• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

张国伟

张国伟. 2016: 序. 地质通报, 35(9): 1-3. DOI: 10.12097/gbc.dztb-35-9-1
引用本文: 张国伟. 2016: 序. 地质通报, 35(9): 1-3. DOI: 10.12097/gbc.dztb-35-9-1

  • 徐淮推覆-褶皱带位于华北板块东南缘、郯庐断裂西侧(图 1),为该区重要的陆内变形带。区域内徐淮断裂-褶皱系统由北向南走向由NNE—近NS—NW变化,也称为徐淮弧。弧顶位于萧县—淮北市一带, 与华北板块的其余构造形态具有明显差别(图 1)。早在20世纪90年代,徐树桐等[3]将其称为半圆形造山带或大型褶皱逆冲推覆体;王桂梁等[4]提出区域构造表现为弧形双冲-叠瓦状逆断层特点;彭凌日等[5]与Shu等[1]认为,区域构造属于挤压背景下的薄皮构造模型,表现为区域上普遍存在一系列弧形的斜歪褶皱、逆冲推覆构造。以上均为该区构造样式成因的研究,取得较多成果,而对于区域广泛存在的滑脱层研究不足[1, 1-5]

    图  1  研究区构造位置图[1-2]
    Figure  1.  Structural location of the study area

    滑脱层的存在影响盖层与基底间界面的剪切强度,使褶皱-冲断带构造传播方式及构造样式发生变化[6]。通常滑脱层能使构造变形传播距离更远,并且不同厚度滑脱层影响后冲断层的发育数量及构造的对称性,形成隔挡隔槽式褶皱、等间距逆冲断层、反冲断层等典型构造[7-9];滑脱层深度及强弱性质的改变将影响构造变形的传播特征及褶皱、断层构造的样式和间距变化[10-13]

    随着构造物理模拟手段的不断完善,它已成为地质学家认识构造变形过程、分析构造成因机制的重要手段[14-19]。本文选取徐淮推覆-褶皱带为研究对象,结合前人研究资料,采取物理模拟手段对区域滑脱层深度变化、滑脱层摩擦系数的控制作用进行探索,进而对区域构造样式的控制因素和形成机制进行研究。

    研究区沉积盖层在东西向剖面上表现为东侧盖层厚度大于西侧(图 2-b),基底为太古宇泰山群变质岩,盖层分为3个亚层,即青白口系—震旦系、寒武系—奥陶系、石炭系—二叠系,相应亚层的分布表现为下部的青白口系—震旦系多为碎屑岩-碳酸盐岩沉积,岩石组成多为叠层石灰岩与白云岩,中部的寒武系—奥陶系主要为浅海碳酸盐岩,石炭系—二叠系以滨海相灰岩及滨海湖泊-三角洲体系陆源碎屑岩沉积为主,其中山西组和上、下石盒子组是主要的含煤层系[21-22]。结合前人野外调查,区域上滑脱层普遍发育,主要为页岩、膏岩泥灰岩及煤层,分别为青白口系泥灰岩、寒武系猴家山组与馒头组页岩、奥陶系贾汪组页岩与马家沟组膏岩、石炭系—二叠系页岩及煤层(图 3[1, 23]。其中,青白口系泥灰岩、寒武系页岩、石炭系—二叠系页岩及煤层作为主要拆离层控制区域主要构造变形[24]

    图  2  徐淮地区构造简图(a)及典型剖面示意图(b)[1-2, 20]
    Figure  2.  Structural sketch map(a)and typical cross-section(b) of Xu-Huai area
    图  3  研究区主要滑脱层分布[1]
    Figure  3.  Distribution of main decollement in the study area

    研究区以逆冲推覆构造为主,未卷入结晶基底,属于典型的薄皮构造(图 2-a),平面上逆冲推覆构造为一系列走向由北向南、由NNE—近NS—NW变化的逆断层及伴生斜歪褶皱[5],如白土镇东斜歪褶皱的轴面产状为144°∠75°,高角度逆断层的产状为137°∠71°,低角度逆断层的产状为124°∠41°(图 4),表明该区受到从南东向北西的挤压应力场作用。

    图  4  白土镇斜歪褶皱和逆断层
    Figure  4.  Inclined fold and thrust of Baitu Town

    结合前人在该区域进行的构造应力场研究[1, 25-26],区域受2期应力场作用,分别是早燕山期SE—NW向挤压及晚燕山期NNE—SSW向挤压力。本次研究通过61个野外共轭节理、断面擦痕求应力场,并利用赤平投影求得最大主应力轴(σ1)优势方位,2个极密点方位为200°∠6°、133°∠6°,表明该2期应力场方位与前人研究一致(图 5)。虽然晚燕山期受NNE向挤压,导致该区侏罗纪—白垩纪盆地发育,但仍以早燕山期SE—NW向挤压作用形成的构造格局为主[4, 27]

    图  5  区域最大应力场统计极密图
    (A与B代表研究区最大主应力轴机密点)
    Figure  5.  Statistics of the region's maximum stress field

    以皇藏峪背斜为界将研究区构造划分为东部构造带与西部构造带(图 2-b),东部构造带主要为一系列斜歪褶皱,少量叠瓦状分支断层;西部构造带表现为强烈变形,发育一系列逆冲断层。总体构造具明显东西分带的特点[3, 20]

    构造物理模拟实验遵循相似原则,即几何学相似、动力学相似、运动学相似,实验材料物性、模型尺寸等需要与自然界中实际的相应参数保持一定比值[28-29]。本次实验中所用材料为石英砂、微玻璃珠及硅胶。

    干燥石英砂用于模拟脆性的上覆岩层,其物理性质为脆性且遵循库伦-莫尔破坏准则,内摩擦角为31°左右,内聚力极小[30],变形过程中铺设的石英砂颗粒将出现从应变硬化-应变软化的过渡,导致影响断层角度的内摩擦系数稍小于未变形前岩石的内摩擦系数[31-32]。石英砂颗粒直径为200~300μm,根据不同的铺沙方式(筛或直接倒入模型中),密度会有差别,总体密度在1.3~1.6g/cm3之间。人工烧结的彩色石英砂颗粒一般物性不发生改变,铺设1mm厚彩色石英砂于模型中作为观察构造变形的标志层[33]

    微玻璃珠通常用于模拟强滑脱层,表面光滑且磨圆度好,玻璃珠内聚力几乎为零,内摩擦角为25°左右[34-35],应变软化幅度很小,变形前后内摩擦角变化不大。本次实验使用直径为300μm的微玻璃珠充当强滑脱层,铺设于模型最底部[36]

    硅胶为透明高粘度的材料,用于模拟上地壳的塑性变形,在低应变速率下具有牛顿流体性质且具有非常低的屈服强度[37]。测得室温下本实验材料粘度为1.2×104Pa.s, 密度为0.926g/cm3, 铺设2~3mm于基底之上,作为弱滑脱层,控制变形传播距离,产生各类褶皱-冲断构造[7, 38-39]

    根据相似原理,模型与地质原型长度的相似因子L*为1×10-5(即实验室中模型1cm代表自然界中1km的长度);地质原型中沉积岩的平均密度为2.6g/cm3, 模型中石英砂与微玻璃珠的平均密度为1.4g/cm3, 所以实验设定的密度相似因子为0.5[40];模型与地质原型的重力加速度相同,为9.8m/s2, 重力加速度相似因子为1;关于硅胶滑脱层,粘度一般为1×104Pa.s, 而地质原型相应地层的粘度为1×1019Pa.s, 粘度相似因子为1×10-15*代表相应模型参数与地质原型参数的比值)。

    根据前人对徐淮地区变形的年代学数据及缩短率的研究[23, 25],推算出地质原型变形速率为1~10mm/a,因而设置实验室计步器推挤速率为0.005mm/s,结合速度相似因子v*=5×104,实验中模拟地质原型的挤压速率为3.2mm/a,与推算变形速率(1~10mm/a)大小为同一数量级,符合构造模拟相似条件。

    根据控制变量法来改变滑脱层深度及滑脱层物理性质[6, 17],设计2组实验。第一组实验设计2个模型分别为模型1与模型2,初始尺寸均为600mm×400mm×24mm,且底板水平。模型1使用4mm厚微玻璃珠作为强滑脱层,20mm厚的石英砂作为盖层,而模型2则用一层厚4mm的硅胶层为弱滑脱层,盖层材料与厚度均与模型1相同(图 6-ab)。模型两侧为钢化玻璃,为减少边界效应的影响,在实验前用无水酒精将其擦拭干净。

    图  6  徐淮推覆-褶皱构造带物理模拟
    Figure  6.  Physical modeling of Xu-Huai thrust-fold belt

    第二组实验设计2个模型分别为模型3和模型4,尺寸均为600mm×400mm×24mm, 模型底板均保持水平,考虑到滑脱层深度变化的影响,模型中均设计有先存的台阶式隆起,模型3距离活动端430mm处设置有5mm高的台阶状基底隆起,而模型4则在距活动端430mm处设置为10mm高的台阶状隆起。模型3、4底部均有一层厚4mm的硅胶层作为滑脱层,盖层为石英砂,两模型材料厚度均为24mm(图 6-cd)。

    4个模型均从右侧施加挤压力,活动端推板运动速度均为0.005mm/s,根据前人对区域平衡剖面恢复所得缩短率[1, 25],本文模型缩短率取30%,每组实验过程通过照相机定时,每隔5min照相记录。

    实验过程分为4个阶段。阶段一,缩短率为2.00%时,在靠近活动端出现前冲断层1及断层相关褶皱,形成构造单元Ⅰ;阶段二,缩短率为13.50%时,构造单元Ⅰ中发育1号断层的分支断层2,以及从微玻璃珠滑脱层逐渐向地表延伸的断层3、4,此时该单元具逆冲叠瓦构造特点,位于构造单元Ⅰ前方1.6cm处发育受前冲断层5控制的构造单元Ⅱ;阶段三,缩短率为20.50%时,构造单元Ⅱ形成与构造单元Ⅰ相同的构造样式,其中断层6为断层5的分支断层,调节断层运动,位于构造单元Ⅱ前方3.8cm处(相比前者间距更远)发育受前冲断层7控制的构造单元Ⅲ;阶段四,缩短率为30.00%时,构造单元Ⅲ形成构造与前者相同,其中断层9为分支断层(图 7)。

    图  7  物理模拟模型1演化图
    a~d—缩短率分别为2.00%、13.50%、20.50%、30.00%;e—缩短率为30.00%时沿挤压方向的横切剖面图;
    1~9代表相应断层发育顺序;Ⅰ~Ⅲ代表相应构造单元发育顺序
    Figure  7.  The sequential photographs showing deformation evolution of model 1

    实验所切剖面见3个间距明显不同的构造单元。构造单元Ⅰ主要受1~4前冲断层控制,形成堆垛式逆冲叠瓦构造及断层相关褶皱;构造单元Ⅱ与构造单元Ⅲ构造样式与构造单元Ⅰ相同,各个构造单元内断层间距变化均表现为朝固定端(前陆)逐渐增大,与前人研究结果一致[14, 41]图 7-e图 8-f)。

    图  8  徐淮推覆-褶皱带物理模拟中模型1(a)、模型2(b)的断层角度/缩短率关系图(1~9代表相应断层编号)、模型1与2楔长/缩短率(c)、楔高/缩短率(d)、楔角/缩短率(e)对比图及最终剖面上断层间距/断层顺序(f)对比图
    (断层顺序1~8代表活动端向固定端测量断层间距的顺序)
    Figure  8.  Model 1(a), model 2(b) fault angle/shortening ratio diagram, model 1 and 2 wedge long/short ratio(c), wedge high/ short ratio(d), wedge angle/short ratio(e) contrast diagram and the final section on fault distance/order(f) contrast diagram

    随着缩短率逐渐增加,楔长变化表现为增长至逐渐稳定的特点,楔长增加代表构造变形向固定端(前陆)传播,直至近稳定状态,最前端的断层前方未出现新构造使楔长不变或小幅减小;楔高则随缩短率增加逐渐增加,但增高速率逐渐减小(图 8-cd),与前人观点一致[42]。组成构造单元Ⅰ的断层1、2、3、4角度变化具有较好的相关性,表现为晚出现的断层角度变化均会对早出现的断层角度产生影响;组成构造单元Ⅱ的断层5、6中,断层6角度逐渐小幅度增加,而断层5角度先增大后稳定,随后按该变化趋势发生变化;组成构造单元Ⅲ的断层7、8、9断层角度变化速率最慢,断层角度缓慢增加直至稳定,可见断层越远离力源,角度变化越容易达到稳定状态,并受晚期新构造影响越小(图 8-a)。

    地表楔形隆起主要受到基底滑脱面性质及上覆材料强度的影响[14, 43]。随缩短率增加,活动端产生的楔状隆起角度达到临界角度之后,由于前缘未出现新断层,使角度继续增大向超临界角发展,直至前缘出现新断层,楔形隆起角度将减小,并向着次临界角值发展,达到相应次临界角后将再次增大(图 8-e),可见楔体达到临界角度后仍处于非稳定状态,而不是保持该状态向固定端方向稳定传播。模型1中,缩短率为8.75%时,楔角增大至相应超临界角,随后向一定次临界角值减小,缩短率为13.75%、23.75%时,相应状态下相应次临界角值再增大,符合前人观点[44-46]

    按构造单元将实验过程分为5个阶段。阶段一,缩短率为2.00%时,形成由前冲断层1与断层相关褶皱组成的构造单元Ⅰ;阶段二,缩短率为13.00%时,构造单元Ⅰ中发育后冲断层,此时断层相关褶皱形态为不对称箱状,位于构造单元Ⅰ前方,构造单元Ⅱ出现,主要由一对前后冲断层及断层相关褶皱组成;阶段三,缩短率为18.25%时,构造单元Ⅰ、Ⅱ继续发育,构造单元Ⅲ前方出现由只受前冲断层控制的构造单元Ⅲ;阶段四,缩短率为23.25%时,构造单元Ⅲ未出现后冲断层,断层相关褶皱形态为尖棱斜歪,并在其前方出现由前冲断层组成的构造单元Ⅳ;阶段五,缩短率为30.00%时,构造单元Ⅳ继续发育,表现为宽阔斜歪褶皱(图 9)。

    图  9  物理模拟模型2演化图
    a~e—缩短率分别为2.00%、13.00%、18.25%、23.25%、30.00%;
    f—缩短率为30.00%时沿挤压方向的切片图;1~5代表相应断层发育顺序;
    Ⅰ—Ⅴ代表相应构造单元发育顺序(1’、2’、4’、5’代表与1、2、4、5同时生成的断层)
    Figure  9.  The sequential photographs showing deformation evolution of model 2

    实验所切剖面见5个明显构造单元。构造单元Ⅰ、Ⅱ、Ⅳ、Ⅴ均由前、后冲断层及断层相关褶皱组成,其中褶皱为不对称箱状;构造单元Ⅲ由前冲断层及断层相关褶皱组成,其中褶皱表现为尖棱斜歪特点。断层间距均大于模型1,表现为先减小后增大的特点(图 8-f图 9-f)。

    实验过程中楔长变化主要为增长-稳定交替变化特点,其中稳定阶段时间略小于模型1,但模型2楔长普遍大于模型1,表明模型2构造变形传播的更远;楔高逐渐增大,至缩短率13.75%达到近稳定状态,随后楔高小幅度变化;活动端地表隆起楔角在缩短率为6.25%时,达到相应超临界角后,楔角下降,随缩短率增加,楔角减小速率逐渐变小,直至楔角趋于近稳定状态,达到临界值。实验过程中模型2楔角值均小于模型1,符合Davis等关于基底摩擦系数对库伦楔角影响的认识(图 8-cde)[45]。各断层角度变化趋势相似,均表现为增大-稳定(图 8-b)的变化趋势。

    实验过程分为6个阶段。阶段一,缩短率为2.00%时,最先在活动端处出现构造单元Ⅰ,表现为一对前冲后冲断层,地表微微隆起;阶段二,缩短率为11.50%时,构造单元Ⅰ断层持续活动,断层相关褶皱表现为不对称箱状特点,在构造单元Ⅰ前方出现受前冲断层控制的构造单元Ⅱ;阶段三,缩短率为16.50%时,构造单元Ⅱ出现后冲断层,使断层相关褶皱表现为箱状特点,并在前方构造单元Ⅲ开始发育受前冲断层控制的断层相关褶皱,同时滑脱层深浅变化处发育构造单元Ⅲ’的断层转折褶皱;阶段四,缩短率为25.50%时,构造单元Ⅰ、Ⅱ持续活动,与Ⅰ、Ⅱ构造演化特点相同,在构造单元Ⅲ与Ⅲ’之间发育构造单元Ⅳ的受前冲断层控制的断层相关褶皱,褶皱形态宽缓;阶段五,缩短率为29.50%时,在构造单元Ⅲ’前方发育构造单元Ⅴ的前冲断层及断层相关褶皱,褶皱波长较小;阶段六,缩短率为31.70%时,构造单元Ⅳ持续活动,但未见后冲断层,构造单元Ⅴ的褶皱高度明显增加,相应断层延伸至地表(图 10)。

    图  10  物理模拟模型3演化图
    a~f—缩短率分别为2.00%、11.50%、16.50%、25.50%、31.70%;
    g—缩短率为31.70%时沿挤压方向的切片图;Ⅰ—Ⅵ—代表相应构造单元发育顺序(其中Ⅲ’代表与Ⅲ同时生成的构造单元)
    Figure  10.  The sequential photographs showing deformation evolution of model 3

    实验所切剖面见7个明显的构造单元,构造单元Ⅰ、Ⅱ、Ⅲ主要受前冲断层及伴生的后冲断层控制,形成箱状褶皱;构造单元Ⅳ只受前冲断层控制,断层相关褶皱为宽缓斜歪褶皱,具明显不对称性;构造单元Ⅲ’、Ⅴ、Ⅵ受前冲断层控制,其中构造单元Ⅱ、Ⅰ’表现为断层转折褶皱,构造单元Ⅴ、Ⅵ组成逆冲叠瓦构造。深滑脱层区域各构造单元间距较大,平均间距为6.5cm,发育4个构造单元;浅滑脱层区域构造单元间距较小,从构造单元Ⅲ’至Ⅵ间距为先增大后减小;滑脱层深度变化处则对应剖面中波长最大的向斜(图 10-g图 11-c)。

    图  11  徐淮推覆-褶皱构造带物理模拟中模型3(a)、模型4(b)相应构造单元隆起高度/缩短率关系图和相邻构造单元间距/次序关系图(c)
    (次序1~6代表从活动端向固定端测量断层间距的顺序;Ⅰ~Ⅴ代表构造单元先后顺序)
    Figure  11.  Model 3 (a) and model 4 (b) uplift height of the corresponding tectonic units/shortening rate diagram and adjacent structural unit spacing/sequence diagram (c)

    实验中随着缩短率逐渐增大,构造单元Ⅰ、Ⅱ、Ⅲ隆起高度变化为增大-稳定不断循环的特点,证明模型中导致构造活动的应力集中过程是不稳定的,使得相应构造单元的活动具有乱序性,但处于滑脱层深浅变化附近的构造单元Ⅲ’与Ⅳ的隆起高度持续增加,未表现明显的稳定期,其中晚期出现的Ⅲ’构造单元最终隆起高度甚至超过了构造单元Ⅱ、Ⅲ(图 11-a)。

    实验过程主要划分为5个阶段。阶段一,缩短率为1.75%时,构造单元Ⅰ发育由后冲断层控制的断层相关褶皱;阶段二,缩短率为8.75%时,构造单元Ⅰ持续活动,形成明显斜歪褶皱,位于滑脱层深浅变化处见构造单元Ⅱ的断层转折褶皱;阶段三,缩短率为15.00%时,在构造单元Ⅰ与Ⅱ前方同时发育构造单元Ⅲ、Ⅲ’,两者均表现为受前冲断层控制的断层相关褶皱,构造单元Ⅰ出现2条不同深度的前冲断层,表现出叠加褶皱的特点;阶段四,缩短率为21.75%时,构造单元Ⅱ与Ⅲ’之间出现构造单元Ⅳ,表现为断层相关褶皱;阶段五,缩短率为30.00%时,在构造单元Ⅲ前方出现构造单元Ⅴ,该构造受前后冲断层控制属于冲起构造,构造单元Ⅳ进一步发育,表现为尖棱斜歪的断层相关褶皱(图 12)。

    图  12  物理模拟模型4演化图
    a~e—缩短率分别为1.75%、8.75%、15.00%、21.75%、30.00%;f—缩短率为30.00%时沿挤压方向的切片图,
    Ⅰ~Ⅴ代表相应构造单元发育顺序(其中Ⅲ’代表与Ⅲ同时生成的构造单元)
    Figure  12.  The sequential photographs showing deformation evolution of model 4

    实验所切剖面见6个明显的构造单元,构造单元Ⅰ中晚期低角度前冲断层将早期一对前后冲逆断层切断,最终表现褶皱为共轴叠加褶皱;构造单元Ⅲ’与Ⅳ主要受前冲断层控制,其中构造单元Ⅲ’为尖棱斜歪褶皱,Ⅳ为箱状斜歪褶皱;构造单元Ⅱ、Ⅲ受前冲断层控制,其构造单元Ⅱ主要表现为断层转折褶皱,构造单元Ⅲ为逆冲叠瓦构造及断层相关褶皱;构造单元Ⅴ受前后冲断层控制,属于冲起构造。深滑脱层区域各构造单元间距较大,向固定端间距逐渐增加,发育3个构造单元;浅滑脱层区域构造单元间距较小,且向固定端逐渐减小;滑脱层深度变化处也对应剖面中明显波长最大的向斜(图 11-c图 12-f)。

    随着缩短率的增加,构造单元Ⅰ、Ⅱ、Ⅲ及Ⅲ’隆起高度先增大后趋于稳定,相应构造单元高度达到稳定状态后将不会改变,构造单元Ⅳ隆起高度增长最快,最终高度超过早于其出现的构造单元Ⅲ与Ⅲ’(图 11-b)。

    模型1基底之上为强滑脱层(微玻璃珠),随着缩短率增加,构造样式为逆冲叠瓦构造,表现为前展式传播形式,最终传播距离16.5cm,而模型2基底之上为弱滑脱层(硅胶),构造主要表现为不对称箱状褶皱及尖棱褶皱,构造传播方式与模型1相同,但变形向前缘方向传递距离明显大于模型1(图 7图 9)。可见,滑脱层强弱差异控制着不同的构造样式。

    模型3、4所设置装置底部不同高度台阶式抬升,使滑脱层深度发生变化,从而改变上覆盖层厚度与脆性层强度,使构造变形传播不再是传统的前展式,而呈乱序式,且在滑脱层深浅变化处容易应力集中而较早发生变形[17],变形传播距离相较于模型2更远。对于模型3与4,由于基底隆起高度大小差异,模型3(低基底隆起条件)在深滑脱层区域将出现更多的构造单元;模型3在深滑脱层区域普遍出现受前后冲断层控制的箱状断层相关褶皱,模型4除构造单元Ⅰ发育共轴叠加褶皱外,均表现为受前冲断层控制的斜歪褶皱特点,在浅滑脱层区域两者构造样式基本相同,主要为断层相关褶皱与逆冲断层(图 10图 12)。因此,滑脱层深度变化对盖层相关构造变形具有明显影响。

    徐淮地区构造变形属于典型挤压背景下的薄皮构造,发育于早燕山期的滑脱构造,具有明显东西分带的特点,由东向西变形强度逐渐增强。以皇藏屿背斜为界,该界以西构造变形涉及盖层主要为寒武系—奥陶系与石炭系—二叠系,盖层厚度较小,发育一系列逆冲断层;该界以东构造变形涉及盖层主要为震旦系—奥陶系,盖层较厚,广泛发育轴面向SE方向倾斜的斜歪褶皱,叠瓦状分支断层较少[1]

    通过4个模型所切剖面与实际构造变形对比,认为实验模型4与区域上剖面具有较好的相似性,模型基底抬升处产生的背斜与皇藏峪背斜位置相当,虽然区域上变形含有多层滑脱层,但结合构造变形变化特点与物理模拟实验结果,认为区域上构造变形主要受2层不同深度滑脱层控制,分别是青白口系泥灰岩与寒武系页岩。以滑脱层抬升处(皇藏屿背斜)为界线,出现的褶皱间距及构造强弱的变化在模型4中有良好表现。滑脱层深度小,出现较密集的逆断层;滑脱层深度大,则构造形态以大波长的斜歪褶皱为主,断层未延伸至地表(图 13)。

    图  13  物理模拟模型4(b)与徐淮地区构造剖面(a)对比图
    Figure  13.  comparison diagram of model 4 (b) and the construction section (a) of the Xu-Hai area

    本文对徐淮地区构造地质原型设计了2组实验,通过改变模型的材料及边界条件,研究了滑脱层性质及滑脱层深度变化对构造变形的控制作用,取得了与地质原型相似的模拟结果。然而自然界构造变形复杂,如多期构造叠加、沉积与剥蚀作用、多层滑脱层等。本次研究从主要控制因素入手,对地质原型进行模型化与理想化。该区存在多层滑脱层,滑脱层平面展布未能考虑,因而对于盖层变形控制不全面,有待进一步探讨滑脱层平面展布等因素对区域构造的影响。

    (1) 滑脱层控制徐淮地区薄皮构造的形成,滑脱层的存在使得变形向前传播距离更远,是形成徐淮地区构造样式的主控因素,缺少滑脱层构造变形则表现出一系列堆垛式逆冲断层特点。

    (2) 徐淮地区存在多套滑脱层,模拟实验表明,控制区域上东西构造样式变化的滑脱层主要有2套,分别为青白口系泥灰岩(深滑脱层)和寒武系页岩(浅滑脱层)。以皇藏屿背斜为界线,界线以西,滑脱层深度较浅,构造变形强烈,构造间距密集,逆冲断层普遍发育;界线以东,滑脱层深度较深,构造间距较大,主要发育斜歪褶皱,断层未能延伸至地表。

计量
  • 文章访问数:  1596
  • HTML全文浏览量:  342
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-08
  • 网络出版日期:  2023-08-16
  • 刊出日期:  2016-08-31

目录

/

返回文章
返回