Reconstruction of the Holocene rela-tive sea level change for the south coast of Laizhou Bay
-
摘要:
在对莱州湾南岸8个钻孔沉积物沉积结构及有孔虫特征分析基础上,识别相关海面标志层位,辅以加速器质谱AMS 14C测年,重建了全新世相对海面变化历史,并讨论了海面变化的沉积响应及控制因素。约9200cal BP以前,海面快速上升,研究区海侵时海面于-21.5m左右;9200~8400cal BP海面上升速率减缓至约2mm/a;8400~8000cal BP海面由-14m快速上升至-5.5m,速率约为33mm/a;8000~7600cal BP,海面持续数百年停滞或微弱下降;7600~7000cal BP海面由-5.5m快速上升至0m以上,速率至少约为13mm/a;7000~6000cal BP海面缓慢上升至+2~+3m位置,速率约为3mm/a;约6000cal BP以后海面缓慢下降至现今水平。约9200cal BP以前、8400~8000cal BP、7600~7000cal BP时期的3次海面快速上升,是MWP-1C融水脉冲、诱发8.2ka冷事件的融水脉冲,以及MWP-2融水脉冲的中纬度地区响应。中全新世全球冰融趋于停滞后,由于研究区沉积盆地沉降速度较慢,在冰川均衡调整效应下,使+2~+3m的相对高海面得以呈现。
Abstract:On the basis of accelerator mass spectrometry (AMS) 14C ages of eight Holocene core sediment samples from the south coast of Laizhou Bay, along with the analyses of sedimentary structure and foraminifera characteristics, the authors identified the sea level indicators and, on such a basis, reconstructed the Holocene relative sea level changes. The rapid sea level rise before ca. 9200cal BP probably resulted in the local postglacial flooding when the relative sea level reached -21.5m, followed by the decrease of sea level rise to 2mm/a from 9200cal BP to 8400cal BP. During 8400~8000cal BP or so relative sea rose rapidly from -14m to -5.5m with a rate of 33mm/a. A stagnation or slight decline of the sea level was found which lasted hundreds of years from 8000cal BP to 7600cal BP. After 7600cal BP, this equilibrium was again interrupted by the rapid sea level rise of more than 13mm/a, and the relative sea level passed over the modern elevation at around 7000cal BP with more than 5m rise magnitude. After about 7000cal BP, the relative sea level rose slowly at the rate of 3mm/a, and reached its high stand of 2~3m height at around 6000cal BP. And then it fell slowly down to the present level. There were three times of rapid rise in Early Holocene, probably corresponding to three meltwater pulse events of MWP-1C, 8.2ka event and MWP-2, respectively. The global ice melting tended to be stagnant in the Middle Holocene; in virtue of the slow rate of local basin subsidence, the sea level highstand of +2~+3m was presented under the effect of Glacial Isostatic Adjustment (GIA).
-
Keywords:
- Holocene /
- sea level /
- meltwater pulse /
- Laizhou Bay
-
末次冰消期以来,受一系列融水脉冲事件影响[1-10],中国东部陆架地区海面总体呈现阶梯状上升趋势,至约7ka BP 海面基本到达高位[6, 11],约7kaBP 后,中国东部不同区域因局地沉降差异(构造沉降、自重压实等)影响,海面高位变化情况存在差异[12-17]。相对海面变化重建是研究海岸带地区海陆环境演化、揭示海面变化沉积响应的重要基础。
莱州湾南岸发育多条近源性河流,海岸带沉积物以砂质为主,相比大型河口海岸地区的泥质沉积,具有压实效应低的优点,该地区第四系厚度小、沉积盆地沉降速率低,沉积物记录的相对海面变化更具普遍性。本文应用新近获取的钻孔岩心样品AMS14C 年龄、沉积结构、有孔虫特征等数据,重建莱州湾南岸全新世以来的海面变化。
1. 区域背景
研究区位于莱州湾南岸,地势自南向北倾斜,沿海平原地势相对华北平原更陡,坡降可达0.3‰。区内分布有弥河、小清河及白浪河水系,前两者径流量和输沙量较大,平均径流量分别为428 × 109m3/a 和85 × 109m3/a,平均输沙量分别为8.4×105t/a 和3.7×105t/a[18]。莱州湾的潮汐类型属于不正规混合半日潮,羊角沟潮位站1972—1994年统计显示,从潮位零点起算的历年最高潮位(HHW)为645cm(即当年平均海面以上3.29m),平均大潮差(MLTR)为1.62m[19],当地平均潮差为0.89m[20]。
研究区处于渤海湾盆地东边缘与郯庐断裂带结合部,新生代形成由郯庐断裂带走滑正断层控制的地堑或半地堑式沉积凹陷。受太平洋板块的俯冲作用影响,郯庐断裂及其周边地区晚白垩世—始新世期间由走滑导致的裂谷沉陷迅速发展。渐新世—中新世,印度板块与欧亚板块碰撞、太平洋板块开始形成弧后扩张,地质应力场发生重大改变,裂谷沉积盆地快速充填。上新世后,印度板块与欧亚板块碰撞作用及太平洋板块弧后扩张作用均减弱,整体处于稳定沉降背景[21-22]。莱州湾南岸第四纪沉积以河湖相为主,上部含有数层海侵地层,第四系厚度小于150m[23]。
2. 研究材料与方法
本文的8 个钻孔的岩心样品于2012—2013 年获取(图 1),研究仅针对其上部的全新统。地面高程采用RTK 获得,沉积物依据Munsell 土壤色彩系统命名,进行沉积岩石学描述并照相(图版Ⅰ),于不同层位采集AMS 14C 年龄样品和微体生物样品(表 1)。AMS 14C 年龄测试由北京大学考古文博学院和Beta 实验室完成,所有14C 样品均据δ13C 值分馏效应校正为惯用年龄,有机物及淡水贝壳样品采用Intcal13 曲线、海洋样品采用Marine13 曲线(ΔR=-178±50a)校正为日历年龄,校正版本CAL⁃IB 7.0.2[24-25]。有孔虫样品由同济大学鉴定。各孔更新统基底的光释光(OSL)年龄由中国地质大学(武汉)、南京大学及国土资源部地下矿泉水及环境监测中心测定。
表 1 莱州湾南岸8 个钻孔及全新统样品信息Table 1. Data on 8 cores and Holocene sediments samples from the south coast of Laizhou Bay编号 钻孔 样品 坐标 地表高程/m 进尺/m 全新统厚度/m 编号 采样深度/m 高程/m X1 37°15'12"N、119°01'04"E +0.9 160 19.0 S1 4.1 -3.2 S2 10.2 -9.3 S3 12.3 -11.4 S4 16.4 -15.5 S5 2.5 -0.2 HLL01 37°06'24"N、119°07'08"E +2.3 452 11.0 S6 3.5 -1.2 S7 5.5 -3.2 S8 0.6 +2.8 S9 0.7 +2.7 H5 37°05'39"N、119°02'28"E +3.4 150 11.0 S10 3.2 +0.2 S11 4.9 -1.5 S12 8.3 -4.9 HLL02 37°02'00"N、119°08'15"E +3.4 425 9.1 S13 2.2 +1.2 S14 5.5 -2.1 S15 6.8 -3.4 S16 8.5 -5.1 S17 2.8 +0.8 H4 37°01'50"N、119°11'19"E +3.6 130 10.2 S18 6.5 -2.9 S19 8.2 -4.6 G5 36°56'30"N、119°02'05"E +5.0 80 3.0 S20 0.2 +4.8 S21 0.3 +4.7 G2 36°54'02"N、119°08'55"E +6.3 130 3.5 S22 2.6 +3.7 De501 36°53'36"N、119°00'12"E +6.9 9 0.4 S23 0.3 +6.6 3. 结果
3.1 样品沉积相分析
总体上钻孔岩心显示,莱州湾地区全新世海侵时期,地层以潮上沿海低地及潮滩/盐沼沉积为主,沉积物为泥质,可能与全新世初期相对较弱的河流泥沙输运能力有关。海退时形成水下三角洲、潮滩、潮上沿海低地等沉积相,沉积物以砂质为主,且沉积结构相对单一,可能是因为入海河流多为规模较小、流向相对稳定的近源性、游荡性河流,泥砂含量低,砂与泥比例高,且莱州湾地区潮汐作用较弱,波浪作用对比显著,导致三角洲体系发育不健全,入海沉积物除少量堆积在河口附近外,多数在波浪的改造下形成水下席状砂和砂质潮滩,其砂质潮滩上部的盐沼不发育,在潮滩向陆一侧由河流和海洋共同影响的低洼地区可形成大面积的沿海湖沼。
莱州湾南岸钻孔海侵沉积物样品中的底栖有孔虫可分为3 类:①盐度低于20‰的潮上带、潮间带和河口等少盐至中盐的半咸水类;②潮上带、潮间带、潮下带、泻湖和河口的少盐(1‰~5‰)至真盐(30‰~35‰)海水中的广盐滨岸类;③近岸陆架地区,对盐度要求较高(多盐-真盐)的近岸浅海类。
半咸水类有孔虫属种有德国海恩斯虫Hayne⁃sina germanica,多变假小诺宁虫Pseudononionellavariabilis,小假诺宁虫Pseudononion minutum,江苏小希望虫Elphidiella kiangsuensis,Helenina anderse⁃ni 缝裂海伦虫,中里假上穹虫Pseudoeponides naka⁃zatoensis,中国假圆旋虫Pseudogyroidina sinensis,多角口室虫Stomoloculina multangula,瘦瘪砂轮虫Trochammina macrescens,秋田诺宁虫Nonion aki⁃taensis 等。
广盐滨岸类主要属种是暖水卷转虫Ammoniatepidai,多室卷转虫Ammonia multicella,孔缝筛诺宁虫Cribrononion porisuturalis,凸背卷转虫Ammoniaconvexidorsa,缝裂希望虫Elphidium magellanicum,亚易变筛诺宁虫Cribrononion subincertum,厚壁卷转虫Ammonia confertitesta 等。
多盐-真盐的近岸浅海属种有丸桥卷转虫Am⁃monia maruhasii,冷水面颊虫Buccella frigida,高锅卷转虫Ammonia takanabensis,异地希望虫Elphid⁃ium advenum,清晰希望虫Elphidium limpidum,简单希望虫Elphidium simplex,亚卷曲希望虫Elphidiumsubcrispum,具瘤先希望虫Protelphidium tubercula⁃tum,同现轮状虫Rotalidium annectens,多瘤拟轮虫Rotalinoides papillosa,球室刺房虫Schackoinella glo⁃bosa,五玦虫诸种Quinqueloculina spp.,三玦虫Triloc⁃ulina spp.等。
依据岩性及有孔虫微体生物特征,对采集的莱州湾全新世样品进行沉积相分析(表 2)。
表 2 各样品的沉积结构、有孔虫丰度及主要属种Table 2. Sedimentary structure,foraminifera characteristics and major species in samples编号 沉积结构特征 有孔虫特征及含量大于4%的属种 沉积相 S3 2.5Y4/2,喑灰棕色粉砂质砂,分选性较差,小型交错层理或水平层理,与下呈冲刷接触,含有炭化枯物碎屑及小钙核 仅见1枚E. advenum 沿海泛滥平原 潮上 带沿 海低 地 S8 S9 10YR 4/4,暗黄棕色粘土质粉砂,块状,偶含小砂团,弱铁锰染,含淡水贝壳及小钙核 丰度2枚/g,17 个种属,以广盐类(59%)和近岸浅海类(37%)为主,A. tepida(42.0%),P. tuberculatum(9.2%),C. subincertum(8.7%),E.subcrispum(6.3%),E. simplex(4.8%) 沿海泛滥平原 S22 2.5Y4/2,喑灰棕色粘土质粉砂,块状,含少量有机质,分选性较差,内含淡水贝壳赤豆螺,见炭化枯物碎片 丰度85 枚/g,23个种属,以广盐类(37%)和半咸水类(34%)为主,A. tepida(15.2%),P. sinensis(14.8%),C. subincertum(10%),E. subcrispum(10.3%),P. nakazatoensis(8.8%),P. variabilis(6.9%),E. simplex(6.4%),A. multicella(6.4%),E. magellanicum(5.2%),Q. seminula(4.1%) 沿海浅湖 S4 5Y 4/2,暗灰棕色粘土质粉砂,泥层均质细腻,有机质含量较高,局部含有机质薄层,生物扰动构造明显,偶见光滑河篮蛤 丰度0.3枚/g,8 个种属,以广盐种类(42%)和浅海类(37%)为主,A. tepida(36.8%),A. convexidorsa(15.8%),H. germanica(15.8%),Q. sp.(5.2%),T. trigonula(5.2%),A. multicella(5.2%),A. maruhasii(5.2%),P. variabilis(5.2%) 盐沼 潮间 带 S12 10YR 4/2,暗灰棕色粉砂,局部粘土增多,有机质含量较高,含炭化植物碎屑,生物扰动明显,见琵琶拟沼螺及光滑河篮蛤 丰度105枚/g,14 个种属,以广盐种类(52%)和浅海类(45%)为主,A. tepida(45.4%),Q. seminula(12.3%),E. subcrispum(11.7%) 盐沼 S16 10YR4/2,喑灰棕色粉砂与粘土质粉砂,粉砂内含炭化枯物碎屑及少量光滑河篮蛤,粘土质粉砂含有机质侵染 丰度5枚/g,16 个种属,以广盐种类(64%)和浅海类(29%)为主,A. tepida(36.2%),E. agellanicum(12.6%),C. subincertum(11.6%),Q. seminula(9.2%),P. variabilis(6.8%),E. simplex(5.8%),E. subcrispum(5.3%) 盐沼 S5 2.5YR5/4,黄棕色细砂,分选性较好,隐见小型交错层理,夹少量泥质薄层,含少量海相贝壳碎屑及云母片 丰度1830枚/g,24 个种属,以浅海类(69%)和广盐种类(30%)为主,A. tepida(20.4%),Q. seminula (10.5%),P. tuberculatum(10.0%),T. trigonula(8.8%),E. advenum(8.1%),Q. akneriana(6.7%),E. subcrispum(5.9%),E. simplex(5.0%),C. subincertum (4.0%) 砂质潮滩 S10 10YR4/3,棕色粉砂质砂,分选性较好,块状,含少量海相贝壳及云母片 丰度875枚/g,19 个种属,以浅海类(65%)和广盐种类(35%)为主,A. tepida(26.8%),E. advenum(18.6%),Q. seminula(8.6%),R. annectens(8.2%),P. tuberculatum(6.7%),E. magellanicum(5.5%),Q. akneriana(4.0%) 砂质潮滩 S13 2.5YR5/4,黄棕色细砂,分选性较好,小型交错层理,夹少量粉砂薄层,含少量海相贝壳及云母片 丰度1819枚/g,23 个种属,以浅海类(51%)和广盐种类(46%)为主,A. tepida(34.4%),P. tuberculatum (9.6%),Q. jugosa(6.9%),Q. venusta(6.5%),Q. seminula(4.8%),C. subincertum(4.8%),E. magellanicum (4.8%),E. simplex(4.8%) 砂质潮滩 S17 10YR4/3,棕色粉砂质砂,分选性较好,小型交错层理,夹少量泥质薄层,含少量海相贝壳碎屑及云母片 丰度1006枚/g,22 个种属,以浅海类(48%)和广盐种类(47%)为主,A. tepida(24.0%),E. magellanicum (17.7%),P. tuberculatum(11.7%),Q. seminula(7.8%),E. advenum(7.1%),Q. akneriana(5.3%),C. subincertum(5.3%) 砂质潮滩 S1 2.5YR5/4,黄棕色细砂,分选性较好,较纯净,见云母片,海相贝壳稀少 丰度13 枚/g,18个种属,以浅海类(48%)和广盐种类(44%)为主,A. tepida(25.0%),A. multicella(12.5%), Q. akneriana(11.3%),Q.seminula(10.9%),E. subcrispum(5.2%),C. subincertum(4.8%),P. tuberculatum (4.4%),H. germanica(4.4%) 河II坝 潮下 带 S2 10YR4/2,喑灰棕色粉砂质砂,分选性较好,较纯净,见云母片,海相贝壳稀少 丰度6枚/g,19 个种属,广盐种类(54%),浅海类(27%),半咸水类(19%),A. tepida(23.2%),A. multicella (19.9%),H. germanica(14.9%),E. magellanicum(8.8%),E.advenum(6.6%),A. convexidorsa(5.5%),P.tuberculatum(5.0%) 河II坝 S6 10YR4/2喑灰棕色细纱,块状,分选性较好,见云母片,内部海相贝壳碎屑较为发育,种类丰富,见炭化枯物碎片 丰度1311枚/g,25个种属,以浅海类(54%)和广盐种类(43%)为主,A. tepida(25.0%),P. tuberculatum (20.0%),E. magellanicum(8.9%),E. advenum(7.5%),C. subincertum(7.0%),Q. akneriana(5.4%) 三角洲前缘席状砂 S7 10YR4/2,喑灰棕色细纱,块状,分选性较好,海相贝壳碎屑较为发育,种类丰富,见云母片及枯物碎片 丰度287枚/g,20 个种属,以浅海类(49%)和广盐种类(49%)为主,A. tepida(25.6%),P. tuberculatum (14.8%),E. magellanicum(14.4%),E. advenum(8.5%),Q. akneriana(8.1%),C.subincertum(5.6%) 三角洲前缘席状砂 S11 10YR4/3,棕色粉砂质砂,分选性较好,块状,见炭屑及枯物碎片及见云母片,含较多海相贝壳碎片,种类丰富 丰度262枚/g,22 个种属,以浅海类(54%)和广盐种类(42%)为主,A. tepida(32.8%),E. advenum(11.2%), E. magellanicum(10.1%),E. magellanicum(8.5%),R. annectens(6.3%),C. subincertum(4.9%) 三角洲前缘席状砂 S14 10YR4/3,棕色细砂,分选性较好,块状,见云母片,海相贝壳碎片散布层内,种类丰富,局部富集呈薄层,见炭化枯物碎片 丰度567枚/g,20 个种属,以广盐种类(59%)和浅海类(40%)为主,A. tepida(36.4%),P. tuberculatum (13.4%),E. magellanicum(12.6%),C. subincertum(9.0%),Q. akneriana(5.9%) 三角洲前缘席状砂 S15 10YR4/3,棕色细砂,分选性较好,块状,见云母片,海相贝壳碎屑较为发育,种类丰富 丰度532枚/g,19 个种属,以广盐种类(67%)和浅海类(30%)为主,A. tepida(45.4%),E. magellanicum (12.8%),P. tuberculatum(9.0%),C. subincertum(5.7%),E. subcrispum(4.2%) 三角洲前缘席状砂 S18 10YR4/2,深棕色砂质粉砂,分选性中等-较差,内部见泥砾及炭屑,含泥,分布较多光滑河篮蛤 丰度279枚/g,21 个种属,以广盐种类(66%)和浅海类(28%)为主,A. tepida(44.7%),E. magellanicum (17.0%),E. advenum(6.9%),P. tuberculatum(4.1%) 水下分流河道 S19 10YR5/3,棕色砂质粉砂,分选性较差,内部见泥砾及炭屑, 含泥,分布较多光滑河篮蛤 丰度231枚/g,25 个种属,以广盐种类(61%)和浅海类(33%)为主,A. tepida(38.2%),E. magellanicum (18.3%),Q. seminula(7.1%),E. advenum(6.1%),E. subcrispum(4.5%) 水下分流河道 S20 7.5YR3/2,喑棕色粘土质粉砂,块状,均质,含有机质,见淡水赤豆螺 未见有孔虫 淡水湖 陆相 S21 7.5YR3/2喑棕色粘土质粉砂,块状,均质,含有机质,见淡水赤豆螺 未见有孔虫 淡水湖 S23 7.5YR3/2,喑棕色粘土质粉砂,块状,含赤豆螺、烟台间齿螺、 白小旋螺,风化节理,含碳屑,0.4m以下为更新统风化黄土 未见有孔虫 淡水湖 3.1.1 淡水浅湖
淡水浅湖相以暗棕色粘土质粉砂为主,块状,均质细腻,含有机质,内见淡水赤豆螺Bithynia fuch⁃siana,烟台间齿螺Metodontia yantaiensis 和白小旋螺Gyraulus albus,地层内未见有孔虫及海洋贝壳,厚度数十厘米,根据形成时间和位置差异,其下伏地层为更新世风化黄土或全新统海相地层。
3.1.2 潮上沿海低地
沿海低地地区可形成海泛滥平原、沿海浅湖等沉积相,以还原色暗灰棕、暗黄棕色粘土质粉砂为主,受海洋和河流影响,可形成厚度不等、具小型交错层理或水平层理的砂层,常见炭化植物碎屑、淡水贝壳赤豆螺B. fuchsiana 和白小旋螺G. albus,水位波动可形成小型钙质结核或微弱铁锰染。有孔虫稀少,丰度低,分异度高,优势度低-高,半咸水类或广盐类占比有优势,含一定量浅海类。总体上,有孔虫数量稀少,来源复杂,以低盐或广盐类为主。
3.1.3 盐沼
盐沼以还原色的暗灰棕色粉砂或粘土质粉砂为主,有机质含量较高,局部出现有机质薄层,生物扰动构造明显,含有机质团块及炭化植物碎屑,偶见海相贝壳以光滑河篮蛤Potanocorbula laevis 为主,还可见半咸水琵琶拟沼螺Assiminea lutea。有孔虫稀少,丰度低,分异度低,优势度较高,以广盐类为主,浅海类次之,含少量半咸水类,显示受海水显著影响,但属于半封闭环境,与开放浅海交换较弱。
3.1.4 砂质潮滩
砂质潮滩以氧化色的棕色、黄棕色细砂或粉砂质砂为主,分选性较好,含少量海相贝壳碎屑及云母片,层内隐见少量小型交错层理和泥质薄层,可能与该地区较弱的潮汐作用有关。砂质潮滩中有孔虫丰度高,分异度较高,优势度较低,以浅海类为主,广盐类次之,半咸水类稀少,显示开放潮滩性质。
3.1.5 三角洲前缘
河口砂坝以黄棕色细砂或灰棕色粉砂质砂为主,沉积物分选性较好,较纯净,见云母片,由于沉积速率较高,海相贝壳稀少;有孔虫稀少,丰度低、分异度高、优势度低,以广盐种类和浅海类为主,并含有相当比例的半咸水类,显示出有孔虫密度低、多源复杂混合的特征。
水下分流河道为棕色、深棕色砂质粉砂,内部见泥砾及小型冲刷构造,含炭屑和泥质成分,分选性较差,海相贝壳以光滑河篮蛤P. laevis 为主,有孔虫丰度、分异度、优势度高,以广盐种类为主,浅海类次之,含少量半咸水类,显示出有孔虫密度高、靠近河口的开放滨浅海生态特征。
水下席状砂以暗灰棕色细砂或灰棕色粉砂质砂为主,沉积物分选性较好,可见炭化植物碎片。
其内有孔虫丰度、分异度、优势度高,以浅海类和广盐种类为主,半咸水类稀少,显示出有孔虫高密度、开放滨浅海生态特征。
3.2 莱州湾南岸全新世沉积环境演变框架
采集海洋腹足类、双壳类、淡水腹足类、有机物等22 个全新世地层样品,进行AMS 14C 测年(表 3),各孔前全新统基底(更新统顶部)年龄由OSL 测年获得(表 4)。根据样品高程,结合地表高程和样品沉积环境因素,绘制各孔全新世沉积环境对比剖面(图 2)及沉积物累积曲线(图 3)。
表 3 莱州湾南岸全新世地层AMS 14C 年龄Table 3. AMS 14C ages of Holocene sediments from the south coast of Laizhou Bay钻孔 样品编号 深度/m 高程/m 测年材料 惯用年龄/a BP 日历年/cal BP(2σ) 实验室编号 X1 S1 4.1 -3.2 光滑河篮蛤 1735±20 1459(1330~1589) BA140322 S2 10.2 -9.3 光滑河篮蛤 7320±25 7957(7835~8098) BA140323 S3 12.3 -11.4 有机物 7650±25 8429(8391~8480) BA140325 S4 16.4 -15.5 有机物 8060±30 9000(8780~9078) BA140326 HLL01 S5 2.5 -0.2 托氏昌螺 2955±30 2915(2759~3074) BA121359 S6 3.5 -1.2 文蛤 3160±25 3191(3026~3344) BA121360 S7 5.5 -3.2 扁玉螺 4800±30 5334(5129~5474) BA121361 H5 S8 0.6 +2.8 赤豆螺 1190±30 1120(1006~1227) Beta-419841 S9 0.7 +2.7 白小旋螺 1200±30 1126(1010~1235) Beta-418568 S10 3.2 +0.2 光滑河篮蛤 4175±30 4493(4323~4697) BA140749 S11 4.9 -1.5 日本镜蛤 4610±25 5066(4881~5252) BA140751 S12 8.3 -4.9 拟沼螺 7450±30 8085(7949~8213) BA140753 HLL02 S13 2.2 +1.2 托氏昌螺 4945±30 5487(5321~5586) BA121364 S14 5.5 -2.1 文蛤 5280±35 5827(5678~5970) BA121365 S15 6.8 -3.4 饼干镜蛤 5740±35 6335(6208~6464) BA121366 S16 8.5 -5.1 文蛤 6940±30 7593(7475~7701) BA121367 H4 S17 2.8 +0.8 光滑河篮蛤 4750±20 5261(5064~5425) BA140327 S18 6.5 -2.9 文蛤 5960±50 6569(6400~6733) BA140330 S19 8.2 -4.6 光滑河篮蛤 6235±40 6894(6723~7085) BA140332 G5 S20 0.2 +4.8 赤豆螺 760±30 691(667~729) Beta-418569 S21 0.3 +4.7 赤豆螺 1850±30 1784(1715~1865) Beta-418571 G2 S22 2.6 +3.7 豆螺 6180±30 7080(7168~6989) BA140745 De501 S23 0.3 +6.6 白小旋螺 5270±30 6058(5940~6179) Beta-418570 表 4 莱州湾南岸钻孔前全新统基底OSL 年龄Table 4. OSL dating results of the pre-Holocene basements from the cores of the south coast of Laizhou Bay钻孔 样品编号 深度/m 高程/m OSL年龄/ka 误差 X1 NJU1763 19.5 -18.6 56.0 ±4.7 NJU1764 21.3 -20.3 >70 H5 H5-2 8.1 -4.7 10.45 ±0.51 H5-3 10.5 -7.1 14.73 ±2.05 HLL02 13G-287 9.5 -6.1 50.4 ±2.8 13G-288 12.2 -8.8 69.2 ±3.5 H4 NJU1766 11.6 -8.0 >78 NJU1767 13.7 -10.1 >80 G2 G2-2 4.9 +1.4 38.51 ±2.98 G2-3 6.4 -0.1 68.70 ±5.24 莱州湾南岸不同钻孔位置全新世沉积累积曲线差异性较大,但单孔曲线谐调,总体上具有四段式结构,即沉积累积速率由老至新表现出“快-慢-快-慢”的特点。与样品沉积环境对比,可将其总结为海侵海岸快速段、远岸缓慢段、海退海岸快速段、沿海平原慢速段(图 4)。不同地理位置钻孔显示的各拐点时间不同,指示其经历海侵和海退的时间存在差异。
渤海大规模海侵发生始于晚更新世末期,于约11000cal BP 时古岸线到达现在40m 水深渤海海峡的位置[6],约9ka cal BP 时,古岸线到达并稳定于现代岸线附近,X1 孔形成盐沼和潮上沿海低地环境(S4,S3 样品);约8ka BP 时,岸线前进约10km至H5 孔处,该孔处形成盐沼环境(S12 样品);约7ka BP 时,岸线到达最南边界,即现今岸线以南20km 左右,G2 孔处于潮上沿海低地环境(S22 样品)。约6.5ka cal BP 以后,当时处于近海区的H4、H5、HLL02、HLL01 孔沉积速率显著增大,指示当地河流进积作用占据主导,岸线开始向北后退;约5.5ka cal BP 时,岸线退至H4 和HLL02 孔附近,形成潮滩沉积(S13 和S17);约4.5ka cal BP 时,岸线退至H5 附近形成潮滩沉积(S10 样品);约3ka calBP 时,岸线退至HLL01 孔附近形成潮滩沉积(S5样品)。
3.3 全新世海面变化重建
莱州湾地区发育规模较小、流向相对稳定的近源性、游荡性河流,难以形成巨型的下切河谷地貌(图 3)。全新世初期海侵时由于地貌的继承性,潮汐的河口增水效应不显著,且这些小型河流在海退过程中对岸线的塑造能力有限,因此全新世历史时期海岸线轮廓与现代类似。在恢复古海面时,全新世古潮汐情况由现代羊角沟潮位站数据代替,即最高潮位(HHW)为当年平均海面以上3.29m,大潮差(MLTR)平均为1.62m,平均潮差为0.89m。据此大致推断(以当地平均海面起算),平均大潮高潮位(MHWS)为0.81m,平均大潮低潮位(MLWS)为-0.81m,平均高潮位(MHW)为0.45m,平均低潮位(MLW)为-0.45m。
淡水浅湖、潮上沿海低地、潮滩、潮下带水下三角洲沉积相样品高度(Elevation,简称E)与平均古海面(Paleo Sea Level,PSL)之间在高度上具有固定关系范围:①淡水浅湖位于海水无法到达区域,即最高高潮位(HHW)以上,因此该类型沉积物高程指示当时海面的最高高潮位上限,当时最高高潮位必须在其以下,指示的古海面高度PSL <E-3.29m;②潮上沿海低地是位于海水偶尔能够影响的区域,即平均大潮高潮位(MHWS)至最高高潮位(HHW)之间,指示的古海面高度PSL 介于E-0.81m 与E-3.29m 之间,若PSL 取其中间值,误差则为两界限面高差的一半(1.24m),即PSL=E-[0.5×(3.29-0.81)+0.81] ±1.24m = E-2.05±1.24m;③潮滩是潮汐作用能够经常影响到的区域,平均大潮低潮位(MLWS)以下波浪作用相对较强,潮滩位于平均大潮高潮位(MHWS)至平均大潮低潮位(MLWS)之间,指示的古海面高度PSL 介于E+0.81m 与E-0.81m 之间,若PSL 取中间值,误差则为两界限面高差的一半(0.81m),即PSL=E±0.81m;④盐沼是沿岸可生长陆生耐盐碱植被的区域,位于平均高潮位(MHW)至平均大潮高潮位(MHWS)之间,属于潮滩的顶部,指示的古海面高度PSL介于E-0.45m与E-0.81m之间,若PSL取其中间值,误差则为两界限面高差的一半(0.18m),即PSL=E-[0.5×(0.81-0.45)+0.45]±0.18m=E-0.63±0.18m;⑤潮下带是潮汐作用较弱的区域,即沉积于平均大潮低潮位(MLWS)以下,浪蚀基面以上的浅水区域,该类型沉积物高程指示当时海面的平均低潮位下限,即当时平均低潮位必须在其以上,指示的古海面高度PSL大于E+0.81m。
利用8 个钻孔23 个AMS 14C 样品年龄、高程、所属沉积环境的古海面指示意义(表 5),参考最大海侵边界附近的G2 孔最上部海退标志高程,即淡水浅湖与潮上沿海低地2 种沉积相的岩性界面,并根据沉积速率、相邻沉积相空间位置,以及其他钻孔的海退沉积作用发生时间推算其年龄,以此重建全新世古海面变化(图 5)。
表 5 莱州湾南岸全新世海平面标志Table 5. Holocene sea level indicators for the south coast of Laizhou Bay钻孔 高程/m 日历年/cal BP 沉积类型 海面指示意义 古海平面高程/m X1 -3.2 1459 (1330—1589) 河口坝 MLWS以下 > -2.39 -9.3 7957 (7835—8098) 河口坝 MLWS以下 > -8.49 -11.4 8429 (8391—8480) 沿海泛滥平原 MHWS-HHW -13.45±1.24 -15.5 9000 (8780—9032) 盐沼 MHW-MHWS -16.13±0.18 HLL01 -0.2 2915 (2759—3074) 砂质潮滩 MHWS-MLWS -0.2±0.81 -1.2 3191 (3026—3344) 三角洲前缘席状砂 MLWS以下 >-0.39 -3.2 5334 (5129—5474) 三角洲前缘席状砂 MLWS以下 >-2.39 H5 +2.9 1120 (1053—1183) 沿海沼泽 MHWS-HHW +0.85±1.24 +2.8 1126 (1055—1185) 沿海沼泽 MHWS-HHW +0.75±1.24 +0.3 4493 (4323—4697) 砂质潮滩 MHWS-MLWS +0.3±0.81 -1.4 5066 (4881—5252) 三角洲前缘席状砂 MLWS以下 >-0.59 -4.8 8085 (7949—8213) 盐沼 MHW-MHWS -5.43±0.18 HLL02 +1.2 5487 (5321—5586) 砂质潮滩 MHWS-MLWS +1.2±0.81 -2.1 5827 (5678—5970) 三角洲前缘席状砂 MLWS以下 >-1.29 -3.4 6335 (6208—6464) 三角洲前缘席状砂 MLWS以下 >-2.59 -5.1 7593 (7475—7701) 盐沼 MHW-MSHW -5.73±0.18 H4 +0.8 5261 (5064—5425) 砂质潮滩 MHWS-MLWS +0.8±0.81 -2.9 6569 (6400—6733) 三角洲前缘席状砂 MLWS以下 >-2.09 -4.6 6894 (6723—7085) 三角洲前缘席状砂 MLWS以下 >-3.79 G5 +4.8 691 (667—729) 淡水浅湖 HHW以上 < +1.42 +4.7 1784 (1715—1865) 淡水浅湖 HHW以上 < +1.32 G2 +5.4 6500* 淡水浅湖与潮上界面 HHW处 +2.02 +3.7 7080 (7168—6989) 沿海浅湖 MSHW-HHW +1.65±1.24 De501 +6.6 6058 (5940—6179) 淡水浅湖 HHW以上 <+ 3.22 注: *为推算年龄 4. 讨论
4.1 早全新世海面上升的沉积响应及控制因素
研究区最北端的X1 孔全新世底部高程-15.5m处S4 样品14C 年龄为9000(8780~9032)cal BP,形成于盐沼环境,该样品以下可能存在一次显著的海面上升,沉积特征表现为前全新统基底-潮上沿海低地-盐沼的相变(图 3),根据潮上沿海低地的底板深度(-18.1m)推测,发生海侵时的海面在-21.5m 左右。这次海面快速上升可能与9.6~9.2ka cal BP 期间Agassiz 湖和Laurentide 冰盖突然释放大量的融水导致的MWP-1C 融水脉冲事件有关[1-2, 4],并在黄海[6]、日本海[26]、南海地区[27]均有体现。
冰融水脉冲事件MWP-1C 之后9200~8400cal BP 期间,海面上升速率减缓至约3mm/a,较缓慢的海面上升与陆源沉积供给相抵平衡,X1 孔南侧的其他钻孔内在约8400cal BP 以前并未形成海侵沉积,海岸线相对稳定位于最北端的X1 孔附近,并表现出微弱的海退特征(由盐沼变为潮上沿海低地环境)。
8400~8000cal BP海面由-14m快速上升至-5.5m,速率约为28mm/a,X1 孔内形成突变性快速海侵沉积特征(由潮上沿海低地突变为水下三角洲),而且较X1 孔潮上沿海低地沉积层位高数米的南部内陆地区钻孔层位近于同期形成海侵(如H5 孔处的海侵特征)。这次海面的快速上升可能与诱发8.2ka 冷事件[7]( 8400~8200cal BP)的冰融水释放事件有关,8400~8200cal BP 期间北美Laurentide 冰盖前缘Agassiz 和Ojibway 冰湖溃坝、大量淡水注入北大西洋导致海面快速上升[4-5],并被认为是8.2ka 冷事件的诱因[4]。在黄海[28]、东海[29]、南海[30]、北美墨西哥湾[31]、切萨皮克湾[32]、荷兰[33]等地区类似时间内也存在海面快速上升的沉积记录。
8000~7600cal BP,莱州湾地区海面数百年停滞或微弱下降,除海面标志点给出的海面位置信息外,还有地层沉积上的证据:①海岸线相对稳定或形成海退,约8000cal BP 时岸线在H5 孔附近(S12样品为盐沼环境),其上覆地层显示为微弱海退的潮上沿海低地环境;②临近H5 孔的HLL02 孔处更新统基底深度基本与S12 样品相当,在几乎没有陆源沉积供给的情况下,7600cal BP 以前未遭受海侵;③此时在X1 孔附近形成水下三角洲(S2 样品为河口坝环境)。约8000cal BP 以后,Eustatic 海面上升减缓[34-37],研究区的海面为停滞或微弱下降,Bird 等[38]将其解释为远区(far field)大陆边缘冰川均衡(Glacial Isostatic Adjustment,GIA)调整效应[39]的结果,类似海面停滞在其他远区海岸内的也有发现[10, 38]。GIA 调整表现为全球冰融水趋于停滞后,地幔流滞后性调整依然继续,近区(near field)地壳持续下沉并导致地幔流向远区流动,大陆架近岸地区地壳掀升、同时部分海水外流至下沉的近区的过程[40-41]。
7600~7000cal BP,海面由-5.5m 快速上升至0m以上,速率至少为13mm/a,表现为原处于潮上带沿海低地环境的H5 孔及HLL02 孔更新统裸露地层全部被海水淹没,至7000cal BP 前不久,岸线到达最南端G2 孔附近(S21 样品为潮上沿海低地环境)。此时段海面的快速上升可能是7600~7400cal BP 的冰融水脉冲MWP-2[8-10],幅度达6m 的海面跃升可能由南极冰盖的小规模融水导致[8],或由Laurentide 冰盖分解的部分Labrador 冰盖消融所致[42-43]。
4.2 中全新世以来高海面
研究区各海面标志点指示的约7000cal BP 以来的海面位置普遍高于0m,尤其以G2 孔潮上带沿海低地顶板最高(+5.4m),作为HHW 面其指示的海面为高度+1.92m,形成时间要晚于下伏1.7m 以下的S21 样品(沿海低地沉积)给出的7080cal BP年龄;5400cal BP 时岸线位于HLL02 孔处(S13 样品为潮滩环境),距离G2 孔约15km,说明此时海岸线已远离G2 孔位。另外,5600cal BP 的潮滩底界面(MSLW)位于+0.1m,计算出当时HHW 位于+4.29m,较G2 孔潮上沿海低地地层的顶板低约1.1m,即此时后者已不受海水影响。因此,G2 孔潮上沿海低地地层顶板的年龄应落在7080~5600cal BP 范围内,根据当时近岸地区的H4、H5、HLL02、HLL01 4 孔沉积速率迅速增大并形成水下三角洲的时间,推测岸线开始后退时间(近似于G2 孔潮上沿海低地顶板年龄)约为6500cal BP,当时海面高度为+1.92m。海退是海面上升所致的可容空间增加速度小于沉积供给速度时形成的,海退时间不等同于海面到达最高点的时间,因此不排除6500cal BP 以后海面的继续上升。De501 样品(淡水浅湖)高度在+6.6m 处,年龄为6058cal BP,因此当时海面不应超过+3.22m。
全球冰融水趋于停滞后,远区的GIA 均衡调整作用在全新世中期得以显现,形成中全新世相对海面2~3m 的高起,及其后续的相对下降[41-42]。但这种小尺度的海面变化容易被同量级的局地盆地运动所掩盖(如在渤海湾及广东沿海地区[16-17]),因此莱州湾地区中全新世高海面的呈现,归功于当地(尤其是最大海侵边界地区)相对微弱的盆地沉降背景。
约6000cal BP 以来相对海面整体缓慢下降至现今水平,沉积作用表现为海退过程中,沿海低地和潮滩沉积高度不断降低。海面曲线具有中部下凹的现象,可被解释为海退过程中岸线地区不断远离沉积盆地边缘,沉降和沉积物自重压实作用逐渐增大的体现,后期由于时间较新,这种作用又逐渐减弱。
5. 结论
(1)莱州湾南岸地区全新世海面变化历史:约9200cal BP 以前,海面快速上升,研究区海侵时海面在-21.5m 左右;9200~8400cal BP 海面上升速率减缓至约2mm/a;8400~8000cal BP 海面由-14m 快速上升至-5.5m,速率约为33mm/a;8000~7600cal BP,海面数百年停滞或微弱下降;7600~7000cal BP 海面由-5.5m 快速上升至0m 以上,速率至少为13mm/a;7000~6000cal BP 海面缓慢上升至2~3m 位置,速率约为3mm/a;约6000cal BP 以后海面缓慢下降至现今水平。
(2)莱州湾南岸早全新世于9200cal BP 以前、8400~8000cal BP 和7600~7000cal BP 的3 次海面快速上升,是MWP-1C 融水脉冲、诱发8.2ka 冷事件的融水脉冲及MWP-2 融水脉冲的中纬度地区响应。中全新世全球冰融趋于停滞后,由于研究区沉积盆地沉降速度较慢,在冰川均衡调整效应下,2~3m 的高海面得以呈现。
-
表 1 莱州湾南岸8 个钻孔及全新统样品信息
Table 1 Data on 8 cores and Holocene sediments samples from the south coast of Laizhou Bay
编号 钻孔 样品 坐标 地表高程/m 进尺/m 全新统厚度/m 编号 采样深度/m 高程/m X1 37°15'12"N、119°01'04"E +0.9 160 19.0 S1 4.1 -3.2 S2 10.2 -9.3 S3 12.3 -11.4 S4 16.4 -15.5 S5 2.5 -0.2 HLL01 37°06'24"N、119°07'08"E +2.3 452 11.0 S6 3.5 -1.2 S7 5.5 -3.2 S8 0.6 +2.8 S9 0.7 +2.7 H5 37°05'39"N、119°02'28"E +3.4 150 11.0 S10 3.2 +0.2 S11 4.9 -1.5 S12 8.3 -4.9 HLL02 37°02'00"N、119°08'15"E +3.4 425 9.1 S13 2.2 +1.2 S14 5.5 -2.1 S15 6.8 -3.4 S16 8.5 -5.1 S17 2.8 +0.8 H4 37°01'50"N、119°11'19"E +3.6 130 10.2 S18 6.5 -2.9 S19 8.2 -4.6 G5 36°56'30"N、119°02'05"E +5.0 80 3.0 S20 0.2 +4.8 S21 0.3 +4.7 G2 36°54'02"N、119°08'55"E +6.3 130 3.5 S22 2.6 +3.7 De501 36°53'36"N、119°00'12"E +6.9 9 0.4 S23 0.3 +6.6 表 2 各样品的沉积结构、有孔虫丰度及主要属种
Table 2 Sedimentary structure,foraminifera characteristics and major species in samples
编号 沉积结构特征 有孔虫特征及含量大于4%的属种 沉积相 S3 2.5Y4/2,喑灰棕色粉砂质砂,分选性较差,小型交错层理或水平层理,与下呈冲刷接触,含有炭化枯物碎屑及小钙核 仅见1枚E. advenum 沿海泛滥平原 潮上 带沿 海低 地 S8 S9 10YR 4/4,暗黄棕色粘土质粉砂,块状,偶含小砂团,弱铁锰染,含淡水贝壳及小钙核 丰度2枚/g,17 个种属,以广盐类(59%)和近岸浅海类(37%)为主,A. tepida(42.0%),P. tuberculatum(9.2%),C. subincertum(8.7%),E.subcrispum(6.3%),E. simplex(4.8%) 沿海泛滥平原 S22 2.5Y4/2,喑灰棕色粘土质粉砂,块状,含少量有机质,分选性较差,内含淡水贝壳赤豆螺,见炭化枯物碎片 丰度85 枚/g,23个种属,以广盐类(37%)和半咸水类(34%)为主,A. tepida(15.2%),P. sinensis(14.8%),C. subincertum(10%),E. subcrispum(10.3%),P. nakazatoensis(8.8%),P. variabilis(6.9%),E. simplex(6.4%),A. multicella(6.4%),E. magellanicum(5.2%),Q. seminula(4.1%) 沿海浅湖 S4 5Y 4/2,暗灰棕色粘土质粉砂,泥层均质细腻,有机质含量较高,局部含有机质薄层,生物扰动构造明显,偶见光滑河篮蛤 丰度0.3枚/g,8 个种属,以广盐种类(42%)和浅海类(37%)为主,A. tepida(36.8%),A. convexidorsa(15.8%),H. germanica(15.8%),Q. sp.(5.2%),T. trigonula(5.2%),A. multicella(5.2%),A. maruhasii(5.2%),P. variabilis(5.2%) 盐沼 潮间 带 S12 10YR 4/2,暗灰棕色粉砂,局部粘土增多,有机质含量较高,含炭化植物碎屑,生物扰动明显,见琵琶拟沼螺及光滑河篮蛤 丰度105枚/g,14 个种属,以广盐种类(52%)和浅海类(45%)为主,A. tepida(45.4%),Q. seminula(12.3%),E. subcrispum(11.7%) 盐沼 S16 10YR4/2,喑灰棕色粉砂与粘土质粉砂,粉砂内含炭化枯物碎屑及少量光滑河篮蛤,粘土质粉砂含有机质侵染 丰度5枚/g,16 个种属,以广盐种类(64%)和浅海类(29%)为主,A. tepida(36.2%),E. agellanicum(12.6%),C. subincertum(11.6%),Q. seminula(9.2%),P. variabilis(6.8%),E. simplex(5.8%),E. subcrispum(5.3%) 盐沼 S5 2.5YR5/4,黄棕色细砂,分选性较好,隐见小型交错层理,夹少量泥质薄层,含少量海相贝壳碎屑及云母片 丰度1830枚/g,24 个种属,以浅海类(69%)和广盐种类(30%)为主,A. tepida(20.4%),Q. seminula (10.5%),P. tuberculatum(10.0%),T. trigonula(8.8%),E. advenum(8.1%),Q. akneriana(6.7%),E. subcrispum(5.9%),E. simplex(5.0%),C. subincertum (4.0%) 砂质潮滩 S10 10YR4/3,棕色粉砂质砂,分选性较好,块状,含少量海相贝壳及云母片 丰度875枚/g,19 个种属,以浅海类(65%)和广盐种类(35%)为主,A. tepida(26.8%),E. advenum(18.6%),Q. seminula(8.6%),R. annectens(8.2%),P. tuberculatum(6.7%),E. magellanicum(5.5%),Q. akneriana(4.0%) 砂质潮滩 S13 2.5YR5/4,黄棕色细砂,分选性较好,小型交错层理,夹少量粉砂薄层,含少量海相贝壳及云母片 丰度1819枚/g,23 个种属,以浅海类(51%)和广盐种类(46%)为主,A. tepida(34.4%),P. tuberculatum (9.6%),Q. jugosa(6.9%),Q. venusta(6.5%),Q. seminula(4.8%),C. subincertum(4.8%),E. magellanicum (4.8%),E. simplex(4.8%) 砂质潮滩 S17 10YR4/3,棕色粉砂质砂,分选性较好,小型交错层理,夹少量泥质薄层,含少量海相贝壳碎屑及云母片 丰度1006枚/g,22 个种属,以浅海类(48%)和广盐种类(47%)为主,A. tepida(24.0%),E. magellanicum (17.7%),P. tuberculatum(11.7%),Q. seminula(7.8%),E. advenum(7.1%),Q. akneriana(5.3%),C. subincertum(5.3%) 砂质潮滩 S1 2.5YR5/4,黄棕色细砂,分选性较好,较纯净,见云母片,海相贝壳稀少 丰度13 枚/g,18个种属,以浅海类(48%)和广盐种类(44%)为主,A. tepida(25.0%),A. multicella(12.5%), Q. akneriana(11.3%),Q.seminula(10.9%),E. subcrispum(5.2%),C. subincertum(4.8%),P. tuberculatum (4.4%),H. germanica(4.4%) 河II坝 潮下 带 S2 10YR4/2,喑灰棕色粉砂质砂,分选性较好,较纯净,见云母片,海相贝壳稀少 丰度6枚/g,19 个种属,广盐种类(54%),浅海类(27%),半咸水类(19%),A. tepida(23.2%),A. multicella (19.9%),H. germanica(14.9%),E. magellanicum(8.8%),E.advenum(6.6%),A. convexidorsa(5.5%),P.tuberculatum(5.0%) 河II坝 S6 10YR4/2喑灰棕色细纱,块状,分选性较好,见云母片,内部海相贝壳碎屑较为发育,种类丰富,见炭化枯物碎片 丰度1311枚/g,25个种属,以浅海类(54%)和广盐种类(43%)为主,A. tepida(25.0%),P. tuberculatum (20.0%),E. magellanicum(8.9%),E. advenum(7.5%),C. subincertum(7.0%),Q. akneriana(5.4%) 三角洲前缘席状砂 S7 10YR4/2,喑灰棕色细纱,块状,分选性较好,海相贝壳碎屑较为发育,种类丰富,见云母片及枯物碎片 丰度287枚/g,20 个种属,以浅海类(49%)和广盐种类(49%)为主,A. tepida(25.6%),P. tuberculatum (14.8%),E. magellanicum(14.4%),E. advenum(8.5%),Q. akneriana(8.1%),C.subincertum(5.6%) 三角洲前缘席状砂 S11 10YR4/3,棕色粉砂质砂,分选性较好,块状,见炭屑及枯物碎片及见云母片,含较多海相贝壳碎片,种类丰富 丰度262枚/g,22 个种属,以浅海类(54%)和广盐种类(42%)为主,A. tepida(32.8%),E. advenum(11.2%), E. magellanicum(10.1%),E. magellanicum(8.5%),R. annectens(6.3%),C. subincertum(4.9%) 三角洲前缘席状砂 S14 10YR4/3,棕色细砂,分选性较好,块状,见云母片,海相贝壳碎片散布层内,种类丰富,局部富集呈薄层,见炭化枯物碎片 丰度567枚/g,20 个种属,以广盐种类(59%)和浅海类(40%)为主,A. tepida(36.4%),P. tuberculatum (13.4%),E. magellanicum(12.6%),C. subincertum(9.0%),Q. akneriana(5.9%) 三角洲前缘席状砂 S15 10YR4/3,棕色细砂,分选性较好,块状,见云母片,海相贝壳碎屑较为发育,种类丰富 丰度532枚/g,19 个种属,以广盐种类(67%)和浅海类(30%)为主,A. tepida(45.4%),E. magellanicum (12.8%),P. tuberculatum(9.0%),C. subincertum(5.7%),E. subcrispum(4.2%) 三角洲前缘席状砂 S18 10YR4/2,深棕色砂质粉砂,分选性中等-较差,内部见泥砾及炭屑,含泥,分布较多光滑河篮蛤 丰度279枚/g,21 个种属,以广盐种类(66%)和浅海类(28%)为主,A. tepida(44.7%),E. magellanicum (17.0%),E. advenum(6.9%),P. tuberculatum(4.1%) 水下分流河道 S19 10YR5/3,棕色砂质粉砂,分选性较差,内部见泥砾及炭屑, 含泥,分布较多光滑河篮蛤 丰度231枚/g,25 个种属,以广盐种类(61%)和浅海类(33%)为主,A. tepida(38.2%),E. magellanicum (18.3%),Q. seminula(7.1%),E. advenum(6.1%),E. subcrispum(4.5%) 水下分流河道 S20 7.5YR3/2,喑棕色粘土质粉砂,块状,均质,含有机质,见淡水赤豆螺 未见有孔虫 淡水湖 陆相 S21 7.5YR3/2喑棕色粘土质粉砂,块状,均质,含有机质,见淡水赤豆螺 未见有孔虫 淡水湖 S23 7.5YR3/2,喑棕色粘土质粉砂,块状,含赤豆螺、烟台间齿螺、 白小旋螺,风化节理,含碳屑,0.4m以下为更新统风化黄土 未见有孔虫 淡水湖 表 3 莱州湾南岸全新世地层AMS 14C 年龄
Table 3 AMS 14C ages of Holocene sediments from the south coast of Laizhou Bay
钻孔 样品编号 深度/m 高程/m 测年材料 惯用年龄/a BP 日历年/cal BP(2σ) 实验室编号 X1 S1 4.1 -3.2 光滑河篮蛤 1735±20 1459(1330~1589) BA140322 S2 10.2 -9.3 光滑河篮蛤 7320±25 7957(7835~8098) BA140323 S3 12.3 -11.4 有机物 7650±25 8429(8391~8480) BA140325 S4 16.4 -15.5 有机物 8060±30 9000(8780~9078) BA140326 HLL01 S5 2.5 -0.2 托氏昌螺 2955±30 2915(2759~3074) BA121359 S6 3.5 -1.2 文蛤 3160±25 3191(3026~3344) BA121360 S7 5.5 -3.2 扁玉螺 4800±30 5334(5129~5474) BA121361 H5 S8 0.6 +2.8 赤豆螺 1190±30 1120(1006~1227) Beta-419841 S9 0.7 +2.7 白小旋螺 1200±30 1126(1010~1235) Beta-418568 S10 3.2 +0.2 光滑河篮蛤 4175±30 4493(4323~4697) BA140749 S11 4.9 -1.5 日本镜蛤 4610±25 5066(4881~5252) BA140751 S12 8.3 -4.9 拟沼螺 7450±30 8085(7949~8213) BA140753 HLL02 S13 2.2 +1.2 托氏昌螺 4945±30 5487(5321~5586) BA121364 S14 5.5 -2.1 文蛤 5280±35 5827(5678~5970) BA121365 S15 6.8 -3.4 饼干镜蛤 5740±35 6335(6208~6464) BA121366 S16 8.5 -5.1 文蛤 6940±30 7593(7475~7701) BA121367 H4 S17 2.8 +0.8 光滑河篮蛤 4750±20 5261(5064~5425) BA140327 S18 6.5 -2.9 文蛤 5960±50 6569(6400~6733) BA140330 S19 8.2 -4.6 光滑河篮蛤 6235±40 6894(6723~7085) BA140332 G5 S20 0.2 +4.8 赤豆螺 760±30 691(667~729) Beta-418569 S21 0.3 +4.7 赤豆螺 1850±30 1784(1715~1865) Beta-418571 G2 S22 2.6 +3.7 豆螺 6180±30 7080(7168~6989) BA140745 De501 S23 0.3 +6.6 白小旋螺 5270±30 6058(5940~6179) Beta-418570 表 4 莱州湾南岸钻孔前全新统基底OSL 年龄
Table 4 OSL dating results of the pre-Holocene basements from the cores of the south coast of Laizhou Bay
钻孔 样品编号 深度/m 高程/m OSL年龄/ka 误差 X1 NJU1763 19.5 -18.6 56.0 ±4.7 NJU1764 21.3 -20.3 >70 H5 H5-2 8.1 -4.7 10.45 ±0.51 H5-3 10.5 -7.1 14.73 ±2.05 HLL02 13G-287 9.5 -6.1 50.4 ±2.8 13G-288 12.2 -8.8 69.2 ±3.5 H4 NJU1766 11.6 -8.0 >78 NJU1767 13.7 -10.1 >80 G2 G2-2 4.9 +1.4 38.51 ±2.98 G2-3 6.4 -0.1 68.70 ±5.24 表 5 莱州湾南岸全新世海平面标志
Table 5 Holocene sea level indicators for the south coast of Laizhou Bay
钻孔 高程/m 日历年/cal BP 沉积类型 海面指示意义 古海平面高程/m X1 -3.2 1459 (1330—1589) 河口坝 MLWS以下 > -2.39 -9.3 7957 (7835—8098) 河口坝 MLWS以下 > -8.49 -11.4 8429 (8391—8480) 沿海泛滥平原 MHWS-HHW -13.45±1.24 -15.5 9000 (8780—9032) 盐沼 MHW-MHWS -16.13±0.18 HLL01 -0.2 2915 (2759—3074) 砂质潮滩 MHWS-MLWS -0.2±0.81 -1.2 3191 (3026—3344) 三角洲前缘席状砂 MLWS以下 >-0.39 -3.2 5334 (5129—5474) 三角洲前缘席状砂 MLWS以下 >-2.39 H5 +2.9 1120 (1053—1183) 沿海沼泽 MHWS-HHW +0.85±1.24 +2.8 1126 (1055—1185) 沿海沼泽 MHWS-HHW +0.75±1.24 +0.3 4493 (4323—4697) 砂质潮滩 MHWS-MLWS +0.3±0.81 -1.4 5066 (4881—5252) 三角洲前缘席状砂 MLWS以下 >-0.59 -4.8 8085 (7949—8213) 盐沼 MHW-MHWS -5.43±0.18 HLL02 +1.2 5487 (5321—5586) 砂质潮滩 MHWS-MLWS +1.2±0.81 -2.1 5827 (5678—5970) 三角洲前缘席状砂 MLWS以下 >-1.29 -3.4 6335 (6208—6464) 三角洲前缘席状砂 MLWS以下 >-2.59 -5.1 7593 (7475—7701) 盐沼 MHW-MSHW -5.73±0.18 H4 +0.8 5261 (5064—5425) 砂质潮滩 MHWS-MLWS +0.8±0.81 -2.9 6569 (6400—6733) 三角洲前缘席状砂 MLWS以下 >-2.09 -4.6 6894 (6723—7085) 三角洲前缘席状砂 MLWS以下 >-3.79 G5 +4.8 691 (667—729) 淡水浅湖 HHW以上 < +1.42 +4.7 1784 (1715—1865) 淡水浅湖 HHW以上 < +1.32 G2 +5.4 6500* 淡水浅湖与潮上界面 HHW处 +2.02 +3.7 7080 (7168—6989) 沿海浅湖 MSHW-HHW +1.65±1.24 De501 +6.6 6058 (5940—6179) 淡水浅湖 HHW以上 <+ 3.22 注: *为推算年龄 -
Teller J T, Leverington D W, Mann J D, et al. Freshwater outbursts to the oceans from glacial Lake Agassiz and climate change during the last deglaciation[J]. Quaternary Science Reviews, 2002, 21:879-887. doi: 10.1016/S0277-3791(01)00145-7 Teller J T, Leverington D W, Mann J D, et al. Freshwater outbursts to the oceans from glacial Lake Agassiz and climate change during the last deglaciation[J]. Quaternary Science Reviews, 2002, 21:879-887. doi: 10.1016/S0277-3791(01)00145-7
Leverington D W, Mann J D, Teller J T. Changes in the bathyme-try and volume of glacial Lake Agassiz between 9200 and 770014C yr BP[J]. Quaternary Research, 2002, 57:244-252. doi: 10.1006/qres.2001.2311 Leverington D W, Mann J D, Teller J T. Changes in the bathyme-try and volume of glacial Lake Agassiz between 9200 and 770014C yr BP[J]. Quaternary Research, 2002, 57:244-252. doi: 10.1006/qres.2001.2311
Fairbanks R G. A 17000-year glacio-eustatic sea level record:influ-ence of glacial melting rates on the Younger Dryas event and deepocean circulation[J]. Nature, 1989, 342:637-642. doi: 10.1038/342637a0 Fairbanks R G. A 17000-year glacio-eustatic sea level record:influ-ence of glacial melting rates on the Younger Dryas event and deepocean circulation[J]. Nature, 1989, 342:637-642. doi: 10.1038/342637a0
Barber D C, Dyke A, Hillaire-Marcel C, et al. Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes[J]. Nature, 1999, 400:344-348. doi: 10.1038/22504 Barber D C, Dyke A, Hillaire-Marcel C, et al. Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes[J]. Nature, 1999, 400:344-348. doi: 10.1038/22504
Clark P U, Marshall S, Clarke G, et al. Freshwater forcing of abrupt climate change during the last glaciation[J]. Science, 2001, 293:28-287. doi: 10.1126/science.293.5527.28 Clark P U, Marshall S, Clarke G, et al. Freshwater forcing of abrupt climate change during the last glaciation[J]. Science, 2001, 293:28-287. doi: 10.1126/science.293.5527.28
Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Ge-ology, 2004, 209:45-67. doi: 10.1016/j.margeo.2004.06.009 Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Ge-ology, 2004, 209:45-67. doi: 10.1016/j.margeo.2004.06.009
Alley R B, Mayewski P A, Sower T, et al. Holocene climatic insta-bility:a prominent, widespread event 8200 years ago[J]. Geology, 1997, 25:483-486. doi: 10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2 Alley R B, Mayewski P A, Sower T, et al. Holocene climatic insta-bility:a prominent, widespread event 8200 years ago[J]. Geology, 1997, 25:483-486. doi: 10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2
Blanchon P, Shaw J. Reef drowning during the last deglaciation:evi-dence for catastrophic sea-level rise and ice-sheet collapse[J]. Geolo-gy, 1995, 23:4-8. doi: 10.1130/0091-7613(1995)023<0004:RDDTLD>2.3.CO;2 Blanchon P, Shaw J. Reef drowning during the last deglaciation:evi-dence for catastrophic sea-level rise and ice-sheet collapse[J]. Geolo-gy, 1995, 23:4-8. doi: 10.1130/0091-7613(1995)023<0004:RDDTLD>2.3.CO;2
Blanchon P. Comment:continuous record of reef growth over the past 14 ky. on the mid-Pacific island of Tahiti[J]. Geology, 1998, 26:479. Blanchon P. Comment:continuous record of reef growth over the past 14 ky. on the mid-Pacific island of Tahiti[J]. Geology, 1998, 26:479.
Blanchon P, Jones C, Ford D C. Discovery of a submerged relic reef and shoreline off Grand Cayman:further support for an early Holocene jump in sea level[J]. Sedimentary Geology, 2002, 147:253-270. doi: 10.1016/S0037-0738(01)00143-9 Blanchon P, Jones C, Ford D C. Discovery of a submerged relic reef and shoreline off Grand Cayman:further support for an early Holocene jump in sea level[J]. Sedimentary Geology, 2002, 147:253-270. doi: 10.1016/S0037-0738(01)00143-9
刘健, 李绍全, 王圣洁, 等. 末次冰消期以来黄海海平面变化与黄海暖流的形成[J]. 海洋地质与第四纪地质, 1999, 19(1):13-24. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ901.002.htm Zhao X T, Zhang J W. Basic characteristics of the Holocene sea level changes along the coastal area in China[C]//Liu D S. Quater-nary Geology and Environment of China. Beijing:China Ocean Press, 1982:155-169. Zhao X T, Zhang J W. Basic characteristics of the Holocene sea level changes along the coastal area in China[C]//Liu D S. Quater-nary Geology and Environment of China. Beijing:China Ocean Press, 1982:155-169.
赵希涛. 中国海面变化[M]. 济南:山东科学技术出版社, 1996:430-433. 黄镇国, 李平日, 张仲英, 等. 华南晚更新世以来的海平面变化[C]//国际对比计划第200号项目中国工作组.中国海平面变化. 北京:海洋出版社, 1986:178-194. 李平日, 黄镇国, 张仲英, 等. 广东东部晚更新世以来的海平面变化[J]. 海洋学报, 1987, 9(2):216-222. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC198702010.htm 李建芬, 商志文, 王福, 等.渤海湾西岸全新世海面变化[J]. 第四纪研究, 2015, 35(2):243-264. 孙奕映, Wu P, 黄光庆, 等.广东全新世海平面重建与冰川均衡调整模型结果的比较[J]. 第四纪研究, 2015, 35(2):281-290. 山东省科学技术委员会. 山东省海岸带和海涂资源综合调查报告集-综合调查报告[M]. 北京:中国科学技术出版社, 1990. 张锦文, 王骥. 莱州湾海平面上升和潮差增大对工程设计标准的影响[J]. 海洋通报, 1999, 18(5):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-HUTB199905000.htm 程义吉, 高菁. 莱州湾海域水文特征及冲淤变化分析[J]. 海岸工程, 2006, 25(3):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-HAGC200603000.htm Yu Z, Wu S, Zou D, et al. Seismic profiles across the middle TanLu fault zone in Laizhou Bay, Bohai Sea, eastern China[J]. Journal of Asian Earth Sciences, 2008, 33:383-394. doi: 10.1016/j.jseaes.2008.03.004 Yu Z, Wu S, Zou D, et al. Seismic profiles across the middle TanLu fault zone in Laizhou Bay, Bohai Sea, eastern China[J]. Journal of Asian Earth Sciences, 2008, 33:383-394. doi: 10.1016/j.jseaes.2008.03.004
吴时国, 余朝华, 邹东波, 等. 莱州湾地区郯庐断裂带的构造特征及其新生代演化[J]. 海洋地质与第四纪地质, 2006, 26(6):101-110. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200606016.htm 姜兴钰, 易亮, 田立柱, 等. 莱州湾南岸HLL01孔磁性地层定年[J]. 地质通报, 2016, 35(10):1669-1678. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20161015&journal_id=gbc Reimer P J, Bard E, Bayliss A, et al. Intcal13 and marine13 radio-carbon age calibration curves 0-50000years cal BP[J]. Radiocar-bon, 2013, 55(4):1869-1887. doi: 10.2458/azu_js_rc.55.16947 Reimer P J, Bard E, Bayliss A, et al. Intcal13 and marine13 radio-carbon age calibration curves 0-50000years cal BP[J]. Radiocar-bon, 2013, 55(4):1869-1887. doi: 10.2458/azu_js_rc.55.16947
Stuiver M, Braziunas T. Modelling atmospheric 14C influences and 14C ages of marine samples to 10000BC[J]. Radiocarbon, 1993, 35:138-189. Stuiver M, Braziunas T. Modelling atmospheric 14C influences and 14C ages of marine samples to 10000BC[J]. Radiocarbon, 1993, 35:138-189.
Tanabe S, Tateishi M, Shibata Y. The sea-level record of the last deglacial in the Shinano River incised-valley fill, Echigo Plain, cen-tral Japan[J]. Marine Geology, 2009, 266:223-231. doi: 10.1016/j.margeo.2009.08.011 Tanabe S, Tateishi M, Shibata Y. The sea-level record of the last deglacial in the Shinano River incised-valley fill, Echigo Plain, cen-tral Japan[J]. Marine Geology, 2009, 266:223-231. doi: 10.1016/j.margeo.2009.08.011
Tjallingii R, Stattegger K, Wetzel A, et al. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise[J]. Quaternary Science Reviews, 2010, 29:1432-1444. doi: 10.1016/j.quascirev.2010.02.022 Tjallingii R, Stattegger K, Wetzel A, et al. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise[J]. Quaternary Science Reviews, 2010, 29:1432-1444. doi: 10.1016/j.quascirev.2010.02.022
Yim W W攠慓?氠效癵敡汮?愠?測甠浆敯牮楴捵慧汮?挠慍氠捒甬氠慥瑴椠潡湬嬮?嵐??兴畧慬瑡散物湡慬爠祳?剡攭獬敥慶牥捬栠??????????㈠???㈠????扨牥?孮?こ嵯??楨琠牃潨癩楮捡愠???堠???楴汩湮敥??????佨湥?瑦栺故?潩爭楤来楮湣?漠晦?汲愠瑡攠??潳汴漭挸攲渰攰?獣敡慬?汮敤癡?攠汹?栠楂材栠獭瑥慬湴摷獡?睥楲琠桰極湬?敥煛畊慝琮漠牑極慡汴?扲慮獡椭湲獹嬠?嵮??兲畮慡瑴敩牯湮慡牬礬?匲挰椰收測挠攱?刵支?瘴椶攺眵猵??祝???? ̄????ㄠ???㈠?????扩牴?嬠??崠??慮浧戠效挬欠????匠敚愬??整瘠敡汬?挠桓慥湤杩敭?普牴潡浲?洠楥摶??潵汴潩捯敮渠敯?琠潴?牥攠捈敯湬瑯?瑥楮浥攠?慵湢??畵獥瑯牵慳氠楣慬湩?敯硦慯浲灭氠敯?睦椠瑴桨?朠汓潨扡慮汤?楮浧瀠汐楥据慩瑮楳潵湬獡嬠?嵮???楥琠牙潥癬楬捯慷???塡??噝攮爠浍敡敲物獮敥渠?????汧慹挬椠愲氰‰?猬漠猲琳愶琺椱挶‵?搱樸男献琼浢敲渾瑛″愰湝搠?瑡桮敧??愠版琬栠?卵礠獈?琠敚浨??圠慑猬栠楥湴朠瑡潬渮??????浬敯牧楩捣慡湬??敮潤瀠桰祡獬楹据慯汬?啧湩楣潡湬????ど??????は??扬牡?孥??嵵?奴略?卮?奲???敥牰杯汳畩湴摩??????卮慶湩摲杯牮敭湥?側??敩瑮?慴汨???癵楢搭敡湱捵敥?晵潳爠?慡?牧慴灺楥搠?獥敬慴?氬攠癃敨汩?牡楛獊敝???ふち?祥牲?慡杲潹嬠?嵥???敲潣汨漬朠礲??日?????????????????扛爳?孝??崦??愴父氻獲潮湱???????故本爠慂湩摣敫???乊??佇灯灮潺…?′圲?※敬瑥?愠汊??刬愠灥楴搠?敬愮爠汔祲??潫汩潮?挠整湨敥?摳敥条氭慬捥楶慥瑬椠潳湩?潮晡?瑵桲敥??慦甠牴敨湥琠椸搮攲?楡挠散?獯桬敩敮瑧嬠?嵶??乴愺瑎略牷攠??敮潳獴捲楡敩湮捴敳???はね???????び?????ippi delta[J]. Geophysical Research Letters, 2004, 31:L23309. doi: 10.1016/j.quaint.2005.07.005 Yim W W S, Huang G, Fontugne M R, et al. Postglacial sea-level changes in the northern South China Sea continental shelf:Evi-dence for a post-8200 calendar yr BP meltwater pulse[J]. Quaterna-ry International, 2006, 145/146:55-67. doi: 10.1016/j.quaint.2005.07.005
Cronin T M, Voigt P R, Willard D A, et al. Rapid sea level rise and ice sheet response to 8200-year climate event[J]. Geophysical Research Letters, 2007, 34:L20603. doi: 10.1016/j.margeo.2006.10.031 Liu J, Saito Y, Wang H, Yang Z, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea[J]. Marine Geology, 2007, 236:165-187. doi: 10.1016/j.margeo.2006.10.031
Hijma M P, Cohen K M. Timing and magnitude of the sea-level jump preluding the 8200 yr event[J]. Geology, 2010, 38:275-278. doi: 10.1016/j.yqres.2009.11.001 Wang Z H, Xu H, Zhan Q, et al. Lithological and palynological ev-idence of late Quaternary depositional environments in the sub-aqueous Yangtze delta, China[J]. Quaternary Research, 2010, 73:550-562. doi: 10.1016/j.yqres.2009.11.001
Smith D E, Harrison S, Firth C R, et al. The early Holocene sea level rise[J]. Quaternary Science Reviews, 2011, 30:1846-1860. http://cn.bing.com/academic/profile?id=1492422926&encoded=0&v=paper_preview&mkt=zh-cn Törnqvist T E, Bick S J, González J L, et al. Tracking the sea-level signature of the 8.2ka cooling event:New constraints from the Mis-sissippi delta[J]. Geophysical Research Letters, 2004, 31:L23309. http://cn.bing.com/academic/profile?id=1492422926&encoded=0&v=paper_preview&mkt=zh-cn
Lambeck K, Chappell J. Sea-level change through the last glacial cycle[J]. Science, 2001, 292:679-686. doi: 10.1029/2007GL031318 Cronin T M, Voigt P R, Willard D A, et al. Rapid sea level rise and ice sheet response to 8200-year climate event[J]. Geophysical Research Letters, 2007, 34:L20603. doi: 10.1029/2007GL031318
Lambeck K, Antonioli F, Purcell A, et al. Sea-level change along the Italian coast for the past 10,000 yr[J]. Quaternary Science Re-views, 2004, 23:1567-1598. doi: 10.1130/G30439.1 Hijma M P, Cohen K M. Timing and magnitude of the sea-level jump preluding the 8200 yr event[J]. Geology, 2010, 38:275-278. doi: 10.1130/G30439.1
Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice vol-umes from the Last Glacial Maximum to the Holocene[J]. Proceed-ings of the National Academy of Science, 2014, 111(43):15296-15303. doi: 10.1016/j.quascirev.2011.04.019 Smith D E, Harrison S, Firth C R, et al. The early Holocene sea level rise[J]. Quaternary Science Reviews, 2011, 30:1846-1860. doi: 10.1016/j.quascirev.2011.04.019
Bird M I, Fifield L K, Teh T S, et al. An inflection in the rate of early mid-Holocene eustatic sea-level rise:a new sealevel curve from Singapore[J]. Estuarine Coastal and Shelf Science, 2007, 71:523-536. doi: 10.1126/science.1059549 Lambeck K, Chappell J. Sea-level change through the last glacial cycle[J]. Science, 2001, 292:679-686. doi: 10.1126/science.1059549
Clark J A, Farrell W E, Peltier W R. Global changes in post-gla-cial s doi: 10.1016/j.quascirev.2004.02.009 Lambeck K, Antonioli F, Purcell A, et al. Sea-level change along the Italian coast for the past 10, 000 yr[J]. Quaternary Science Re-views, 2004, 23:1567-1598. doi: 10.1016/j.quascirev.2004.02.009
Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice vol-umes from the Last Glacial Maximum to the Holocene[J]. Proceed-ings of the National Academy of Science, 2014, 111(43):15296-15303. doi: 10.1073/pnas.1411762111
Bird M I, Fifield L K, Teh T S, et al. An inflection in the rate of early mid-Holocene eustatic sea-level rise:a new sealevel curve from Singapore[J]. Estuarine Coastal and Shelf Science, 2007, 71:523-536. doi: 10.1016/j.ecss.2006.07.004
Clark J A, Farrell W E, Peltier W R. Global changes in post-gla-cial sea level:a numerical calculation[J]. Quaternary Research, 1978, 9:265-287. doi: 10.1016/0033-5894(78)90033-9
Mitrovica J X, Milne G A. On the origin of late Holocene sea-lev-el highstands within equatorial basins[J]. Quaternary Science Re-views, 2002, 21:2179-2190. doi: 10.1016/S0277-3791(02)00080-X
Lambeck K. Sea-Level change from mid-Holocene to recent time:an Australian example with global implications[C]//Mitrovica J X, Vermeersen B. Glacial Isostatic Adjustment and the Earth Sys-tem. Washington, DC:American Geophysical Union, 2002:33-50.
Yu S Y, Berglund B E, Sandgren P, et al. Evidence for a rapid sea level rise 7600 yr ago[J]. Geology, 2007, 35:891-894. doi: 10.1130/G23859A.1
Carlson A E, Legrande A N, Oppo D W, et al. Rapid early Holo-cene deglaciation of the Laurentide ice sheet[J]. Nature Geoscience, 2008, 1:620-624. doi: 10.1038/ngeo285