Inclination shallowing study of the Early-Neoproterozoic Liantuo Formation in South China and its paleogeographic implications
-
摘要:
华南莲沱组最新的年龄结果表明,其时代结束于715Ma,因此,准确确定莲沱组的古纬度对“雪球地球”的研究具有重要意义。通过对莲沱组红层进行等温剩磁各向异性研究,获得其磁倾角校正因子为0.8719,校正后的磁倾角为70.4°,对比热退磁实验测得的莲沱组磁倾角为67.8°,则其磁倾角偏低量为2.6°。通过校正前后的磁倾角分别计算古纬度,获得磁倾角偏低所引起的古纬度变化为3.9°±6°。通过对比华南与澳大利亚-东南极板块的720Ma古地理位置,发现这一时期冰碛岩从中纬度到赤道广泛分布,验证了当时的“雪球地球”环境。
Abstract:New dating data indicate that the Liantuo Formation ended at 715Ma, and hence the constraint of the paleolatitude of the Liantuo Formation will shed a light on the "Snowball Earth" theory. Researchers have obtained reliable paleomagnetic results from the Liantuo Formation, but the inclination shallowing has not been considered by them. In this paper, the authors obtained a corrected parameter by conducting a remnant anisotropy research on Liantuo Formation. The inclination shallowing in Liantuo Formation is 2.6°, which results in a latitude difference of 3.9°±6°. The reconstruction of the South China and Australia block at 720Ma shows the diamictite distribution from middle latitude to tropical region, which proves the "Snowball Earth" theory.
-
Keywords:
- Liantuo Formation /
- inclination shallowing /
- Snowball Earth /
- Neoproterozoic
-
致谢: 审稿专家对本文进行了认真细致的审阅,并提出了宝贵的修改意见,在此表示衷心的感谢。
-
图 2 本次研究获取的采点(下划线标注TLS编号)在地层上的分布
(TL编号为Jing等[29]采点)
Figure 2. Stratigraphic column of the Liantuo Formation and detailed sampling layer positions of three sub-sections at Yichang
图 4 45°方向加场后平行于层面方向(IRMx)和垂直于层面方向(IRMz)等温剩磁获得曲线图(a, d),IRMz/IRMx关系图(b, e)和IRMz/IRMx的热退磁结果(c, f)
Figure 4. Plots of IRMx (parallel to bedding) and IRMz (perpendicular to bedding) acquisitions produced by applying magnetic field at 45° to bedding as function of increasing field (a, d), plots of IRMZ/IRMX(b, e), the thermal demagnetization results of IRMZ/IRMX(c, f)
表 1 宜昌地区剖面莲沱组样品等温热剩磁各向异性及磁倾角偏低值
Table 1 Anisotropy of isothermal remnant magnetization for Liantuo Formation red beds in Yichang area
ID Iobs IRMz/IRMx
(610~1200mT)IF1 ΔI1(=IF1-Iobs) IRMz/IRMx
(600°C以上)IF2 ΔI2(=IF2-Iobs) 15 64.4 0.7796 69.518 5.118 0.8542 67.7425 3.3425 15-2c 71.5 0.8414 74.277 2.777 0.8513 74.1009 2.6009 15-5b 65 0.899 67.256 2.256 0.8757 67.7876 2.7876 17-1 72.1 0.831 74.976 2.876 0.8118 75.3075 3.2075 3-1 73 0.87 75.105 2.105 0.8859 74.8452 1.8452 4-2b 66.3 0.6147 74.899 8.599 0.901 68.4206 2.1206 5-2b 64.2 0.8472 67.728 3.528 0.9117 66.2153 2.0153 5-4b 66 0.7989 70.420 4.420 0.872 68.7818 2.7818 7-1 61.9 0.8579 65.389 3.489 0.8731 65.0054 3.1054 8-3 70 0.8737 72.359 2.359 0.856 72.6951 2.6951 8-4 66.8 0.8701 69.548 2.748 0.8977 68.9555 2.1555 平均值 67.8 0.8258 71.377 3.577 0.8719 70.4146 2.6146 注:ID为样品号,Iobs为热退磁实验所得样品磁倾角,IRMz/IRMx(610~1200mT)为610~1200mT之间垂直层面方向和平行层面方向等温剩磁大小的比值,IRMz/IRMx(600°C以上)为600 °C以上垂直层面方向和平行层面方向等温剩磁大小的比值,IF为校正后磁倾角,ΔI为校正值 -
Cawood P A, Hawkesworth C J. Earth's middle age[J]. Geology, 2014, 42(6):503-506. doi: 10.1130/G35402.1 Cawood P A, Hawkesworth C J. Earth's middle age[J]. Geology, 2014, 42(6):503-506. doi: 10.1130/G35402.1
Kirschvink J L. Late Proterozoic low-latitude global glaciation:the snowball Earth[C]//The Proterozoic biosphere:a multidisciplinary study. Cambridge University Press, New York, 1992:51-52. Kirschvink J L. Late Proterozoic low-latitude global glaciation:the snowball Earth[C]//The Proterozoic biosphere:a multidisciplinary study. Cambridge University Press, New York, 1992:51-52.
Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381):1342-1346. doi: 10.1126/science.281.5381.1342 Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381):1342-1346. doi: 10.1126/science.281.5381.1342
Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model[J]. Nature, 2000, 405(6785):425-429. doi: 10.1038/35013005 Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model[J]. Nature, 2000, 405(6785):425-429. doi: 10.1038/35013005
Eyles N. Earth's glacial record and its tectonic setting[J]. Earth-Science Reviews, 1993, 35(1/2):1-248. Eyles N. Earth's glacial record and its tectonic setting[J]. Earth-Science Reviews, 1993, 35(1/2):1-248.
Harland W B. Critical evidence for a great infra-Cambrian glaciation[J]. Geologische Rundschau, 1964, 54(1):45-61. doi: 10.1007/BF01821169 Harland W B. Critical evidence for a great infra-Cambrian glaciation[J]. Geologische Rundschau, 1964, 54(1):45-61. doi: 10.1007/BF01821169
Cox G M, Halverson G P, Stevenson R K, et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth[J]. Earth and Planetary Science Letters, 2016, 446:89-99. doi: 10.1016/j.epsl.2016.04.016 Cox G M, Halverson G P, Stevenson R K, et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth[J]. Earth and Planetary Science Letters, 2016, 446:89-99. doi: 10.1016/j.epsl.2016.04.016
Klein C, Beukes N J. Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron-formation in Canada[J]. Economic Geology, 1993, 88(3):542-565. doi: 10.2113/gsecongeo.88.3.542 Klein C, Beukes N J. Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron-formation in Canada[J]. Economic Geology, 1993, 88(3):542-565. doi: 10.2113/gsecongeo.88.3.542
Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808):92-95. doi: 10.1126/science.1135013 Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808):92-95. doi: 10.1126/science.1135013
Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186):456-459. doi: 10.1038/nature06811 Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186):456-459. doi: 10.1038/nature06811
Chen X, Ling H F, Vance D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6:7142-7148. doi: 10.1038/ncomms8142 Chen X, Ling H F, Vance D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6:7142-7148. doi: 10.1038/ncomms8142
Moores E M. Southwest US-East Antarctic (SWEAT) connection:a hypothesis[J]. Geology, 1991, 19(5):425-428. doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2 Moores E M. Southwest US-East Antarctic (SWEAT) connection:a hypothesis[J]. Geology, 1991, 19(5):425-428. doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2
Dalziel I W D. Pacific margins of Laurentia and East AntarcticaAustralia as a conjugate rift pair:Evidence and implications for an Eocambrian supercontinent[J]. Geology, 1991, 19(6):598-601. doi: 10.1130/0091-7613(1991)019<0598:PMOLAE>2.3.CO;2 Dalziel I W D. Pacific margins of Laurentia and East AntarcticaAustralia as a conjugate rift pair:Evidence and implications for an Eocambrian supercontinent[J]. Geology, 1991, 19(6):598-601. doi: 10.1130/0091-7613(1991)019<0598:PMOLAE>2.3.CO;2
Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out[J]. Science, 1991, 252(5011):1409-1412. doi: 10.1126/science.252.5011.1409 Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out[J]. Science, 1991, 252(5011):1409-1412. doi: 10.1126/science.252.5011.1409
Li Z X, Zhang L, Powell C M A. South China in Rodinia:part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 1995, 23(5):407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2 Li Z X, Zhang L, Powell C M A. South China in Rodinia:part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 1995, 23(5):407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160(1):179-210. Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160(1):179-210.
Karlstrom K E, Williams M L, McLelland J, et al. Refining Rodinia:geologic evidence for the Australia-Western US connection in the Proterozoic[J]. GSA Today, 1999, 9(10):1-7. Karlstrom K E, Williams M L, McLelland J, et al. Refining Rodinia:geologic evidence for the Australia-Western US connection in the Proterozoic[J]. GSA Today, 1999, 9(10):1-7.
Burrett C, Berry R. Proterozoic Australia-Western United States (AUSWUS) fit between Laurentia and Australia[J]. Geology, 2000, 28(2):103-106. doi: 10.1130/0091-7613(2000)28<103:PAUSAF>2.0.CO;2 Burrett C, Berry R. Proterozoic Australia-Western United States (AUSWUS) fit between Laurentia and Australia[J]. Geology, 2000, 28(2):103-106. doi: 10.1130/0091-7613(2000)28<103:PAUSAF>2.0.CO;2
Wingate M T D, Pisarevsky S A, Evans D A D. Rodinia connections between Australia and Laurentia:no SWEAT, no AUSWUS?[J]. Terra Nova, 2002, 14(2):121-128. doi: 10.1046/j.1365-3121.2002.00401.x Wingate M T D, Pisarevsky S A, Evans D A D. Rodinia connections between Australia and Laurentia:no SWEAT, no AUSWUS?[J]. Terra Nova, 2002, 14(2):121-128. doi: 10.1046/j.1365-3121.2002.00401.x
Evans D A D. The palaeomagnetically viable, long-lived and allinclusive Rodinia supercontinent reconstruction[J]. Geological Society, London, Special Publications, 2009, 327(1):371-404. doi: 10.1144/SP327.16 Evans D A D. The palaeomagnetically viable, long-lived and allinclusive Rodinia supercontinent reconstruction[J]. Geological Society, London, Special Publications, 2009, 327(1):371-404. doi: 10.1144/SP327.16
Abrajevitch A, Van der Voo R. Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis[J]. Earth and Planetary Science Letters, 2010, 293(1):164-170. Abrajevitch A, Van der Voo R. Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis[J]. Earth and Planetary Science Letters, 2010, 293(1):164-170.
Schmidt P W, Williams G E, McWilliams M O. Palaeomagnetism and magnetic anisotropy of late Neoproterozoic strata, South Australia:Implications for the palaeolatitude of late Cryogenian glaciation, cap carbonate and the Ediacaran System[J]. Precambrian Research, 2009, 174(1):35-52. Schmidt P W, Williams G E, McWilliams M O. Palaeomagnetism and magnetic anisotropy of late Neoproterozoic strata, South Australia:Implications for the palaeolatitude of late Cryogenian glaciation, cap carbonate and the Ediacaran System[J]. Precambrian Research, 2009, 174(1):35-52.
Hodych J P, Buchan K L. Early Silurian palaeolatitude of the Springdale Group redbeds of central Newfoundland:a palaeomagnetic determination with a remanence anisotropy test for inclination error[J]. Geophysical Journal International, 1994, 117(3):640-652. doi: 10.1111/gji.1994.117.issue-3 Hodych J P, Buchan K L. Early Silurian palaeolatitude of the Springdale Group redbeds of central Newfoundland:a palaeomagnetic determination with a remanence anisotropy test for inclination error[J]. Geophysical Journal International, 1994, 117(3):640-652. doi: 10.1111/gji.1994.117.issue-3
Tauxe L, Kent D V. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations:was the ancient magnetic field dipolar?[J]. Timescales of the Paleomagnetic Field, 2004:101-115. Tauxe L, Kent D V. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations:was the ancient magnetic field dipolar?[J]. Timescales of the Paleomagnetic Field, 2004:101-115.
Wang B, Yang Z. Late Cretaceous paleomagnetic results from southeastern China, and their geological implication[J]. Earth and Planetary Science Letters, 2007, 258(1):315-333. Wang B, Yang Z. Late Cretaceous paleomagnetic results from southeastern China, and their geological implication[J]. Earth and Planetary Science Letters, 2007, 258(1):315-333.
方大钧, 谈晓冬.等温剩磁各向异性及其在磁倾角校正中的应用[J].地球物理学报, 2000, 43(5):719-724. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200005015.htm 王恒, 仝亚博, 高亮, 等.青藏高原东南缘川滇地块古近纪沉积地层古地磁分析及其构造意义[J].地质通报, 2015, 34(1):45-57. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20150107&flag=1 Gilder S, Chen Y, Cogné J P, et al. Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0(ISEA?) chron[J]. Earth and Planetary Science Letters, 2003, 206(3):587-600. Gilder S, Chen Y, Cogné J P, et al. Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0(ISEA?) chron[J]. Earth and Planetary Science Letters, 2003, 206(3):587-600.
Jing X, Yang Z, Tong Y, et al. A revised paleomagnetic pole from the mid-Neoproterozoic Liantuo Formation in the Yangtze block and its paleogeographic implications[J]. Precambrian Research, 2015, 268:194-211. doi: 10.1016/j.precamres.2015.07.007 Jing X, Yang Z, Tong Y, et al. A revised paleomagnetic pole from the mid-Neoproterozoic Liantuo Formation in the Yangtze block and its paleogeographic implications[J]. Precambrian Research, 2015, 268:194-211. doi: 10.1016/j.precamres.2015.07.007
Lan Z, Li X H, Zhu M, et al. Revisiting the Liantuo Formation in Yangtze Block, South China:SIMS U-Pb zircon age constraints and regional and global significance[J]. Precambrian Research, 2015, 263:123-141. doi: 10.1016/j.precamres.2015.03.012 Lan Z, Li X H, Zhu M, et al. Revisiting the Liantuo Formation in Yangtze Block, South China:SIMS U-Pb zircon age constraints and regional and global significance[J]. Precambrian Research, 2015, 263:123-141. doi: 10.1016/j.precamres.2015.03.012
Van der Voo R. The reliability of paleomagnetic data[J]. Tectonophysics, 1990, 184(1):1-9. doi: 10.1016/0040-1951(90)90116-P Van der Voo R. The reliability of paleomagnetic data[J]. Tectonophysics, 1990, 184(1):1-9. doi: 10.1016/0040-1951(90)90116-P
安志辉, 童金南, 叶琴, 等.峡东青林口地区新元古代地层序列及沉积演变[J].地球科学(中国地质大学学报), 2014, 39(7):795-806. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407003.htm Liu P, Li X, Chen S, et al. New SIMS U-Pb zircon age and its constraint on the beginning of the Nantuo glaciation[J]. Science Bulletin, 2015, 60(10):958-963. doi: 10.1007/s11434-015-0790-3 Liu P, Li X, Chen S, et al. New SIMS U-Pb zircon age and its constraint on the beginning of the Nantuo glaciation[J]. Science Bulletin, 2015, 60(10):958-963. doi: 10.1007/s11434-015-0790-3
Peters K E, Cunningham A E, Walters C C, et al. Petroleum systems in the Jiangling-Dangyang area, Jianghan basin, China[J]. Organic Geochemistry, 1996, 24(10):1035-1060. Peters K E, Cunningham A E, Walters C C, et al. Petroleum systems in the Jiangling-Dangyang area, Jianghan basin, China[J]. Organic Geochemistry, 1996, 24(10):1035-1060.
Vernhet E, Reijmer J J G. Sedimentary evolution of the Ediacaran Yangtze platform shelf (Hubei and Hunan provinces, Central China)[J]. Sedimentary Geology, 2010, 225(3):99-115. Vernhet E, Reijmer J J G. Sedimentary evolution of the Ediacaran Yangtze platform shelf (Hubei and Hunan provinces, Central China)[J]. Sedimentary Geology, 2010, 225(3):99-115.
Zhu G, Wang T, Xie Z, et al. Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China:implications for gas exploration in old cratonic basins[J]. Precambrian Research, 2015, 262:45-66. doi: 10.1016/j.precamres.2015.02.023 Zhu G, Wang T, Xie Z, et al. Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China:implications for gas exploration in old cratonic basins[J]. Precambrian Research, 2015, 262:45-66. doi: 10.1016/j.precamres.2015.02.023
Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3):699-718. doi: 10.1111/gji.1980.62.issue-3 Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3):699-718. doi: 10.1111/gji.1980.62.issue-3
Zhang S, Evans D A D, Li H, et al. Paleomagnetism of the late Cryogenian Nantuo Formation and paleogeographic implications for the South China Block[J]. Journal of Asian Earth Sciences, 2013, 72:164-177. doi: 10.1016/j.jseaes.2012.11.022 Zhang S, Evans D A D, Li H, et al. Paleomagnetism of the late Cryogenian Nantuo Formation and paleogeographic implications for the South China Block[J]. Journal of Asian Earth Sciences, 2013, 72:164-177. doi: 10.1016/j.jseaes.2012.11.022
Evans D A D, Li Z X, Kirschvink J L, et al. A high-quality midNeoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia[J]. Precambrian Research, 2000, 100(1):313-334. Evans D A D, Li Z X, Kirschvink J L, et al. A high-quality midNeoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia[J]. Precambrian Research, 2000, 100(1):313-334.
Li Z X, Evans D A D, Halverson G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294:219-232. doi: 10.1016/j.sedgeo.2013.05.016 Li Z X, Evans D A D, Halverson G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294:219-232. doi: 10.1016/j.sedgeo.2013.05.016
Liu X, Gao S, Diwu C, et al. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies[J]. American Journal of Science, 2008, 308(4):421-468. doi: 10.2475/04.2008.02 Liu X, Gao S, Diwu C, et al. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies[J]. American Journal of Science, 2008, 308(4):421-468. doi: 10.2475/04.2008.02
马国干, 李华芹, 张自超.华南地区震旦纪时限范围的研究[J].中国地质科学院宜昌地质矿产研究所所刊, 1984, 8(1):1-29. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198412001003.htm Cui X, Zhu W B, Ge R F. Provenance and Crustal Evolution of the Northern Yangtze Block Revealed by Detrital Zircons from Neoproterozoic-Early Paleozoic Sedimentary Rocks in the Yangtze Gorges Area, South China[J]. The Journal of Geology, 2014, 122(2):217-235. doi: 10.1086/674801 Cui X, Zhu W B, Ge R F. Provenance and Crustal Evolution of the Northern Yangtze Block Revealed by Detrital Zircons from Neoproterozoic-Early Paleozoic Sedimentary Rocks in the Yangtze Gorges Area, South China[J]. The Journal of Geology, 2014, 122(2):217-235. doi: 10.1086/674801
高维, 张传恒.长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义[J].地质通报, 2009, 28:45-50. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20090106&journal_id=gbc Hofmann M, Linnemann U, Rai V, et al. The India and South China cratons at the margin of Rodinia-Synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses[J]. Lithos, 2011, 123(1):176-187. Hofmann M, Linnemann U, Rai V, et al. The India and South China cratons at the margin of Rodinia-Synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses[J]. Lithos, 2011, 123(1):176-187.
Yang Z, Sun Z, Yang T, et al. A long connection (750-380Ma) between South China and Australia:paleomagnetic constraints[J]. Earth and Planetary Science Letters, 2004, 220(3):423-434. Yang Z, Sun Z, Yang T, et al. A long connection (750-380Ma) between South China and Australia:paleomagnetic constraints[J]. Earth and Planetary Science Letters, 2004, 220(3):423-434.
Wingate M T D, Giddings J W. Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia:implications for an Australia-Laurentia connection at 755Ma[J]. Precambrian Research, 2000, 100(1):335-357. Wingate M T D, Giddings J W. Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia:implications for an Australia-Laurentia connection at 755Ma[J]. Precambrian Research, 2000, 100(1):335-357.
Sohl L E, Christie-Blick N, Kent D V. Paleomagnetic polarity reversals in Marinoan (ca. 600Ma) glacial deposits of Australia:implications for the duration of low-latitude glaciation in Neoproterozoic time[J]. Geological Society of America Bulletin, 1999, 111(8):1120-1139. doi: 10.1130/0016-7606(1999)111<1120:PPRIMC>2.3.CO;2 Sohl L E, Christie-Blick N, Kent D V. Paleomagnetic polarity reversals in Marinoan (ca. 600Ma) glacial deposits of Australia:implications for the duration of low-latitude glaciation in Neoproterozoic time[J]. Geological Society of America Bulletin, 1999, 111(8):1120-1139. doi: 10.1130/0016-7606(1999)111<1120:PPRIMC>2.3.CO;2