The Neogene extension of the Tianshui basin: Evidence from sedimentary and structural records
-
摘要:
天水盆地位于青藏高原东北缘高海拔挤压隆升区与鄂尔多斯低海拔伸展区的过渡部位,新构造活动强烈。然而,新构造活动对天水盆地的影响尚不清楚。通过对盆地的沉积环境、构造沉降、构造变形等方面的研究,结果显示:①盆地由风成堆积、洪积扇、河湖相与湖泊相沉积组成,代表沉积中心的河湖相与湖泊相沿控盆断裂(西秦岭北缘断裂、西和断裂与礼县-罗家堡断裂)分布;②盆地经历了16~14Ma、9.2~7.4Ma和3.6~2.6Ma三次加速沉降期;③控盆断裂在同沉积期为正断层。沉积中心沿断裂分布、快速沉降事件及生长正断层表明,天水盆地至少在中新世晚期受控于走滑伸展构造,记录了青藏高原向北东方向的构造挤出作用。
Abstract:Tianshui basin is located at the transition from the compressive high in northeastern Tibet to the extensional zone around Ordos, where Neotectonic deformation is strongly developed. However, the tectonics of Tianshui basin remains elusive. In this study, the authors performed detailed analysis of sedimentation, tectonic subsidence and structural deformation, with some conclusions reached①Tianshui basin is filled with aeolian loess, pluvial fan, fluvial and lacustrine deposits, and lacustrine deposits which represent depocenter occur along the major faults, like West Qinling northern fault, Xihe fault and Lixian-Luojiabao fault; ②the basin experienced a three-phase subsidence, which happened at 16~14Ma, 9.2~7.4Ma and 3.6~2.6Ma respectively; ③the controlling faults are normal faults formed during the synsedimentary phase. The lacustrine occurrence, increasing subsidence and growth of normal faults indicate that Tianshui basin was controlled by extensional tectonics in at least Late Miocene and recorded the extrusion process of northeastern Tibet in the Late Cenozoic.
-
Keywords:
- Tianshui basin /
- lithofacies association /
- extensional tectonics /
- subsidence
-
柴达木盆地北缘(柴北缘)构造带处于南祁连地块与柴达木地块的拼合部位[1-2],研究表明其为构造复杂、物质组成多样、时间跨度大的多单元复合构造带[3],由南向北主要由鱼卡河-沙柳河高压-超高压变质带、滩间山群火山-沉积岩系、欧龙布鲁克地块等组成[2-4]。随着研究程度的提高,绿梁山地区发现早古生代弧后盆地型蛇绿混杂岩[2, 5]及原岩为大洋蛇绿岩的榴辉岩[6-9],说明早古生代蛇绿岩也是柴北缘构造带的重要组成部分。郝国杰等[10]指出,在古生代之前的南华纪—震旦纪,受Rodinia超级大陆裂解事件的影响,柴北缘发生了拉张与裂解,在乌兰以北形成具洋壳特点的蛇绿岩,代表了初始洋盆的形成;沿柴北缘构造带分布的一系列形成于消减带环境下的岩石[2, 11-13]表明,柴北缘古大洋在晚寒武世(约515Ma)已经开始俯冲消减,并至少持续至中奥陶世晚期(约460Ma);吴才来等[12, 14-16]通过对团鱼山、柴达木山等地同造山陆-陆碰撞成因的S型花岗岩的研究,认为祁连洋于晚奥陶世闭合,祁连地块向南逆冲到柴达木地块之上并形成陆陆碰撞带;对区内大量高压/超高压变质岩的研究表明,柴北缘在志留纪(440~420Ma)主要处于陆-陆碰撞和深俯冲阶段[17-19];Song等[20]认为,晚志留世—早泥盆世大陆深俯冲引起先期大洋地壳折返并发生减压熔融,在柴北缘形成TTG岩浆;而具典型伸展型磨拉石建造的牦牛山组的形成是柴北缘早古生代主造山作用结束的标志[21]。
基性岩脉是由源于地幔的玄武质岩浆及其分异的和受地壳混染作用影响的岩浆充填张性空间而成,是岩石圈伸展和地壳拉张的产物[22-23],是一种特殊的构造岩浆类型,在大陆地壳演化中具有特殊而重要的研究意义[24-25]。近年来笔者等在柴达木盆地西北缘开展1:5万区域地质调查时,在柴北缘构造带西端欧龙布鲁克地块西北缘达肯大坂岩群中识别出大量基性岩脉,然而这些基性岩脉的形成时代、源区性质、构造环境及对柴北缘构造演化的意义尚不清楚。鉴于此,本次选择欧龙布鲁克地块西北缘达肯大坂岩群中的辉长岩脉为研究对象,通过岩石学、地球化学、年代学及Lu-Hf同位素特征研究,确定辉长岩脉的形成时代、源区性质、构造环境,并结合区域地质背景,为柴北缘构造演化的研究提供约束。
1. 区域地质概况
研究区位于阿尔金断裂以南,柴北缘构造带西端欧龙布鲁克地块的西北缘,其北为红柳沟-拉配泉蛇绿构造混杂岩,南部被第四系冲洪积物覆盖(图 1-a)。区内出露欧龙布鲁克陆块基底岩系古元古代达肯大坂岩群,该岩群主要由混合片麻岩段(Pt1DK1.)、条带状片麻岩段(Pt1DK2.)、片麻岩夹片岩段(Pt1DK3.)、片岩段(Pt1DK4.)、大理岩段(Pt1DK5.)等组成[27]①。达肯大坂岩群发育大量基性和中酸性岩脉,基性岩脉以(变)辉长岩脉为主,宽窄不一(1~ 5m)、延伸不远(5~50m),走向多为北东东向,局部呈北西—南东向延伸;中酸性岩脉主要为闪长岩、二长花岗岩、浅色花岗岩、花岗伟晶岩等(图 1-b),其中以花岗伟晶岩脉分布最广,但其分布无规律,一般长20~200m,宽2~5cm。本文研究的辉长岩脉多呈脉状、透镜状沿片理、片麻理侵入达肯大坂岩群片麻岩中,呈明显的侵入接触关系(图 2-a)。
2. 岩相学特征
本次用于同位素及地球化学研究的辉长岩样品(编号为15-DK)采自冷湖镇北西82km处,地理坐标北纬39°07′42"、东经92°32′16"。样品风化色呈灰褐色,新鲜面绿黑色,具块状、弱片麻状构造,粒状变晶结构。岩石主要由角闪石(约50%)、斜长石(约38%)、辉石(约10%)、石英(< 1%)、榍石(< 1%),以及少量绢云母(< 1%)等组成。角闪石矿物晶体多呈粒状、粒柱状,颗粒长轴大致平行分布,多数由辉石变质形成(图 2-b),粒径大小一般为0.5~2.5mm。镜下角闪石呈绿色,具多色性,C∧Ng’≈24°,属普通角闪石。斜长石多为粒状或不规则粒状(图 2-b),粒径0.2~1.5mm,部分发育绢云母化、黝帘石化。辉石多数已发生角闪石化,残留辉石呈港湾状(图 2-c),局部可见变余辉长结构(图 2-d),单偏光镜下高突起明显,两组节理发育。
3. 分析方法
样品的主量、微量及稀土元素测试分析在中国地质调查局西安地质调查中心实验测试中心完成,其中主量元素采用SX45型X荧光光谱仪(XRF)分析,分析误差小于1%;微量和稀土元素利用SX50型电感耦合等离子体光谱仪(ICP-MS)测定,分析误差小于5%~10%。锆石挑选在河北廊坊诚信地质服务有限公司完成,锆石制靶及反射光、阴极发光照相在自然资源部岩浆作用成矿与找矿重点实验室完成,测试点的选取首先根据锆石反射光和透射光照片进行初选,再与阴极发光图像反复对比,力求避开内部裂隙和包裹体,以获得较准确的年龄信息。LA-ICP-MS锆石微区U-Pb测年在自然资源部岩浆作用成矿与找矿重点实验室完成,采用193nmArF准分子(excimer)激光器的Geo Las200M剥蚀系统,ICP-MS为Agilent 7700,激光束斑直径24μm,以GJ-1为同位素监控标样,91500为年龄标定标样,NIST610为元素含量标样进行校正,普通铅校正依据实测204Pb进行校正。
采用Glitter(ver4.0,Macquarie University)程序对锆石的同位素比值及元素含量进行计算,并按照Anderson的方法[28],用LAMICPMS Common Lead Correction(ver3.15)对其进行了普通铅校正,年龄计算及谐和图采用Isoplot(ver3.0)完成[29]。
锆石原位Lu- Hf同位素分析在配备了Geolas2500激光剥蚀系统的Nu Plasma HR多接收电感耦合等离子体质谱仪(MC-ICP-MS)上完成,激光剥蚀脉冲频率为10Hz,激光束斑直径为44μm,剥蚀时间约50s。用176Lu/175Lu = 0.02669和176Yb/172Yb=0.5886进行同量异位干扰校正计算,测定样品的176Lu/177Hf和176Hf/177Hf值[30]。ɛHf(t)值计算采用176Lu衰变常数为1. 867×10-11a[31],球粒陨石现今的176Hf/177Hf=0.282785、176Lu/177Hf=0.0336[32];Hf亏损地幔模式年龄(tDM1)计算采用现今的亏损地幔176Hf/177Hf=0.28325和176Lu/177Hf=0.0384值[33]。
4. 分析结果
4.1 岩石地球化学特征
4.1.1 主量元素
达肯大坂岩群中辉长岩脉的主量元素分析结果见表 1。岩石SiO2含量为50.86%~52.03%,平均51.22%;Al2O3、CaO含量较高,平均含量分别为16.00%、10.92%;低P2O5、TiO2,二者含量分别为0.07%~0.12%、0.81%~0.95%。在Nb/Y-Zr/TiO2 × 0.0001图解中,样品点均落入玄武岩区域(图 3)。全碱(K2O+Na2O)含量为3.86%~4.26%,Na2O/K2O值介于2.91~4.00之间,TFeO含量为8.66%~9.33%,MgO含量为5.10%~6.48%,在AFM图解中,样品点均落入钙碱性玄武岩范围(图 4)。Mg#[Mg#=100Mg/(Mg+Fe2+)]=55.0~59.9,小于原始岩浆玄武岩Mg#值(68~78),表明岩浆在演化过程中经历了一定程度的橄榄石、辉石等结晶分异作用[34]。
表 1 辉长岩主量、微量及稀土元素含量分析结果Table 1. Major, trace elements and REE compositions of metagabbro4.1.2 稀土和微量元素
辉长岩稀土和微量元素分析结果见表 1。样品稀土元素总量(ΣREE)较低,为43.17 × 10-6~ 57.53×10-6,为球粒陨石的13~17倍;轻稀土元素LREE=28.14 × 10-6~40.74 × 10-6,重稀土元素HREE=13.77×10-6~20.21×10-6,LREE/HREE=1.82~2.77,平均2.29,(La/Yb)N=1.07~2.05,表明轻稀土元素富集,暗示辉长岩原始岩浆演化分异程度较低[35];(La/Sm)N=1.16~2.07,(Gd/Yb)N=0.86~1.06,表明样品轻、重稀土元素内部分馏较弱。稀土元素分布模式曲线(图 5-a)整体表现为右倾型。δEu=0.80~ 0.83,显示弱的负异常,表明岩石演化过程中发生了弱的斜长石分离结晶作用[35],此外,δCe=0.98~ 1.02,δCe的波动范围较小,暗示样品具有一致的源区和相似的演化过程[36]。样品微量元素原始地幔标准化蛛网图(图 5-b)显示,所有样品均具有相似的配分型式,相对富集Rb、Th、Nd等元素,亏损Ba、Nb、Zr、Sr、P、Ti等元素。
图 5 辉长岩稀土元素球粒陨石标准化图解(a)和微量元素原始地幔标准化蛛网图(b)[37]Figure 5. Chondrite-normalized REE patterns (a) and primitive-mantle normalized spidergrams (b) for metagabbro4.2 锆石U-Pb年龄
对达肯大坂岩群辉长岩进行锆石阴极发光(CL)图像观察和LA-ICP-MS锆石U-Pb定年。锆石阴极发光图像见图 6,U-Pb同位素比值和表面年龄测试数据列于表 2。大多数锆石镜下呈无色透明,长柱状、短柱状晶形明显(长50~250μm),长宽比为1:1~3:1,CL图像显示该类锆石发育宽缓或条带状振荡环带结构(1、4、10、13、20号等),部分锆石具有后期蚀变或变质产生的窄浅色增生边(2、8、35号),显示岩浆结晶锆石的特征。本次选择具有代表性的39粒锆石进行LA-ICP-MS测年,分析结果显示数据点均沿谐和线分布,部分数据点位置偏下(图 7-a)。206Pb/238U表面年龄介于348±4~368±4Ma之间。39个测点谐和度高且年龄值较集中,206Pb/238U年龄加权平均值为357±4Ma,代表了辉长岩的形成年龄(图 7-b)。
表 2 辉长岩LA-ICP-MS锆石U-Th-Pb同位素测年结果Table 2. LA-ICP-MS zircon U-Th-Pb isotopic analyses of metagabbro4.3 Lu-Hf同位素特征
在U-Pb测年的基础上, 对达肯大坂岩群辉长岩的39颗锆石进行原位Hf同位素分析,其中有效测点34个。所有锆石的176Lu/177Hf值均小于0.002(表 3),表明因Lu衰变形成的放射性成因Hf同位素的积累量极少,Hf同位素比值可代表锆石形成时的初始Hf同位素比值。176Hf/177Hf值为0.282813~ 0.282979,各单颗粒锆石U-Pb年龄计算的εHf(t)值介于9.29~15.16之间,平均为12.25,在年龄-εHf(t)图解(图 8)上,所有数据点均位于亏损地幔演化线附近或之下。测试数据显示,达肯大坂岩群辉长岩Hf模式年龄(TDM)分布在378~610Ma之间,平均为494Ma。
表 3 变辉长岩锆石Hf同位素组成Table 3. Zircon Hf isotope compositions of metagabbro图 8 辉长岩锆石年龄-εHf(t)图解(底图据参考文献[45])Figure 8. t-εHf(t) diagram for zircon of metagabbro5. 讨论
蚀变作用和变质作用通常导致大离子亲石元素如K、Rb、Sr、Ba、Cs、Pb2+、Eu2+,具有明显的活动性,而稀土元素及部分高场强元素(Nb、Ta、Zr、Hf、Th、REE、Ce、U、Ti)甚至在高级变质作用中亦能相对稳定[38-40]。所以,本文主要利用不活动元素进行相关讨论。
5.1 岩浆源区性质
众所周知,基性岩浆岩源自地幔,而在Nb/YZr/TiO2×0.0001图解(图 3)中,辉长岩样品均落入玄武岩区域,表明辉长岩岩浆为玄武质岩浆。Ormerod等[41]指出,Zr/Ba值大于0.2的玄武岩源区来自软流圈地幔,Zr/Ba值小于0.2则来自岩石圈地幔,达肯大坂岩群辉长岩的Zr/Ba值为0.25~0.61,暗示其岩浆源区来自更深的软流圈地幔。此外,非常高的原始地幔标准化Th/Nb值(≫1)[42]和低Nb/La (< 1) [24]是地壳混染作用的2个可靠的微量元素指标。岩石地球化学分析数据显示,柴达木盆地西北缘达肯大坂岩群辉长岩样品具有高的ThN/NbN值(3.75~8.03)和低的Nb/La值(0.44~0.84)(图 9);另外,Ti元素在后期地质过程中不易受蚀变影响[43],且具有负Ti异常(相对于Eu),通常被认为是陆壳特征之一[44],因此负Ti异常也常被作为判断幔源岩浆是否遭受壳源混染的指标之一。辉长岩样品中TiO2含量为0.81%~0.95%,在微量元素原始地幔标准化蛛网图中呈现明显的负异常。上述主量、微量元素特征表明,辉长岩在形成过程中受到较强的壳源组分混染。辉长岩样品稀土元素总量较低,富集轻稀土元素,轻、重稀土元素内部分馏程度较弱,稀土元素配分模式表现为右倾型(图 5),也暗示辉长岩形成过程中遭受一定程度的壳源组分混染。
图 9 辉长岩ThN/NbN-Nb/La图解(底图据参考文献[48])Figure 9. ThN/NbN-Nb/La diagram for metagabbro锆石具有很高的Hf同位素体系封闭温度,可以记录岩浆源区不同性质的源岩特征,成为探讨岩浆起源、岩石成因甚至地壳演化及壳幔相互作用过程的重要工具[45]。研究表明,不同地球化学储库的176Lu/177Hf值不同,亏损地幔和球粒陨石的176Hf/177Hf值较高(≥0.282722),其对应的εHf(t)值为正值或零;地壳和富集地幔具有较低的176Hf/177Hf值,地壳的εHf(t)值通常为负值,而富集地幔的εHf(t)值可能为较小的正值或负值[45-46]。柴北缘达肯大坂岩群辉长岩的εHf(t)值为9.25~15.11,176Hf/177Hf值介于0.282815~0.283186之间,均大于0.282722,表明锆石母岩浆具有亏损地幔属性;然而,年龄-εHf(t)图解(图 8)显示,εHf(t)值均低于锆石形成时的亏损地幔εHf(t)值,暗示原始母岩浆来自于受富集组分影响的地幔[47]。锆石Hf模式年龄反映寄主岩石从亏损地幔中分离的时间,而锆石U-Pb年龄则代表锆石结晶年龄,如果锆石母岩浆直接来源于未受任何影响的亏损地幔,那么锆石结晶年龄应近似等于锆石Hf模式年龄。柴达木盆地西北缘达肯大坂岩群辉长岩锆石的Hf模式年龄(TDM)为378~610Ma,平均494Ma,明显大于其锆石结晶年龄357Ma,同样指示岩浆源区可能受到富集组分影响。综合上述岩石地球化学及锆石Hf同位素分析,认为柴达木盆地西北缘达肯大坂岩群辉长岩的岩浆源区为软流圈地幔并可能受到壳源富集组分的混染。
5.2 构造意义
研究表明,早古生代以来柴北缘经历了洋壳俯冲[2, 11-13] -大洋闭合及陆陆碰撞[49-50]碰撞后板块折返[12, 18]-后造山陆内伸展[21, 51-53]的完整的造山旋回。前已述及,沉积时代上限为晚志留世—早泥盆世的具典型伸展型磨拉石建造的牦牛山组被认为是柴北缘早古生代主造山作用结束的标志[21, 54]。李睿华等[53]通过柴北缘西段牛鼻子梁地区闪长岩的年代学、地球化学及Hf同位素研究,认为牛鼻子梁闪长岩的形成时代为361±3Ma,且形成于南祁连向柴达木板块俯冲碰撞后伸展的环境。吴才来等[12, 51]在柴北缘中段锡铁山—大柴旦—嗷唠山一带厘定出一系列晚泥盆世(约372Ma)具I型、S型成因的中酸性岩浆岩,并认为是受后造山伸展作用影响,造山带不同块体之间的均衡调整而产生的滑塌、拉伸,引起地壳的部分熔融形成的。Wang等[52]认为,柴北缘东段都兰地区侵位结晶年龄为386~360Ma的花岗质岩浆岩具后碰撞特征,其岩浆是造山带去根和软流圈上涌,在形成具有亏损地幔地球化学特征的镁铁质岩浆后,与中上地壳相互作用并引发中上地壳熔融的产物。上述分析说明,中—晚泥盆世(386~ 360Ma)整个柴北缘均处于后造山伸展的构造演化阶段。
一般认为,基性岩脉的形成与岩石圈伸展和地壳拉张具有直接联系,代表了伸展拉张的构造环境[55]。本文辉长岩侵位于柴北缘构造带西端欧龙布鲁克地块西北缘达肯大坂岩群中,LA-ICP-MS锆石U-Pb定年结果表明,其形成时代为357±4Ma,即早石炭世。结合前文关于柴北缘构造环境的阐述及辉长岩代表的伸展环境,认为早石炭世柴北缘仍处于后造山伸展的构造演化阶段。此外,岩石地球化学及锆石Hf同位素相关分析表明,辉长岩岩浆源区为软流圈地幔,可能是早石炭世后造山伸展阶段柴北缘造山带去根、软流圈地幔上涌作用的产物。
6. 结论
(1)欧龙布鲁克地块西北缘辉长岩中锆石206Pb/238U年龄加权平均值为357±4Ma,代表辉长岩的形成年龄。
(2)早石炭世(约357Ma)柴北缘仍处于后造山伸展的构造演化阶段。
(3)研究区辉长岩脉是后造山伸展阶段柴北缘造山带去根、软流圈地幔上涌作用形成的,其岩浆源区为软流圈地幔并可能受到壳源富集组分的混染。
致谢: 审稿人对本文提出了很多建设性的修改意见,有助于文章的进一步完善,在此表示衷心的感谢。 -
图 4 西和一带构造变形(观测点位见图 1)
a—西和断裂;b—斑马层内的同沉积正断层,指示北北东—南南西向伸展,斑马层内见三趾马化石(大椭圆)D—泥盆系;E—古近系;N—新近系;Q—第四系
Figure 4. Tectonic deformation in Xihe area
图 5 天水-甘泉一带构造变形(观测点位见图 1)
a—天水东南的2期构造变形,晚期挤压切割早期伸展;b—西秦岭北缘正断层控制斑马层沉积;c—甘谷一带基岩逆冲到麦积山组砾岩之上Pz1—下古生界;E—古近系;N—新近系;Q—第四系
Figure 5. Tectonic deformation in Tianshui-Ganquan area
-
Alonso-Zarza A M,Zhao Z,Song C H,et al.Mudflat/distal fan and shallow lake sedimentation (upper Vallesian-Turolian) in the Tianshui Basin,Central China:Evidence against the late Miocene eolian loess[J].Sedimentary Geology,2009,222(1-2):42-51. doi: 10.1016/j.sedgeo.2009.03.010 Alonso-Zarza A M, Zhao Z, Song C H, et al.Mudflat/distal fan and shallow lake sedimentation (upper Vallesian-Turolian) in the Tianshui Basin, Central China:Evidence against the late Miocene eolian loess[J].Sedimentary Geology, 2009, 222(1-2):42-51. doi: 10.1016/j.sedgeo.2009.03.010
Wang X X,Li J J,Song C H,et al.Late Cenozoic orogenic history of Western Qinling inferred from sedimentation of Tianshui basin,northeastern margin of Tibetan Plateau[J].International Journal of Earth Sciences,2011,101(5):1345-1356. http://cn.bing.com/academic/profile?id=2055832271&encoded=0&v=paper_preview&mkt=zh-cn Wang X X, Li J J, Song C H, et al.Late Cenozoic orogenic history of Western Qinling inferred from sedimentation of Tianshui basin, northeastern margin of Tibetan Plateau[J].International Journal of Earth Sciences, 2011, 101(5):1345-1356. http://cn.bing.com/academic/profile?id=2055832271&encoded=0&v=paper_preview&mkt=zh-cn
宋春晖.青藏高原北缘新生代沉积演化与高原构造隆升过程[D].兰州大学博士学位论文, 2006. http://www.oalib.com/references/15798678 Guo Z T,Ge J Y,Xiao G Q,et al.Comment on "Mudflat/distal fan and shallow lake sedimentation (upper Vallesian-Turolian) in the Tianshui Basin,Central China:Evidence against the late Miocene eolian loess" by Alonso-Zarza AM,Zhao Z,Song CH et al.[Sedimentary Geology 222(2009)42-51] [J].Sedimentary Geology,2010,230(1-2):86-89. doi: 10.1016/j.sedgeo.2010.06.019 Guo Z T, Ge J Y, Xiao G Q, et al.Comment on "Mudflat/distal fan and shallow lake sedimentation (upper Vallesian-Turolian) in the Tianshui Basin, Central China:Evidence against the late Miocene eolian loess" by Alonso-Zarza AM, Zhao Z, Song CH et al.[Sedimentary Geology 222(2009)42-51] [J].Sedimentary Geology, 2010, 230(1-2):86-89. doi: 10.1016/j.sedgeo.2010.06.019
Guo Z T,Ruddiman W F,Hao Q Z,et al.Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J].Nature,2002,416:159-163. doi: 10.1038/416159a Guo Z T, Ruddiman W F, Hao Q Z, et al.Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J].Nature, 2002, 416:159-163. doi: 10.1038/416159a
Oldfield F,Bloemendal J.Rock-magnetic properties confirm the eolian origin of Miocene sequences from the west of the Chinese Loess Plateau[J].Sedimentary Geology,2011,234(1/4):70-75. http://cn.bing.com/academic/profile?id=1977607923&encoded=0&v=paper_preview&mkt=zh-cn Oldfield F, Bloemendal J.Rock-magnetic properties confirm the eolian origin of Miocene sequences from the west of the Chinese Loess Plateau[J].Sedimentary Geology, 2011, 234(1/4):70-75. http://cn.bing.com/academic/profile?id=1977607923&encoded=0&v=paper_preview&mkt=zh-cn
刘进峰, 郭正堂, 乔彦松, 等.秦安中新世黄土-古土壤序列石英颗粒形态特征、粒度分布及其对成因的指示意义[J].科学通报, 2005, 50(24):2806-2809. http://www.cnki.com.cn/article/cjfdtotal-kxtb200524021.htm 强小科, 安芷生, 宋友桂, 等.晚渐新世以来中国黄土高原风成红粘土序列的发现:亚洲内陆干旱化起源的新记录[J].中国科学D辑, 2010, 40(11):1479-1488. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201011003.htm Hao Q Z,Guo Z T.Magnetostratigraphy of an early-middle Miocene loess-soil sequence in the western Loess Plateau of China[J].Geophysical Research Letters,2007,34:L18305. doi: 10.1029/2007GL031162 Hao Q Z, Guo Z T.Magnetostratigraphy of an early-middle Miocene loess-soil sequence in the western Loess Plateau of China[J].Geophysical Research Letters, 2007, 34:L18305. doi: 10.1029/2007GL031162
Hao Q Z,Guo Z T.Magnetostratigraphy of a late Miocene-Pliocene loess-soil sequence in the western Loess Plateau in China[J].Geophysical Research Letters,2004,31(9):1-6. http://cn.bing.com/academic/profile?id=1609251113&encoded=0&v=paper_preview&mkt=zh-cn Hao Q Z, Guo Z T.Magnetostratigraphy of a late Miocene-Pliocene loess-soil sequence in the western Loess Plateau in China[J].Geophysical Research Letters, 2004, 31(9):1-6. http://cn.bing.com/academic/profile?id=1609251113&encoded=0&v=paper_preview&mkt=zh-cn
刘进峰, 郭正堂, 郝青振, 等.甘肃秦安糜子湾剖面中新世风尘堆积的磁性地层学研究[J].第四纪研究, 2005, 25(4):503-509. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200504014.htm 喻学惠, 赵志丹, 莫宣学, 等.甘肃西秦岭新生代钾霞橄黄长岩的40Ar/39Ar同位素定年及其地质意义[J].科学通报, 2005, 50(23):2638-2643. Ge J Y,Guo Z T,Zhan T,et al.Magnetostratigraphy of the Xihe loess-soil sequence and implication for late Neogene deformation of the West Qinling Mountains[J].Geophysical Journal International,2012,189(3):1399-1408. doi: 10.1111/gji.2012.189.issue-3 Ge J Y, Guo Z T, Zhan T, et al.Magnetostratigraphy of the Xihe loess-soil sequence and implication for late Neogene deformation of the West Qinling Mountains[J].Geophysical Journal International, 2012, 189(3):1399-1408. doi: 10.1111/gji.2012.189.issue-3
袁宝印, 郭正堂, 郝青振, 等.天水-秦安一带中新世黄土堆积区沉积-地貌演化[J].第四纪研究, 2007, 27(2):161-171. http://mall.cnki.net/magazine/article/dsjj200702000.htm 韩竹军, 向宏发, 冉勇康.青藏高原东缘礼县-罗家堡断裂带晚更新世以来的活动性分析[J].地震地质, 2001, 23(1):43-48. http://mall.cnki.net/magazine/article/dzdz200101005.htm 张会平, 张培震, 袁道阳, 等.南北地震带中段地貌发育差异性及其与西秦岭构造带关系初探[J].第四纪研究, 2010, 30(4):803-811. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201004017.htm Harrison T M,Copeland P,Kidd W S F,et al.Raising Tibet[J].Science,1992,255(5052):1663-1670. doi: 10.1126/science.255.5052.1663 Harrison T M, Copeland P, Kidd W S F, et al.Raising Tibet[J].Science, 1992, 255(5052):1663-1670. doi: 10.1126/science.255.5052.1663
Tapponnier P,Xu Z Q,Roger F,et al.Oblique Stepwise Rise and Growth of the Tibet Plateau[J].Science,2001,294(5547):1671-1677. doi: 10.1126/science.105978 Tapponnier P, Xu Z Q, Roger F, et al.Oblique Stepwise Rise and Growth of the Tibet Plateau[J].Science, 2001, 294(5547):1671-1677. doi: 10.1126/science.105978
张培震, 郑德文, 尹功明, 等.有关青藏高原东北缘晚新生代扩展与隆升的讨论[J].第四纪研究, 2006, 26(1):5-13. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200601001.htm Clark M K,Farley K A,Zheng D W,et al.Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J].Earth and Planetary Science Letters,2010,296(1-2):78-88. doi: 10.1016/j.epsl.2010.04.051 Clark M K, Farley K A, Zheng D W, et al.Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J].Earth and Planetary Science Letters, 2010, 296(1-2):78-88. doi: 10.1016/j.epsl.2010.04.051
Duvall A R,Clark M K,van der Pluijm B A,et al.Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry[J].Earth and Planetary Science Letters,2011,304(3/4):520-526. http://cn.bing.com/academic/profile?id=2103294084&encoded=0&v=paper_preview&mkt=zh-cn Duvall A R, Clark M K, van der Pluijm B A, et al.Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry[J].Earth and Planetary Science Letters, 2011, 304(3/4):520-526. http://cn.bing.com/academic/profile?id=2103294084&encoded=0&v=paper_preview&mkt=zh-cn
陈宣华, Mcrivette M W., 李丽, 等.东昆仑造山带多期隆升历史的地质热年代学证据[J].地质通报.2011, 30(11):1647-1660. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20111101&journal_id=gbc 王岸, 王国灿, 张克信, 等.东昆仑造山带新生代早期构造事件的碎屑裂变径迹年代学证据[J].地球科学, 2010, 35(5):346-737. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005003.htm 方小敏, 宋春晖, 戴霜, 等.青藏高原东北部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录[J].地学前缘, 2007, 14(1):230-242. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200701024.htm Fang X M,Garzione C,Voo R V D,et al.Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin,China[J].Earth and Planetary Science Letters,2003,210(3-4):545-560. doi: 10.1016/S0012-821X(03)00142-0 Fang X M, Garzione C, Voo R V D, et al.Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J].Earth and Planetary Science Letters, 2003, 210(3-4):545-560. doi: 10.1016/S0012-821X(03)00142-0
Fang X M,Yan M D,Voo R V D,et al.Late Cenozoic deformation and uplift of the NE Tibetan Plateau:Evidence from high-resolution magnetostratigraphy of the Guide Basin,Qinghai Province,China[J].Geological Society of America Bulletin,2005,117(9-10):1208-1225. http://cn.bing.com/academic/profile?id=2074051603&encoded=0&v=paper_preview&mkt=zh-cn Fang X M, Yan M D, Voo R V D, et al.Late Cenozoic deformation and uplift of the NE Tibetan Plateau:Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China[J].Geological Society of America Bulletin, 2005, 117(9-10):1208-1225. http://cn.bing.com/academic/profile?id=2074051603&encoded=0&v=paper_preview&mkt=zh-cn
Lease R O,Burbank D W,Hough B,et al.Pulsed Miocene range growth in northeastern Tibet:Insights from Xunhua Basin magnetostratigraphy and provenance[J].Geological Society of America Bulletin,2012,124(5-6):657-677. doi: 10.1130/B30524.1 Lease R O, Burbank D W, Hough B, et al.Pulsed Miocene range growth in northeastern Tibet:Insights from Xunhua Basin magnetostratigraphy and provenance[J].Geological Society of America Bulletin, 2012, 124(5-6):657-677. doi: 10.1130/B30524.1
Liu S F,Zhang G W,Pan F,et al.Timing of Xunhua and Guide basin development and growth of the northeastern Tibetan Plateau,China[J].Basin Research,2012,25(1):74-96. http://cn.bing.com/academic/profile?id=2102014396&encoded=0&v=paper_preview&mkt=zh-cn Liu S F, Zhang G W, Pan F, et al.Timing of Xunhua and Guide basin development and growth of the northeastern Tibetan Plateau, China[J].Basin Research, 2012, 25(1):74-96. http://cn.bing.com/academic/profile?id=2102014396&encoded=0&v=paper_preview&mkt=zh-cn
Lease R O,Burbank D W,Clark M K,et al.Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J].Geology,2011,39(4):359-362. doi: 10.1130/G31356.1 Lease R O, Burbank D W, Clark M K, et al.Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J].Geology, 2011, 39(4):359-362. doi: 10.1130/G31356.1
郑德文, 张培震, 万景林, 等.青藏高原东北边缘晚新生代构造变形的时序一临夏盆地碎屑颗粒磷灰石裂变径迹记录[J].中国科学D辑, 2003, 33(增刊):190-198. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1020.htm Wang Z C,Zhang P Z,Garzione C N,et al.Magnetostratigraphy and depositional history of the Miocene Wushan basin on the NE Tibetan plateau,China:Implications for middle Miocene tectonics of the West Qinling fault zone[J].Journal of Asian Earth Sciences,2012,44(1):189-202. http://cn.bing.com/academic/profile?id=1985680862&encoded=0&v=paper_preview&mkt=zh-cn Wang Z C, Zhang P Z, Garzione C N, et al.Magnetostratigraphy and depositional history of the Miocene Wushan basin on the NE Tibetan plateau, China:Implications for middle Miocene tectonics of the West Qinling fault zone[J].Journal of Asian Earth Sciences, 2012, 44(1):189-202. http://cn.bing.com/academic/profile?id=1985680862&encoded=0&v=paper_preview&mkt=zh-cn
张岳桥, 马寅生, 杨农, 等.西秦岭地区东昆仑-秦岭断裂系晚新生代左旋走滑历史及其向东扩展[J].地球学报, 2005, 26(1):1-8. http://mall.cnki.net/magazine/Article/DQXB200501001.htm Zheng D W,Zhang P Z,Wan J L,et al.Rapid exhumation at ~8Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin[J].Earth and Planetary Science Letters,2006,248(1-2):198-208. doi: 10.1016/j.epsl.2006.05.023 Zheng D W, Zhang P Z, Wan J L, et al.Rapid exhumation at~8Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin[J].Earth and Planetary Science Letters, 2006, 248(1-2):198-208. doi: 10.1016/j.epsl.2006.05.023
Liu J H,Zhang P Z,Lease R O,et al.Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihegraben:Insights from apatite fission track thermochronology[J].Tectonophysics,2012,584:281-296. http://cn.bing.com/academic/profile?id=1967389310&encoded=0&v=paper_preview&mkt=zh-cn Liu J H, Zhang P Z, Lease R O, et al.Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihegraben:Insights from apatite fission track thermochronology[J].Tectonophysics, 2012, 584:281-296. http://cn.bing.com/academic/profile?id=1967389310&encoded=0&v=paper_preview&mkt=zh-cn
Liu J H,Zhang P Z,Zhe???????づ???ぬ????ぴ?ひ??扡牮?嬠??嵭??牧愠摯摦漠捬歡?坥??楥牮扯祺???娠桲慡湰杩???偸??慭瑡整??楮漠捡敮湤攠?偰汬楩潦捴攠湯敦?牴慨湥朠效?杬牡潮眠瑍桯?楮湴?瑩桮攬?楨湩瑮敡牛楊潝爮?潣晩?瑮档敥?湃潨物瑮桡攠慅獡瑲整牨渠?呣楩扥敮瑣慥湳?倲氰愱琰攬愵申嬨?崩??椴琵栭漳猵瀵栮攼牢敲????????????????????扒狏?実?〗崘?娏棆愰湚枰???倠??狊懇搋摛潊捝欮‰坦????攰愰猷攬?刴?伱?攺琲?愳氭??愰朮渼敢瑲漾獛琳爷慝琠楅杮牫慥灬桭祡?潮映?琬桒敡?乳散潨杢敡湣敨??栠慌欬慊?扮慣獫楨湥?慲湥搠?椬瑥獴?楡浬瀮汃楥据慯瑺楯潩湣猠?晸潨牵?浡潴畩湯瑮愠楡湮?戠畤楥汦摯楲湭条?灩牯潮挠敯獦猠敮獯?楴湨?瑡桳整?湲潮爠瑔桩?敥慴猠瑡敮牤渠?周楥戠救瑩慮湬?偮汧愺瑉敳愠畔孩?嵥??慮猠楬湯?剥敲猠散慲牵捳桴????????????????で??扲牯?孮?ㄠ嵴?坥愠湓杩?坨?呡??楂牡扳祩???婊桝愮湇来?偬?婧?散瑡?愠汓?呣敩牥瑴楹愠牯祦?扁慭獥楲湩?敡瘠潂汵畬瑬楥潴湩?愬氲漰渰朶?琱栱攸?渵漭父琩栺收愵猱琭收爷渱?洼慢牲朾楛渳?潝映?瑡桮敧?员椠托攬瑚慡湴?偩汮愠瑍攬慌畩??瘠楊搬敥湴挠敡?昮潅牯?扥慮獥椠湴?映潐牬浩慯瑣楥潮湥?摥畸牨極湭条?佩汯楮朠潨捩敳湴敯?瑹爠慯湦猠瑴敨湥猠楔潩湡孮?嵨??攭潈汵潩杣楨捥慮汧?卲潥捧楩敯瑮礠?潥晴??浭敩牮楥捤愠??甠汁汰敡瑴楩湴?㈠て?????????????????ねは??扲牯?孯??嵧????????瑡楴癩楯敮牳????愠略摶敯浬敵牴?奯?吠慯灦瀠潴湨湥椠敮牯?側?敥瑡?慴汥?乮漠牔瑩桢敥慴獡瑮眠慐牬摡?来牡潵眠瑭桡?潧晩?瑛桊敝?告楯扵敲瑮?灬氠慯瑦攠慁畳?摡敮搠畅捡敲摴?映牓潣浩?扮慣汥慳測挲攰搱?爬攴挲漨渱猯琲爩町挹琷椭漱渱‰漮昼?瑲眾潛″搹敝瀠潹玛椬瓭楣漂測愴汷?愬牉攮慎玶?呱栰攭?儖懎椐撢感洆?愎湿擨??旘碟椰??漖牛牊楝搮漭狽?扦慄玑椬渲猰??栬椴渰愨嬸?崺?吰攴挰琭漱渰椴挷献?????????????????????扝爮?学??崾??漹氶渴愺爲?倶?匼瑢潲挾歛?????卣汬潡睴楥湲朠?漠晇??湨摲楩慳?獩?挠潐渠癁攠牆朮敃湯据整?睮楥瑮桴??甠牳慴獲楥慴?獨楩湮捧攺?????慰?慡湮摡?楩瑯獮?楯浦瀠汴楨捥愠瑐楯潳湴猭?晩潤爭?呲楥扴敡瑣慥湯?浳愠湳瑵汢敳?摤祥湮慣浥椠捯獦嬠?嵨?吠散捥瑮潴湲楡捬猠??ひぴ?????????????].Journal of Geophysical Research:Solid Earth,1980,85(B7):3711-3739. doi: 10.1007/s11430-010-0016-0 Liu J H, Zhang P Z, Zheng D W, et al.Pattern and timing of late Cenozoic rapid exhumation and uplift of the Helan Mountain, China[J].Science China Earth Sciences, 2010, 53(3):345-355. doi: 10.1007/s11430-010-0016-0
袁道阳, 张培震, 方小敏, 等.青藏高原东北缘临夏盆地晚新生代构造变形及过程[J].地学前缘, 2007, 14(1):243-250. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200701025.htm 安芷生,张培震,王二七,等.中新世以来我国季风-干旱环境演化与青藏高原的生长[J].第四纪研究,2006,26(5):678-683. doi: 10.1130/B25805.1 Enkelmann E, Ratschbacher L, Jonckheere R, et al.Cenozoic exhumation and deformation of northeastern Tibet and the Qinling:Is Tibetan lower crustal flow diverging around the Sichuan Basin?[J].Geological Society of America Bulletin, 2006, 118(5-6):651-671. doi: 10.1130/B25805.1
雷祥义,岳乐平,王建琪,等.秦岭凤州黄土磁学特征及其古气候意义[J].科学通报,1998,43(14):1537-1540. http://cn.bing.com/academic/profile?id=2047835482&encoded=0&v=paper_preview&mkt=zh-cn Wang X X, Zattin M, Li J J, et al.Eocene to Pliocene exhumation history of the Tianshui-Huicheng region determined by Apatite fission track thermochronology:Implications for evolution of the northeastern Tibetan Plateau margin[J].Journal of Asian Earth Sciences, 2011, 42(1/2):97-110. http://cn.bing.com/academic/profile?id=2047835482&encoded=0&v=paper_preview&mkt=zh-cn
詹涛, 郭正堂, 吴海斌, 等.华家岭山地中新世风成红土堆积与西部黄土高原地貌演化[J].中国科学D辑, 2010, 40(8):1040-1047. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201008010.htm 刘东生.黄河中游黄土[M].科学出版社, 1964:216. Fu B H,Awata Y.Displacement and timing of left-lateral faulting in the Kunlun Fault Zone,northern Tibet,inferred from geologic and geomorphic features[J].Journal of Asian Earth Sciences,2007,29(2-3):253-265. doi: 10.1029/JB085iB07p03711 Sclater J G, Christie P A F.Continental stretching:An explanation of the Post-Mid-Cretaceous subsidence of the central North Sea Basin[J].Journal of Geophysical Research:Solid Earth, 1980, 85(B7):3711-3739. doi: 10.1029/JB085iB07p03711
李吉均, 方小敏, 马海洲, 等.晚新生代黄河上游地貌演化与青藏高原隆起[J].中国科学(D辑), 1996, 26(4):316-322. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604004.htm 安芷生, 张培震, 王二七, 等.中新世以来我国季风-干旱环境演化与青藏高原的生长[J].第四纪研究, 2006, 26(5):678-683. http://mall.cnki.net/magazine/article/dsjj200605001.htm 雷祥义, 岳乐平, 王建琪, 等.秦岭凤州黄土磁学特征及其古气候意义[J].科学通报, 1998, 43(14):1537-1540. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199814020.htm 马收先, 张岳桥, 李海龙, 等.青藏高原东北缘新近纪晚期构造挤出:来自西秦岭地区安化-成县盆地的证据[J].地学前缘, 2013, 20(4):58-74. http://mall.cnki.net/magazine/article/dxqy201304008.htm Zhang Y Q, Vergely P, Mercier J, et al.Kinematic History and Changes in the Tectonic Stress Regime during the Cenozoic along the Qinling and southern Tanlu Fault Zones[J].Acta Geologica Sinica, 1999, 73(3):264-274. doi: 10.1111/acgs.1999.73.issue-3
Fu B H, Awata Y.Displacement and timing of left-lateral faulting in the Kunlun Fault Zone, northern Tibet, inferred from geologic and geomorphic features[J].Journal of Asian Earth Sciences, 2007, 29(2-3):253-265. doi: 10.1016/j.jseaes.2006.03.004
Yuan D Y, Champagnac J, Ge W P, et al.Late Quaternary rightlateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan Plateau[J].Geological Society of America Bulletin, 2011, 123(9/10):2016-2030. http://cn.bing.com/academic/profile?id=2072022033&encoded=0&v=paper_preview&mkt=zh-cn
Craddock W, Kirby E, Zhang H P.Late Miocene-Pliocene range growth in the interior of the northeastern Tibetan Plateau[J].Lithosphere, 2011, 3(6):420-438. doi: 10.1130/L159.1
Zhang H P, Craddock W H, Lease R O, et al.Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north-eastern Tibetan Plateau[J].Basin Research, 2012, 24(1):31-50. doi: 10.1111/bre.2011.24.issue-1
Wang W T, Kirby E, Zhang P Z, et al.Tertiary basin evolution along the northeastern margin of the Tibetan Plateau:Evidence for basin formation during Oligocene transtension[J].Geological Society of America Bulletin, 2013, 125(3/4):377-400. http://cn.bing.com/academic/profile?id=2326296193&encoded=0&v=paper_preview&mkt=zh-cn
Métivier F, Gaudemer Y, Tapponnier P, et al.Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas:The Qaidam and Hexi Corridor basins, China[J].Tectonics, 1998, 17(6):823-842. doi: 10.1029/98TC02764
Molnar P, Stock J M.Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics[J].Tectonics, 2009, 28(3):1-11. http://cn.bing.com/academic/profile?id=1658256170&encoded=0&v=paper_preview&mkt=zh-cn