Papua New Guinea, Vol 2. Australas Inst Min Metall Monogr, 1990, 14:1793-1805.
Reeve J S, Cross K C, Smith R N, et al. Olympic Dam copperuranium-gold-silver deposit[C]//Hughes F E. Geology of the mineral deposits of Australia and Papua New Guinea, vol 2. Australas Inst Min Metall Monogr, 1990, 14:1009-1035.
Davies R M, Ballantyne G H. Geology of the Ladolam gold deposit, Lihir Island, Papua New Guinea[C]//Proc Pacific Rim Congr 87, Gold Coast, Queensland, 1987. Australasian Institute of Mining and Metallurgy, Parkville, Victoria, 1987:943-949.
Verwoerd W J. Mineral deposits associated with carbonatites and alkaline rock[C]//Anhaeusser C R, Maske S. Mineral deposits of southern Africa. Geological Society of South Africa, Johannesburg, 1986:2173-2191.
Russell C W. Gold mineralization in the Little Rocky Mountains, Phillips County, Montana[C]//Baker D W, Berg R B. Guidebook of the Central Montana alkalic province.Geology, ore deposits and origin. Montana Bur. Min. Geol. Spec., 1991, 100:1-18.
Eaton P C, Setterfield T N. The relationship between epithermal and porphyry hydrothermal systems within the Tavua caldera, Fiji[J]. Econ. Geol., 1983, 88:1053-1083. https://www.researchgate.net/publication/247862945_The_relationship_between_epithermal_and_porphyry_hydrothermal_systems_within_the_Tavua_Caldera_Fiji
Hoy T. Volcanogenic massive sulphide deposits in British Columbia[C]//McMillan W J.Ore deposits, tectonics and metallogeny of the Canadian Cordillera. Ministry of Energy, Mines and Petroleum Resources, Geol. Surv. Branch. Pap., 1991, 4:89-123. http://www.em.gov.bc.ca/mining/geoscience/publicationscatalogue/openfiles/1999/pages/1999-2.aspx
Spry P G, Paredes M M, Foster F, et al.Evidence for a genetic link between gold-silver telluride and porphyry molybdenum mineralization at the Golden Sunlight deposit, Whitehall, Montana:Fluid inclusion and stable isotope studies[J]. Econ. Geol., 1996, 91:507-526. doi: 10.2113/gsecongeo.91.3.507
Saunders J A. Gold deposits of the Boulder County gold district, Colorado[C]//Epithermal gold deposits-Ⅱ. US Geol. Surv. Bull., 1991:1857-1937.
Douglass S E, Campbell A R. Characterization of alkaline rock-related mineralization in the Nogal mining district, Lincoln County, New Mexico[J]. Economic Geology, 1994, 89(6):1306-1321. doi: 10.2113/gsecongeo.89.6.1306
Heithersay P S, Walshe J L. Endeavour 26 North:a porphyry copper-gold deposit in the Late Ordovician, shoshonitic Goonumbla volcanic complex, New South Wales, Australia[J]. Economic Geology, 1995, 90(6):1506-1532. doi: 10.2113/gsecongeo.90.6.1506
Zhang Z, Mao J. Geology and geochemistry of the Dongpin gold telluride deposit, Heibei province, North China[J]. Int. Geol. Rev., 1985, 37:1094-1108. doi: 10.1080/00206819509465441
Hitzman M W, Oreskes N, Einaudi M T. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits[J]. Precambrian Research, 1992, 58(1/4):241-287. http://www.sciencedirect.com/science/article/pii/0301926892901214
Barton M D, Johnson D A. Evaporitic-source model for igneousrelated Fe oxide-(REE-Cu-Au-U) mineralization[J]. Geology, 1996, 24(3):259-262. doi: 10.1130/0091-7613(1996)024<0259:ESMFIR>2.3.CO;2
Groves D I, Vielreicher N M. The Phalabowra (Palabora) carbonatite-hosted magnetite-copper sulfide deposit, South Africa:an end-member of the iron-oxide copper-gold-rare earth element deposit group?[J]Miner Deposita, 2001, 36:189-194. doi: 10.1007/s001260050298
Bailey D K, Hampton C M. Volatiles in alkaline magmas[J]. Lithos, 1990, 26:157-165. doi: 10.1016/0024-4937(90)90045-3
Kuno H. Origin of Cenozoic petrographic provinces of Japan and surrounding areas[J]. Bulletin Volcanologique, 1959, 20(1):37-76. doi: 10.1007/BF02596571
Dickinson W R. Potash-depth (Kh) relations in continental margin and intra-oceanic magmatic arcs[J]. Geology, 1975, 3(2):53-56. doi: 10.1130/0091-7613(1975)3<53:PKRICM>2.0.CO;2
Wilson M R, Kyser T K. Geochemistry of porphyry-hosted AuAg deposits in the Little Rocky Mountains, Montana[J]. Economic Geology, 1988, 83(7):1329-1346. doi: 10.2113/gsecongeo.83.7.1329
Morrison G W. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 1980, 13(1):97-108. doi: 10.1016/0024-4937(80)90067-5
Rock N M S, Groves D I, Perring C S, et al. Gold, lamprophyres, and porphyries:what does their association mean?[J]. Economic Geology Monograph, 1989, 6:609-625.
Ashley P M, Cook N D J, Hill R L, et al. Shoshonitic lamprophyre dykes and their relation to mesothermal Au-Sb veins at Hillgrove, New South Wales, Australia[J]. Lithos, 1994, 32(3/4):249-272. https://www.researchgate.net/publication/248494675_Shoshonitic_lamprophyre_dykes_and_their_relation_to_mesothermal_Au_Sb_veins_at_Hillgrove_New_South_Wales_Australia
Wyman D, Kerrich R. Mineralogy:lamprophyres a source of gold[J]. Nature, 1989, 322:209-210.
Heithersay P S, O' Neill W J, Van der Helder P, et al. Goonumbla porphyry copper district-Endeavour 26 North, Endeavour 22 and Endeavour 27 copper-gold deposits[J]. Geology of the mineral deposits of Australia and Papua New Guinea, 1990:1385-1398.
Eggler D H, Furlong K P. Petrochemical and geophysical evidence for old mantle lithosphere beneath Montana[J]. Guidebook of the central Montana alkalic province-Geology, ore deposits and origins:Montana Bureau of Mines and Geology Special Publication, 1991, 100:87-91.
Baker D W. Central Montana alkalic province:critical review of Laramide plate tectonic models that extract alkalic magmas from abnormally thick Precambrian lithospheric Mantle[J]. Northwest Geol, 1992, 20(21):71-95.
Zhang X, Spry P G. Petrological, mineralogical, fluid inclusion, and stable isotope studies of the Gies gold-silver telluride deposit, Judith Mountains, Montana[J]. Econ. Geol., 1994, 89(3):602-627. doi: 10.2113/gsecongeo.89.3.602
Spry P G, Foster F, Truckle J S, et al. The mineralogy of the Golden Sunlight gold-silver telluride deposit, Whitehall, Montana, USA[J]. Mineralogy and Petrology, 1997, 59(3/4):143-164.. doi: 10.1007/BF01161857
Saunders J A, Bookstrom A A. Tectonic setting, petrology, and mineralogy of alkalic gold telluride deposits of the Colorado Mineral Belt[J]. Geological Society of America Abstracts with Programs, 1998, 30:A300.
聂凤军, 江思宏, 刘翼飞, 等.碱性岩浆活动与铜、金和铀成矿作用[J].矿床地质, 2010, 29(增刊):247-248. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1128.htm Richards J P, Ledlie I. Alkalic intrusive rocks associated with the Mount Kare gold deposit, Papua New Guinea:comparison with the Porgera intrusive complex[J]. Econ. Geol., 1993, 88:755-78 doi: 10.2113/gsecongeo.88.4.755
Ronacher E, Richards J P, JohnstonM D. New mineralization and alteration styles at the Porgera gold deposit, Papua New Guinea. Proc Pacrim99, Bali, Indonesia[J]. Australasian Institute of Mining and Metallurgy, Parkville, Victoria, 1999:91-94.
Ahmad M, Walshe J L. Wall-rock alteration at the Emperor goldsilver telluride deposit, Fiji[J]. Australian Journal of Earth Sciences, 1990, 37(2):189-199. doi: 10.1080/08120099008727919
Anderson W B, Eaton P C. Gold mineralisation at the Emperor mine, Vatukoula, Fiji[J]. Journal of Geochemical Exploration, 1990, 36(1):267-296. https://www.researchgate.net/publication/238634969_Gold_mineralisation_at_the_Emperor_Mine_Vatukoula_Fiji
Rytuba J J, McKee E H, Cox D. Geochronology and geochemistry of the Ladolam gold deposit, Lihir Island, and gold deposits and volcanoes of Tabar and Tatau, Papua New Guinea[J]. US Geological Survey Bulletin, 1993, 2039:119-126.
Thompson T B, Trippel A D, Dwelley P C.Mineralized veins and breccias of the Cripple Creek district, Colorado[J]. Econ. Geo., 1985, 180:1669-1688. https://www.researchgate.net/publication/247862770_Mineralized_veins_and_breccias_of_the_Cripple_Creek_District_Colorado
Lang J R, Stanley C R, Thompson J F H, et al. Na-K Ca magmatic-hydrothermal alteration in alkalic porphyry Cu-Au deposits, British Columbia[C]//Thompson J F H. Magmas, fluids, and ore deposits. Mineral Assoc Can Short Course, 1995, 23, 339-366.
Saunders J A. Gold deposits of the Boulder County gold district, Colorado[C]//Epithermal gold deposits-Ⅱ. US Geol. Surv. Bull., 1991, 1857, 1:37-48.
Jones G J. The Goonumbla porphyry copper deposits, New South Wales[J]. Economic Geology, 1985, 80(3):591-613. doi: 10.2113/gsecongeo.80.3.591
Eriksson S C. Phalaborwa:a saga of magmatism, metasomatism and miscibility[C]//Carbonatites:Genesis and Evolution. Unwin Hyman, London, 1989:221-254.
Rice C M, Harmon R S, Shepherd T J. Central City, Colorado:The upper part of an alkaline porphyry molybdenum system[J].Econ. Geol., 1985, 80:1769-1796. doi: 10.2113/gsecongeo.80.7.1769
Wilburn D R, Bourget M R. Exploration review[J]. Mining Engineering, 2010, 62(5):38-39.
Taylor G. Breccia formation and its relation to gold mineralisation at mount kasi, Fiji[M]. Parkville:Australasian Institute of mining and metallurgy, 1987:597-601.
Mitchell R H, Keays R R. Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites:implications for the nature and origin of precious metal-rich intergranular components in the upper mantle[J]. Geochimica Et Cosmochimica Acta, 1981, 45(12):2425-2433. doi: 10.1016/0016-7037(81)90096-X
Hamlyn P R, Keays R R, Cameron W E, et al. Precious metals in magnesian low-Ti lavas:Implications for metallogenesis and sulfur saturation in primary magmas[J]. Geochimica Et Cosmochimica Acta, 1985, 49(8):1797-1811. doi: 10.1016/0016-7037(85)90150-4
Keith J D, Christiansen E H, Maughan D T, et al.The role of mafic alkaline magmas in felsic porphyry-Cu and Mo systems[C]//Lentz D R. Mineralized' intrusion related' skarn systems. Mineral Assoc Can Short Course, 1998, 26:211-243.
Naldrett A J. Nickel sulfide deposits:classification, composition and genesis[J]. Econ. Geol., 1981, 75:628-655. http://www.oalib.com/references/19022944
Candela P A. Controls on ore metal ratios in granite-related ore systems:an experimental and computational approach[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 1992, 83(1/2):317-326. http://specialpapers.gsapubs.org/content/272/317.short
Richards J P. Alkalic-type epithermal gold deposits-A review[C]//Thompson J F H. Magmas, fluids, and ore deposits. Mineral Assoc Can Short Course, 1995, 23, 367-400.
Irvine R J, Smith M J. Geophysical exploration for epithermal gold deposits[J]. Journal of Geochemical Exploration, 1990, 36(1):375-412.
王和胜.辽宁碱性岩及其相关的金矿床与找矿方向[J].辽宁地质, 1999, 16(1):57-69. http://www.cnki.com.cn/Article/CJFDTOTAL-LOAD901.008.htm 李文光, 王天刚, 姚仲友, 等.与碱性岩有关的浅成低温热液型金矿特征与控矿因素--以巴布亚新几内亚波尔盖拉金矿为例[J].地质通报, 2014, 33(2):308-317. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2014020316&journal_id=gbc 袁忠信, 白鸽.中国碱性侵入岩的空间分布及有关金属矿床[J].地质与勘探, 1997, 33(1):42-48. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199701013.htm