• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

内蒙古太仆寺旗卧牛山花岗岩锆石年龄、微量元素特征及其地质意义

夏艳菊, 吴堑虹, 奚小双

夏艳菊, 吴堑虹, 奚小双. 2016: 内蒙古太仆寺旗卧牛山花岗岩锆石年龄、微量元素特征及其地质意义. 地质通报, 35(6): 943-952. DOI: 10.12097/gbc.dztb-35-6-943
引用本文: 夏艳菊, 吴堑虹, 奚小双. 2016: 内蒙古太仆寺旗卧牛山花岗岩锆石年龄、微量元素特征及其地质意义. 地质通报, 35(6): 943-952. DOI: 10.12097/gbc.dztb-35-6-943
XIA Yanju, WU Qianhong, XI Xiaoshuang. 2016: Zircon geochronology and trace element characteristics of the Woniushan granites in Taibus Ban-ner, Inner Mongolia, and their geological significance. Geological Bulletin of China, 35(6): 943-952. DOI: 10.12097/gbc.dztb-35-6-943
Citation: XIA Yanju, WU Qianhong, XI Xiaoshuang. 2016: Zircon geochronology and trace element characteristics of the Woniushan granites in Taibus Ban-ner, Inner Mongolia, and their geological significance. Geological Bulletin of China, 35(6): 943-952. DOI: 10.12097/gbc.dztb-35-6-943

内蒙古太仆寺旗卧牛山花岗岩锆石年龄、微量元素特征及其地质意义

基金项目: 

丰泰矿业有限公司项目 2011021H001

详细信息
    作者简介:

    夏艳菊(1990-), 女, 在读硕士生, 矿产普查与勘探专业。E-mail:277965179@qq.com

    通讯作者:

    吴堑虹(1957-), 女, 研究员, 博士生导师, 从事地球化学研究。E-mail:qhwu@mail.csu.edu.cn

  • 中图分类号: P588.12+1;P597+.3

Zircon geochronology and trace element characteristics of the Woniushan granites in Taibus Ban-ner, Inner Mongolia, and their geological significance

  • 摘要:

    内蒙古太仆寺旗卧牛山花岗岩位于华北板块北缘晚古生代-早中生代岩浆岩带中段。卧牛山岩体LA-ICP-MS锆石206Pb/238U年龄加权平均值为274.7±1.2Ma(MSWD=0.82), 非前人认为的侏罗纪。锆石稀土元素总量为362.67×10-6~1177.09×10-6, 平均为797.91×10-6, 各分析点的稀土元素球粒陨石标准化配分模式高度一致, 富集重稀土元素, 亏损轻稀土元素, 具明显的正Ce异常及负Eu异常。基于锆石的稀土元素特征, 通过构造背景及结晶环境判别图解、Ti温度计, 结合区域地质背景及岩浆岩特征分析, 认为卧牛山花岗岩为壳幔混源, 形成于古亚洲洋向华北板块俯冲的构造-岩浆活动中, 是活动大陆边缘的产物, 与华北板块北缘晚古生代-早中生代岩浆岩带东、西段二叠纪岩体的源区及构造背景一致。研究成果确认了华北板块北缘晚古生代-早中生代岩浆岩带中段与其东、西两段在海西晚期具有相同的成因联系。

    Abstract:

    The Woniushan granite in Taibus Banner of Inner Mongolia is located in the middle part of the Late Paleozoic-Early Me-sozoic magmatic belt on the northern margin of the North China plate. The weighted average age of 206Pb/238U by LA-ICP-MS of zircon from Woniushan pluton is 274.7±1.2Ma (MSWD=0.82), indicating that the pluton is not the Jurassic in age as previously con-sidered. TheΣREE values of zircon are 362.67×10-6~1177.09×10-6 with an average of 797.91×10-6. The REE patterns of all zircon grains are highly consistent, characterized by enrichment of HREE, depletion of LREE, and obvious positive Ce and negative Eu anomalies. Through the analysis of REE characteristics, diagrams of tectonic setting, crystallization environment, and Ti thermometer in zircon, combined with regional geological setting and magmatic characteristics, the authors hold that the Woniushan granite, as the mixture of crust and mantle, was formed during the tectonic-magmatic activities of paleo-Asian Ocean subducting to the Northern North China plate, being the product of active continental margin, and the source and tectonic setting of the Woniushan granite were similar to those of the Permian magmatite in eastern and western parts of the Late Paleozoic-Early Mesozoic magmatic belt on the northern margin of the North China plate. The results confirm that, in late Hercynian period, the genetic relationship of the mag-matite of the middle part of the Late Paleozoic-Early Mesozoic magmatic belt on the northern margin of North China plate was the same as that of the eastern and western parts.

  • 新生代以来,印度-欧亚板块碰撞汇聚形成了有“世界第三极”之称的青藏高原及高原构造系统。青藏高原构造系统形成的动力学机制和高原生长扩展过程一直是地学界研究的热点领域,虽然构造变形和隆升过程的模式众多,但迄今尚未达成共识[1-12]。其中青藏高原东北缘何时隆升并卷入现今的青藏高原构造系统一直存在很大争议,由南向北逐渐扩展生长模式认为青藏高原东北缘是上新世—第四纪高原[6];而原西藏高原向南、向北扩展生长模式认为青藏高原东北缘是8 Ma以来隆升成为高原组成部分[8, 13];也有观点坚持印度-欧亚板块碰撞伊始高原东北缘准同期发生显著的构造变形,形成了高原的雏形[5, 14];还有根据青藏高原东北缘沉积盆地沉积物粒度变化及基岩热年代学数据提出的8 Ma东北缘已隆升到一定高度[15-17]。但不可否认的是,青藏高原东北缘广泛发育的上新世—第四纪粗砾岩,如西域砾岩[18]、玉门砾岩[19-20]、酒泉砾岩[21]、积石山砾岩[9]、甘家砾岩[22-24]等应该对印度-欧亚碰撞汇聚动力学背景下青藏高原东北缘强烈隆升和高原扩展生长有十分关键的约束,尽管对这套砾岩成因是构造砾岩还是气候砾岩还有不同的认识[25],但这套巨厚的粗砾岩形成必然要求地壳快速差异隆升,形成一定的地形高差和气候剧烈变化。西秦岭北缘作为青藏高原东北缘的主要构造边界带,其武山—漳县段新生代沉积记录保存较完整,不仅发育一套厚度达3000 m的渐新统—中新统红色碎屑岩系和灰色泥岩-泥灰岩-蒸发岩系多旋回沉积地层[26],而且在这套地层之上还角度不整合覆盖着一套残留厚度达500 m的上新统粗砾岩层[27-28]。这套粗砾岩沉积旋回,砾岩的砾石形态、成分、粒径、古流向标志及其垂向变化等的研究可为青藏高原东北缘隆升过程认识提供重要的地质约束,探讨其与青藏高原东北缘隆升的关系,为青藏高原东北缘扩展生长提供新的地质依据。

    西秦岭北缘构造带主要由一系列近东西向或北西西向的断层和断层夹持的不同时代的块体组成,断层自北而南依次为F1、F2、F3、F4(图 1)。该区域出露的前新生代地层包括下古生界李子园岩群、鸳鸯镇蛇绿岩;上古生界泥盆系大草滩岩群、石炭系巴都组和下家岭组,二叠系大关山组、石关组和下白垩统河口群和磨沟组。其中,二叠系由上统石关组细粒长石石英砂岩、岩屑石英砂岩、粉砂质页岩与生物灰岩、角砾状灰岩、泥灰岩互层和中统大关山组灰白色-深灰色微晶灰岩夹砂屑灰岩、生物碎屑灰岩、泥质粉砂质板岩组成;石炭系由上统下加岭组深灰色-褐灰色钙质岩屑砂岩、石英砂岩、钙质粉砂岩、砂屑灰岩夹泥灰岩、粉晶灰岩、炭板岩和下统巴都组深灰色-浅灰色长石石英砂岩、石英砂岩、钙质岩屑砂岩、粉砂质板岩、粉砂岩夹泥灰岩及少量煤线组成;泥盆系大草滩岩群主要由紫红色-紫灰色-灰绿色含细砾长石石英砂岩、长石石英砂岩、细砂岩、粉砂岩及粉砂质泥岩互层组成;李子园岩群由黑云二长变粒岩、灰色黑云变粒岩夹浅灰色长石石英岩、灰色黑云变粒岩、二长浅粒岩、黑云纤闪石角岩、透闪石大理岩组成;鸳鸯镇蛇绿岩(YSL)由绿帘阳起片岩、阳起斜长片岩、黑云钠长角闪岩,含石榴子石绿帘钠长角闪岩等变质基性-中基性火山岩和蛇纹岩、滑石蛇纹岩等变质超基性岩组成。新生代沉积地层主要包括由多旋回的红色-灰色岩系构成的漳县含盐红层沉积地层和以韩家沟砾岩为代表的粗砾岩沉积地层。关于这2套新生代地层的时代一直存在不同认识。最早的1:20万陇西幅地质图把F3之南的含盐红层地层厘定为新近系(N),F3与F1之间的红层厘定为下白垩统河口群(KH),而将不整合其上的砾岩和F1断层以北的砾岩及F4断层以南砖红色砾岩、砂岩地层厘定为古近系(E);而1:25万岷县幅地质图把F1与F3之间的红层地层划为下白垩统河口群,而角度不整合其上的韩家沟砾岩划为上白垩统麦积山组,F1断层以北的砾岩层则划为新近系甘肃群,F4断层以南西秦岭内部的砖红色砾岩、砂岩地层和F4与F3之间的漳县含盐红层地层都划为下白垩统磨沟组。近年来,通过对该地区新生代地层之间角度不整合关系和沉积岩石序列及构造变形特征的对比,对原作为不同时代地层分界的F2和F3断层构造特征及两侧地层岩性和构造变形特征观测,发现F2和F3断层都不具备划分2套地层的构造边界属性,F1与F4断层之间,除韩家沟砾岩外的红层地层实为一套沉积连续、产状一致、变形协调的地层单位,且都被近水平的韩家沟粗砾岩不整合覆盖。结合漳县盐矿勘探钻孔ZK0803的3个灰色泥岩、泥灰岩(深度分别为697 m、868 m、947 m)样品的孢粉组合总体特征,即具有中新世中—晚期孢粉组合特征,以及中新世含盐的红色泥岩和灰色泥岩泥灰岩地层之下还有千余米厚的沉积地层[27],考虑到区域上同时代的临夏盆地新生代红层地层底界年龄为29 Ma [9, 29],把F1与F4之间漳县含盐盆地的红层地层时代厘定为渐新统—中新统,而将角度不整合于这套含盐红层地层之上的韩家沟粗砾岩厘定为上新统(图 2)。

    图  1  西秦岭北缘漳县地区地质简图
    Figure  1.  Geological sketch map of Zhangxian area on the northern margin of the West Qinling
    图  2  西秦岭北缘漳县地区A-B地质剖面(剖面位置见图 1中A-B)
    N2—上新统;E3-N1—渐新统-中新统;K1—下白垩统; P—二叠系
    Figure  2.  A-B geological section in Zhangxian area of the northern margin of West Qinling

    上新统韩家沟砾岩南以F2断层为边界,主要由一套厚度近480 m的巨厚层-厚层洪积砾岩、冲洪积砾岩、冲积砾岩等粗砾岩组成,以其特殊的岩石组合和典型的丹霞地貌特征区别于下伏渐新统—中新统红层沉积地层。砾岩沉积旋回较清晰,根据其岩性变化和旋回特征,自下而上可分为洪积砾岩层、冲积砾岩层、冲洪积砾岩层、冲积砾岩层和冲洪积砾岩层5个岩性段(图 3图 4)。岩性段①洪积砾岩层主要由块状层-巨厚层红色粗砾岩组成,碎屑颗粒大小不均,砂砾质胶结,基质支撑,分选性和磨圆度差,砾石以棱角和次棱角状为主,砾石成分主要为斑状花岗岩、花岗闪长岩或闪长玢岩、红褐色砂岩、黄褐色砂岩、灰褐色杂砂岩等(图版Ⅰ-a),上部发育筛状砾岩层,尽管砾石磨圆度和成分没有显著变化,但砾石含量高,形成颗粒支撑结构(图版Ⅰ-b);岩性段②冲积砾岩层,层理较清晰,砾石磨圆度较好,多以次圆状和圆状砾石为主,砾岩中粗砂岩或含砾砂岩中可见交错层理,砾石叠瓦状排列现象发育,以灰色-红色灰岩砾石为主,各种砂岩砾石也占一定比例,但花岗岩成分砾石罕见(图版Ⅰ-c);岩性段③冲洪积砾岩层由具有一定磨圆的河流相砾岩和磨圆度较低的洪积相砾岩互层组成,两者之间呈渐变过渡关系。粗砾岩层中可见宽240 cm、厚20 cm的细砾岩透镜体和宽70 cm、厚8 cm的粗砂岩透镜体。整体上,砾岩以砂砾质胶结的基质支撑结构为主,局部出现颗粒支撑砾岩。砾石磨圆度较低,以棱角和次棱角状为主,砾石成分以砂岩和花岗岩为主,冲积砾岩中灰岩砾石磨圆度较好,砾石叠瓦排列常见(图版Ⅰ-d);岩性段④冲积砾岩层与岩性段②冲积砾岩层相似(图版Ⅰ-e);岩性段⑤冲洪积砾岩层主要由砂砾岩层夹粗砾岩层组成,颗粒平均粒径与下伏4个岩性段相比显著减小,但含有相当数量的巨大砾石,这些巨大砾石磨圆度差别也较大,既有磨圆较好的砾石,也有未磨圆的棱角状砾石,砾石成分既有花岗岩,又有砂岩或石英岩,整体分选性差,但旋回性清晰,正粒序递变层发育(图版Ⅰ-f)。为进一步揭示这套砾岩成因和环境及物源区变化特征与西秦岭地块隆升的关系,对这套砾岩的砾石大小、形态、成分、垂向变化等进行较系统的观测和统计分析。

    图  3  西秦岭北缘漳县地区上新统砾岩地层剖面(剖面位置见图 1中A′-B′)
    1—粗砾岩;2—中砾岩;3—细砾岩;4—细砂质砾岩;5—砂砾岩;6—红色粉砂质粘土岩;7—红色粘土岩;8—断层;9—砾岩岩性段编号;10—砾石观测统计点;E3-N1—渐新统-中新统;N2—上新统
    Figure  3.  Pliocene conglomerate stratigraphic section in Zhangxian area, northern margin of the West Qinling
    图  4  西秦岭北缘漳县地区上新统韩家沟砾岩综合柱状图
    Figure  4.  Comprehensive histogram of Pliocene Hanjiagou conglomerate in Zhangxian area, northern margin of the West Qinling
      图版Ⅰ 
    a.岩性段①底部洪积砾岩;b.岩性段①上部筛状沉积砾岩;c.岩性段②冲积粗砾岩;d.岩性段③冲洪积砾岩;e.岩性段④上部粗砾冲洪积砾岩;f.岩性段⑤冲洪积砾岩
      图版Ⅰ. 

    砾岩的分选性、磨圆度及胶结方式,特别是砾石粒径大小、分布和砾石磨圆程度是砾岩搬运距离、形成的水动力条件、砾岩成因类型等的主要判别标志[30-32]。砾石成分可以反映物源区地壳隆升幅度、岩石组成、岩石抗风化能力的差异等地质信息[33-34]。本文以漳县韩家沟出露良好的上新统砾岩地层剖面为研究对象,自下而上选取不同层位的9个典型砾岩露头(图 3图 4),对每个露头确定具有代表性的1m2范围内大于1 cm砾石的粒径、磨圆度、排列、砾石成分等进行观测和统计分析。

    对上新统韩家沟砾岩层的9个砾岩观测点的砾石粒径测量和统计表明,砾石粒径分布范围很宽,总体分选性差,虽然砾岩中存在少量12~24 cm的巨砾,但大于10 cm的砾石含量一般不超过5%。粒径3~6 cm的粗砾显示出一定峰态,且粒径大于1 cm的砾石含量变化不明显(图 5)。不同粒径砾石含量累计曲线形态相似,不同粒径砾石含量虽有一定变化(15%~20%),但1~6 cm的砾石含量都在80%左右(图 6)。尽管自下部砾岩层到上部砾岩层的粒径大于1 cm砾石含量变化不明显,但小于1 cm的细砾-砂砾质胶结物自下而上呈现显著增加(图 5),这与下部主要为层理不清晰的洪积扇根相块状砾岩,而中上部为层理较清晰的冲洪积或冲积砾岩的垂向变化特征吻合。同时也指示了自下而上砾岩层的物源区扩大、地形高差减小、水动力减弱的趋势。

    图  5  漳县地区上新统韩家沟砾岩砾石粒径分布直方图(观测点位置见图 3图 4)
    Figure  5.  Histogram of gravel diameter distribution of Pliocene Hanjiagou conglomerate in Zhangxian area
    图  6  漳县地区上新统韩家沟砾岩砾石粒径分布累积曲线图(观测点位置见图 3)
    Figure  6.  Cumulative curve of gravel diameters of Hanjiagou conglomerate in Zhangxian area

    砾石磨圆度,也称圆度,指碎屑颗粒由原始状态被磨圆的程度。砾石的磨圆度受砾石搬运距离、搬运历史、砾石岩性、水动力条件等因素制约[31-32, 35]。一般来说,砾石磨圆度越好,其搬运距离越远,反之则越近,但不同的岩性由于抗磨圆能力差异,同样条件下砾石磨圆度也会呈现显著差异,如同一露头灰岩砾石呈圆或滚圆状,而相对坚硬的砂岩或块状花岗岩砾石磨圆度会降低一个级别,同样受砾石本身岩性的控制。这种不同岩性砾石磨圆度的差异在上新统韩家沟砾岩并不少见。但统计砾石数量的增加一定程度上会降低这种效应。本次统计的砾石颗粒数都在100个以上,且主要砾石成分为砂岩、灰岩和花岗岩,不同成分的砾石粒径相近,所以砾石磨圆度没有分别统计。砾石磨圆度统计结果应该代表平均磨圆度。

    从对不同层位9个砾岩观测点的砾石磨圆度统计结果(图 7图 8)可以看出,次棱角状和次圆状砾石所占比例都在70%~80%,棱角状和圆状砾石所占比例都在20%以下,说明这套砾岩总体上主要是近源碎屑物质快速堆积的产物。不同层位不同磨圆度的砾石含量变化曲线(图 8)显示,除下部棱角状砾石含量较高外,中、上部层位含量基本在10%左右,而次圆状和圆状砾石所占比例有所增加,这与自下而上洪积砾岩所占比例逐渐减少,而冲积砾岩比例逐渐增加一致。

    图  7  漳县地区上新统韩家沟砾岩砾石磨圆度统计图(观测点位置见图 3)
    Figure  7.  Statistics of gravel roundness of Pliocene Hanjiagou conglomerate in Zhangxian area
    图  8  漳县地区上新统韩家沟砾岩砾石磨圆度变化(观测点位置见图 3)
    Figure  8.  Variation of gravel roundness of Pliocene Hanjiagou conglomerate in Zhangxian area

    砾岩的砾石成分及垂向变化可以揭示物源区地壳隆升-剥露过程、古构造地貌状态、岩石组成、变化等特征[33-34]。西秦岭北缘漳县地区上新统韩家沟砾岩全部为复成分砾岩,砾石成分主要为变质砂岩、石灰岩和各种花岗质-花岗闪长质岩石,细砾-砂砾质胶结物中含有大量棱角状的板岩、砂板岩成分。这套砾岩中砾石叠瓦状斜列现象发育(图 9),可以通过对砾岩中砾石扁平面产状的测定和统计,确定其古水流方向[30-32, 35]。砾岩古流向测定结果表明,韩家沟砾岩古水流方向总体自南向北或北偏东流,但个别洪积成因为主的砾岩观测点的砾石扁平面产状多变,指示的流向不稳定,应与砾石成因有关。一般来说,河流成因的冲积砾岩砾石斜列方向稳定,其古流向也是稳定的(图 9图 10)。上新统韩家沟砾岩砾石成分特征与西秦岭造山带主要岩石类型的一致性和较稳定的自南向北的古流向,都指示这套砾岩物源来自西秦岭造山带。

    图  9  漳县地区上新统韩家沟砾岩中典型砾石叠瓦斜列现象
    a—裴家沟一号泥石流坝内侧西壁;b—红沟内小瀑布下西壁
    Figure  9.  Typical gravel imbrication arrangement in Pliocene Hanjiagou conglomerate in Zhangxian area
    图  10  漳县地区上新统韩家沟砾岩古水流方向统计图
    Figure  10.  Statistics of paleocurrents of Pliocene Hanjiagou conglomerate in Zhangxian area

    这套砾岩大于1 cm的砾石成分统计结果表明,以变质砂岩和石灰岩砾石为主体,其次为花岗质-花岗闪长质岩石(图 11图 12)。岩性段①洪积砾岩中砂岩砾石占比高达90%,含有一定量的花岗质-花岗闪长质岩石砾石,而石灰岩砾石含量很低(图 11-a、b); 岩性段②冲积砾岩中石灰岩砾石含量显著增加(图 11-c、d),其中观测点c的石灰岩砾石高达90%,而花岗岩砾石罕见; 岩性段③洪积砾岩的砾石成分虽然与岩性段①相似,但含有一定比例的石灰岩砾石;岩性段④冲积砾岩中砾石成分与岩性段②基本一致;岩性段⑤与岩性段③砾岩砾石成分相似。上新统韩家沟砾岩砾石成分中这种灰岩和砂岩互为消涨的旋回性变化(图 12),反映了这套砾岩形成过程中气候变化、地形地貌抬升与侵蚀等周期性变化导致的水动力条件和物源区的规律性变化。

    图  11  漳县地区上新统韩家沟砾岩砾石成分统计图(观测点位置见图 3)
    Figure  11.  Gravel litho-composition of Pliocene Hanjiagou conglomerate in Zhangxian area
    图  12  漳县地区上新统韩家沟砾岩砾石成分变化图(观测点位置见图 3)
    Figure  12.  Variation of gravel litho-composition of Pliocene Hanjiagou Conglomerate in Zhangxian area

    根据西秦岭北缘断裂带以南西秦岭造山带岩石类型分布和韩家沟砾岩砾石大小、磨圆和成分变化的分析,认为砂岩砾石和砂板岩碎屑胶结物主要来自宕昌-岷县-临潭断层以北大面积分布的泥盆系变质砂岩和石炭系—二叠系变质砂岩、砂板岩,而大量灰岩砾石可能来自宕昌-岷县-临潭断层以南的石炭系—三叠系等以碳酸盐沉积为主的沉积地层,花岗岩-花岗闪长岩砾石来自夏河—合作一线以北出露的侵入岩。上部灰岩砾石成分增加和总体上砾岩变细、细砾和砂砾质成分增加、磨圆度提高,指示了物源区的向南扩展,砾石搬运距离更远。

    古流向的确定主要是通过观测点中砾石扁平面产状的测量,进行上新统韩家沟砾岩古流向的恢复。理论上每个观测点选取不少于20块砾石进行砾石扁平面的测量,然后结合地层产状进行校正(由于地层产状在10°左右,对结果的影响甚微,所以不进行校正),绘制流向玫瑰花图在地质图上标出测量点的位置。从11个测量点可以看出,上新统韩家沟砾岩古流向总体是由南到北(图 10),除最顶部的水流方向变成北东向,这与层位的提高、水动力降低在冲积扇上分布的漫流河流有关。

    长期以来,西秦岭北缘漳县地区这套岩性独特的韩家沟砾岩被认为是上白垩统或古近系,但新的地质证据指示了其下伏的红层地层实为渐新统—中新统,而不是白垩系河口群[28],因此,其时代只能是上新统,虽然其顶底界年龄尚缺乏年代学约束。这套砾岩时代的重新厘定,为探讨西秦岭北缘新生代地质演化过程和青藏高原东北缘隆升提供了新的地质线索。众所周知,青藏高原东北缘何时隆升成为青藏高原的组成部分一直争论不休[5-6, 8-9, 13-17],西秦岭北缘漳县地区上新统韩家沟砾岩的地质特征和形成的构造环境为该问题的解决提供了新的地质约束。

    如前所述,西秦岭北缘漳县地区上新统砾岩以逆冲断层为边界,保存厚度480 m,主要由厚层-巨厚层洪积-冲洪积-冲积粗砾岩、中砾岩组成,砾石大小混杂,分选性和磨圆度差,总体流向由南向北,但流向不稳定(图 4图 10),碎屑物主要来自西秦岭造山带地层,具有近源快速堆积的特征。这种厚层粗砾岩沉积必然要求西秦岭造山带在其堆积阶段发生快速构造隆升形成较大的地形高差,即上新世以来西秦岭发生了一次快速地壳挤压缩短的隆升过程,导致北缘断裂带复活而强烈向北高角度逆冲,形成了以上新统韩家沟砾岩为代表的再生前陆磨拉石盆地。这次西秦岭造山带复活隆升应该标志着印度-欧亚板块碰撞汇聚向北扩展强烈影响到青藏高原东北缘,实际上这次强烈隆升的地质记录除西秦岭北缘漳县上新统韩家沟砾岩外,还有临夏盆地的积石山砾岩[9]、循化-贵德盆地的甘家砾岩[23-24],甚至具有类似地质特征的甘谷大象山砾岩、武山水帘洞砾岩、陇西—渭源一带上新统砾岩[29]等。这些砾岩层与韩家沟砾岩具有相同或相近的地质特征,说明其形成具有同样的构造背景,经历了同样的构造过程,指示青藏高原东北缘的西秦岭地块上新世以来经历了一次强烈的构造隆升过程。如果这套砾岩代表了青藏高原东北缘的一次快速隆升,那么只能说是西秦岭造山带的隆升,西秦岭北缘以北的祁连地块则尚未隆升,这就提出一个重大科学问题:Tapponnier等提出青藏高原由南向北分步扩展生长模式,认为现今青藏高原北缘和东北缘是上新世—第四纪才出现的高原[6],可能以西秦岭北缘为界,而不是整个现今青藏高原东北缘,那么在8 Ma或15 Ma青藏高原东北缘强烈隆升而成为现今高原的一部分[5-6, 8-9, 13-17]的认识就需要重新审视;虽然李吉均等[9]根据临夏盆地新生代沉积记录和河流地貌演化,认为青藏高原东北缘在3.6 Ma之前处于构造稳定、地形平缓状态,只是在3.6 Ma积石山砾岩出现才标志着青藏高原强烈隆升,之后经过2.6 Ma和1.8 Ma快速隆升形成现今的青藏高原格局,但没有说明高原的具体范围,而且3.6~2.6 Ma上新统粗砾岩现今出露高程与相邻造山带变质地层相近[28],说明磨拉石盆地堆积之后与西秦岭造山带共同经历了一次侵蚀夷平过程,之后青藏高原东北缘才进入整体隆升阶段。因此,青藏高原东北缘真正成为现今青藏高原一部分是第四纪以来的重大地质事件。当然,这一问题还有待对西秦岭北缘以北的上新统砾岩详细研究和对比,以及西秦岭北缘系列断层构造运动学历史的深入研究,恢复上新世磨拉石盆地范围和沉积记录空间变化和不同部位的共性和差异,以及与控制其堆积的断裂构造系统变形过程。

    (1) 对西秦岭北缘漳县地区上新统韩家沟砾岩的沉积旋回、砾岩中砾石大小、磨圆度、排列、成分等特征及垂向变化的观测和统计分析表明:这套砾岩厚度大、单层厚、粒度粗、分选差、基底砂砾质胶结、次棱角-次圆状为主,具有冲洪积扇的特征,结合其受向南陡倾的F2逆冲断层控制、古流向总体自南向北、砾石成分与组成西秦岭造山带的不同时代的砂岩、板岩、花岗质侵入岩体相同的特征,认为这套上新统粗砾岩是以西秦岭北缘逆冲断层为边界、砾石主要来自西秦岭的近源快速堆积的冲洪积扇沉积。

    (2) 不同层位砾石成分变化可能与西秦岭隆升速率和气候变化导致的物源区扩展或缩小有关。

    (3) 结合青藏高原东北缘广泛分布的一系列时代和构造背景相同,以及沉积特征类似的粗砾岩分析,认为西秦岭北缘漳县地区的这套上新统砾岩是印度-欧亚板块碰撞汇聚向北扩展到西秦岭北缘构造带的地质记录,指示了西秦岭造山带快速隆升和北缘断裂带强烈向北逆冲,形成了再生前陆磨拉石盆地。

    (4) 这套上新统粗砾岩现今出露高程与相邻造山带变质地层山顶夷平面相近,说明这套磨拉石盆地堆积后曾与西秦岭造山带共同经历一次侵蚀夷平过程,之后青藏高原东北缘进入整体隆升阶段,也就是说青藏高原东北缘大范围真正隆升是砾岩形成之后,即第四纪以来的地质事件。这对前人提出的8 Ma或更早青藏高原东北缘就隆升定型的认识提出了挑战。

    致谢: 河北省廊坊市诚信地质服务公司在锆石分选中给予帮助,西北大学大陆动力学国家重点实验室的老师在锆石阴极发光图像采集、 LA-ICPMS 测试分析及数据处理过程中给予支持和帮助,审稿专家在文稿修改过程中提出宝贵的修改意见,在此一并表示感谢。
  • 图  1   华北板块北缘晚古生代—早中生代岩浆岩带中二叠纪岩浆岩分布简图(据参考文献[20]修改)

    Figure  1.   Geological sketch map showing Permian magmatite of the Late Paleozoic-Early Mesozoic magmatic belt on the northern margin of the North China plate

    图  2   研究区地质简图

    Figure  2.   Geological sketch map of the study area

    图  3   卧牛山花岗岩显微特征

    a—单偏光;b—正交偏光。Kf—钾长石;Q—石英;Pl—斜长石;Bi—黑云母

    Figure  3.   Microscopic characteristics of the Woniushan granite

    图  4   卧牛山花岗岩中部分锆石CL图像及分析点位置、206Pb/238U年龄值

    Figure  4.   Cathodoluminescence (CL) images, spot locations of U-Pb analyses and 206Pb/238U ages of zircon from Woniushan granite

    图  5   卧牛山花岗岩LA-ICP-MS锆石U-Pb谐和图(a)及206Pb/238U年龄加权平均值图(b)

    Figure  5.   LA-ICP-MS U-Pb concordia diagram and weighted average of 206Pb/238U age of zircon from Woniushan granite

    图  6   花岗岩锆石稀土元素球粒陨石标准化配分模式(标准化数据据参考文献[25]

    Figure  6.   Chondrite-normalized REE patterns of zircon from Woniushan granite

    图  7   不同构造背景下锆石的判别图解(底图据参考文献[1]

    VAB—弧火山岩区域;WPB—板内玄武岩;N-MORB—正常洋脊玄武岩

    Figure  7.   Discrimination plots of different tectonic settings for the zircon

    图  8   不同结晶环境锆石的判别图解(底图据参考文献[2]

    Figure  8.   Discrimination diagrams with different crystallization settings of zircon

    表  1   卧牛山花岗岩LA-ICP-MS锆石U-Th-Pb分析结果

    Table  1   Results of U-Th-Pb isotopic dating by LA-ICP-MS of the single-grain zircon from Woniushan granite

    点号 232Th/10-6 238U/10-6 232Th/238U 同 位 素 比 值 年 龄/Ma
    207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U 207Pb/235U 208Pb/232Th
    1 172 280 0.61 0.05204 0.00192 0.31121 0.00981 0.04336 0.00044 274 3 275 8 267 4
    2 214 397 0.54 0.05428 0.00170 0.28033 0.00699 0.03745 0.00034 237 2 251 6 224 3
    3 217 393 0.55 0.05032 0.00154 0.30325 0.00732 0.04370 0.00039 276 2 269 6 270 4
    4 153 373 0.41 0.04961 0.00156 0.29885 0.00750 0.04368 0.00039 276 2 266 6 276 4
    5 401 492 0.81 0.05177 0.00150 0.31035 0.00681 0.04347 0.00038 274 2 274 5 274 3
    6 467 457 1.02 0.05475 0.00171 0.32402 0.00802 0.04291 0.00040 271 2 285 6 265 3
    7 259 433 0.60 0.05253 0.00150 0.31407 0.00674 0.04336 0.00038 274 2 277 5 279 3
    8 239 272 0.88 0.05004 0.00171 0.29983 0.00851 0.04344 0.00042 274 3 266 7 275 3
    9 271 454 0.60 0.05221 0.00187 0.30978 0.01074 0.04304 0.00040 272 2 274 8 271 2
    10 193 401 0.48 0.05115 0.00151 0.30701 0.00694 0.04352 0.00038 275 2 272 5 269 4
    11 310 444 0.70 0.05248 0.00421 0.29184 0.02319 0.04034 0.00047 255 3 260 18 254 3
    12 196 354 0.56 0.05307 0.00182 0.31678 0.00904 0.04328 0.00043 273 3 279 7 268 4
    13 127 256 0.49 0.05041 0.00191 0.30325 0.00992 0.04362 0.00044 275 3 269 8 275 5
    14 54 150 0.36 0.05489 0.00251 0.32888 0.01357 0.04344 0.00050 274 3 289 10 281 7
    15 122 235 0.52 0.05139 0.00240 0.31349 0.01323 0.04423 0.00052 279 3 277 10 279 6
    16 144 367 0.39 0.05029 0.00163 0.30544 0.00801 0.04404 0.00040 278 2 271 6 268 4
    17 434 568 0.76 0.05812 0.00164 0.31924 0.00669 0.03983 0.00035 252 2 281 5 210 3
    18 115 237 0.48 0.05668 0.00222 0.33952 0.01150 0.04343 0.00048 274 3 297 9 273 6
    19 154 338 0.46 0.05342 0.00197 0.32293 0.01012 0.04383 0.00044 277 3 284 8 284 5
    下载: 导出CSV

    表  2   卧牛山花岗岩锆石微量元素分析结果

    Table  2   Results of trace element analyses of the single-grain zircon from Woniushan granite

    元素 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
    La 0.058 0.399 0.041 0.075 0.859 6.060 0.278 0.571 3.030 0.775 1.041 0.108 0.654 0.037 0.048 1.763 3.570 1.398 0.050
    Ce 14.17 21.62 12.27 11.45 23.02 37.28 18.20 17.72 23.74 14.30 21.18 12.59 12.37 5.68 9.47 14.79 34.63 13.59 11.31
    Pr 0.064 0.680 0.046 0.059 0.387 2.048 0.108 0.282 1.125 0.362 0.813 0.051 0.170 0.051 0.083 0.599 2.460 0.456 0.073
    Nd 1.098 3.750 1.049 0.830 2.890 11.170 1.860 2.530 6.220 2.280 7.620 1.20 1.170 0.494 0.995 3.100 13.380 2.730 0.950
    Sm 2.33 4.43 2.30 2.26 3.69 8.19 3.54 3.65 4.36 2.52 8.48 1.82 1.93 1.07 2.31 2.29 11.14 2.09 2.03
    Eu 0.527 0.366 0.344 0.300 0.668 1.236 0.619 0.810 0.660 0.391 1.313 0.353 0.326 0.296 0.433 0.311 0.529 0.370 0.235
    Gd 14.03 16.15 13.23 12.88 22.24 33.95 22.01 21.04 19.77 13.65 38.56 13.41 8.24 6.60 11.88 11.93 32.00 13.24 11.78
    Tb 5.37 6.43 5.27 5.65 7.97 11.70 8.65 7.23 7.78 5.43 13.48 5.25 3.30 2.66 4.60 4.84 12.35 4.60 4.87
    Dy 69.32 79.79 68.79 75.51 98.20 137.63 113.84 89.17 101.88 69.95 158.79 67.03 43.07 31.17 61.88 64.49 142.65 61.93 63.86
    Ho 28.52 31.35 28.64 32.03 38.99 53.66 47.18 35.34 42.53 29.66 61.09 28.25 18.16 13.58 25.40 27.93 51.40 25.27 26.84
    Er 139.90 149.58 138.17 158.30 182.07 241.36 227.80 159.10 205.76 146.56 275.62 134.40 91.26 68.56 124.80 139.18 233.84 125.28 131.23
    Tm 31.02 33.04 30.13 36.47 39.17 51.04 50.28 33.21 46.03 32.88 57.67 29.84 21.36 16.44 28.05 32.30 50.78 27.85 30.31
    Yb 319.70 337.52 302.75 382.00 383.39 484.57 503.88 318.20 463.59 335.82 552.67 298.30 231.20 177.40 290.10 335.59 493.47 283.98 309.50
    Lu 66.63 68.28 62.44 79.82 77.86 95.85 102.86 63.15 94.70 69.55 109.37 61.64 50.50 38.65 60.72 70.74 94.89 59.25 64.40
    Ti 2.27 25.56 1.09 0.96 1.39 21.05 3.59 4.10 1.20 2.32 10.17 2.04 3.81 5.92 2.53 1.81 34.88 1.15 2.02
    Y 853.9 912.2 846.1 985.9 1160.5 1591.4 1430.2 1027.0 1291.9 907.3 1839.3 831.8 578.2 430.6 771.8 858.2 1487.9 772.4 813.7
    Hf 9124 9739 9692 9694 8849 7777 8890 7830 9372 9874 8676 10092 9313 8285 8934 9802 9638 9014 9448
    ∑REE 692.68 753.39 665.47 797.65 881.40 1175.74 1101.11 752.02 1021.18 724.13 1307.70 654.23 483.68 362.67 620.83 709.85 1177.09 622.03 657.44
    LREE 18.25 31.25 16.05 14.97 31.51 65.98 24.61 25.56 39.14 20.63 40.45 16.12 16.62 7.63 13.34 22.85 65.71 20.63 14.65
    HREE 674.43 722.14 649.42 782.68 849.89 1109.76 1076.50 726.46 982.04 703.50 1267.25 638.11 467.06 355.04 607.49 687.00 1111.38 601.40 642.79
    LR/HR 0.03 0.04 0.02 0.02 0.04 0.06 0.02 0.04 0.04 0.03 0.03 0.03 0.04 0.02 0.02 0.03 0.06 0.03 0.02
    δEu 0.22 0.12 0.15 0.13 0.17 0.19 0.16 0.22 0.18 0.16 0.19 0.16 0.21 0.26 0.20 0.15 0.08 0.16 0.11
    δCe 50.42 7.99 61.01 39.91 9.77 2.59 25.75 10.77 3.15 6.60 5.34 41.45 8.89 26.79 28.76 3.52 2.76 4.15 37.74
    注:微量元素单位为10-6
    下载: 导出CSV

    表  3   卧牛山花岗岩锆石 Ti温度计算结果

    Table  3   Calculation results of crystallization temperature of zircon from Woniushan granite

    测点 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
    T/℃ 662 903 607 599 635 879 700 711 614 664 798 654 705 745 671 645 943 611 653
    下载: 导出CSV
  • Schulz B, Klemd R, Brätz H. Host rock compositional controls on zircon trace element signa-tures in metabasites from the Austroal-pine basement[J]. Geochimica et Cosmochimica Acta, 2006, 70(3):697-710. doi: 10.1016/j.gca.2005.10.001

    Schulz B, Klemd R, Brätz H. Host rock compositional controls on zircon trace element signa-tures in metabasites from the Austroal-pine basement[J]. Geochimica et Cosmochimica Acta, 2006, 70(3):697-710. doi: 10.1016/j.gca.2005.10.001

    Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust:a method for distinguishing detrital zir-con provenance[J]. Geology, 2007, 35(7):643-646. doi: 10.1130/G23603A.1

    Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust:a method for distinguishing detrital zir-con provenance[J]. Geology, 2007, 35(7):643-646. doi: 10.1130/G23603A.1

    Li N, Chen Y J, Pirajno F, et al. LA-ICP-MS zircon U-Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China:implications for Mesozoic tectono-magmatic evolution[J]. Lithos, 2012, 142:34-47. http://cn.bing.com/academic/profile?id=2094636417&encoded=0&v=paper_preview&mkt=zh-cn

    Li N, Chen Y J, Pirajno F, et al. LA-ICP-MS zircon U-Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China:implications for Mesozoic tectono-magmatic evolution[J]. Lithos, 2012, 142:34-47. http://cn.bing.com/academic/profile?id=2094636417&encoded=0&v=paper_preview&mkt=zh-cn

    周金胜, 孟祥金, 臧文栓, 等.西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学, 微量元素地球化学及地质意义[J].岩石学报, 2013, 29(11):3755-3766. http://d.wanfangdata.com.cn/Periodical/ysxb98201311009
    Hinton R W, Upton B G J. The chemistry of zircon:variations within and between large crystals from syenite and alkali basalt xeno-liths[J]. Geochimica et Cosmochimica Acta, 1991, 55(11):3287-3302. doi: 10.1016/0016-7037(91)90489-R

    Hinton R W, Upton B G J. The chemistry of zircon:variations within and between large crystals from syenite and alkali basalt xeno-liths[J]. Geochimica et Cosmochimica Acta, 1991, 55(11):3287-3302. doi: 10.1016/0016-7037(91)90489-R

    Rubatto D. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1):123-138. http://cn.bing.com/academic/profile?id=2020139762&encoded=0&v=paper_preview&mkt=zh-cn

    Rubatto D. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1):123-138. http://cn.bing.com/academic/profile?id=2020139762&encoded=0&v=paper_preview&mkt=zh-cn

    Hoskin P W O, Schaltegger U. The composition of zircon and igne-ous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27-62. doi: 10.2113/0530027

    Hoskin P W O, Schaltegger U. The composition of zircon and igne-ous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27-62. doi: 10.2113/0530027

    Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology, 2006, 231(1):135-158. http://cn.bing.com/academic/profile?id=2075149957&encoded=0&v=paper_preview&mkt=zh-cn

    Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology, 2006, 231(1):135-158. http://cn.bing.com/academic/profile?id=2075149957&encoded=0&v=paper_preview&mkt=zh-cn

    Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1):127-150. http://cn.bing.com/academic/profile?id=2090080717&encoded=0&v=paper_preview&mkt=zh-cn

    Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1):127-150. http://cn.bing.com/academic/profile?id=2090080717&encoded=0&v=paper_preview&mkt=zh-cn

    Dong C Y, Liu D Y, Li J J, et al. Palaeoproterozoic Khondalite Belt in the western North China Craton:new evidence from SHRIMP dating and Hf isotope composition of zircons from meta-morphic rocks in the Bayan Ul-Helan Mountains area[J]. Chinese Science Bulletin, 2007, 52(21):2984-2994. doi: 10.1007/s11434-007-0404-9

    Dong C Y, Liu D Y, Li J J, et al. Palaeoproterozoic Khondalite Belt in the western North China Craton:new evidence from SHRIMP dating and Hf isotope composition of zircons from meta-morphic rocks in the Bayan Ul-Helan Mountains area[J]. Chinese Science Bulletin, 2007, 52(21):2984-2994. doi: 10.1007/s11434-007-0404-9

    Mori Y, Orihashi Y, Miyamoto T,et al.Origin of zircon in jadeitite from the Nishisonogi metamorphic rocks,Kyushu,Japan[J].Journal of Metamorphic Geology,2011,29:673-684. doi: 10.1111/jmg.2011.29.issue-6

    Mori Y, Orihashi Y, Miyamoto T, et al.Origin of zircon in jadeitite from the Nishisonogi metamorphic rocks, Kyushu, Japan[J].Journal of Metamorphic Geology, 2011, 29:673-684. doi: 10.1111/jmg.2011.29.issue-6

    Munoz M, Charrier R, Fanning C M, et al. Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El Teni-ente ore deposit, Chilean Andes:constraints on the source and mag-matic evolution of porphyry Cu-Mo related magmas[J]. Journal of Petrology, 2012:egs010.

    Munoz M, Charrier R, Fanning C M, et al. Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El Teni-ente ore deposit, Chilean Andes:constraints on the source and mag-matic evolution of porphyry Cu-Mo related magmas[J]. Journal of Petrology, 2012:egs010.

    Storm S, Schmitt A K, Shane P, et al. Zircon trace element chemis-try at sub-micrometer resolution for Tarawera volcano, New Zea-land, and implications for rhyolite magma evolution[J]. Contribu-tions to Mineralogy and Petrology, 2014, 167(4):1-19.

    Storm S, Schmitt A K, Shane P, et al. Zircon trace element chemis-try at sub-micrometer resolution for Tarawera volcano, New Zea-land, and implications for rhyolite magma evolution[J]. Contribu-tions to Mineralogy and Petrology, 2014, 167(4):1-19.

    从峰, 林仕量, 邹光富, 等.梁河花岗岩岩浆混合作用:锆石微量元素、U-Pb和Hf同位素示踪[J].中国科学(D辑), 2011, 41(4):468-481.
    唐勇, 张辉, 吕正航.不同成因告示阴极发光及微量元素特征:以新疆阿尔泰地区花岗岩和伟晶岩为例[J].矿物岩石, 2012, 32(1):8-15. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201201002.htm
    Belousova E A, Griffin W L, Pearson N J. Trace element composi-tion and cathodoluminescence properties of southern African kim-berlitic zircons[J]. Mineralogical Magazine, 1998, 62(3):355-366. doi: 10.1180/002646198547747

    Belousova E A, Griffin W L, Pearson N J. Trace element composi-tion and cathodoluminescence properties of southern African kim-berlitic zircons[J]. Mineralogical Magazine, 1998, 62(3):355-366. doi: 10.1180/002646198547747

    Hoskin P W O, Ireland T R. Rare earth element chemistry of zir-con and its use as a prove-nance indicator[J]. Geology, 2000, 28(7):627-630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2

    Hoskin P W O, Ireland T R. Rare earth element chemistry of zir-con and its use as a prove-nance indicator[J]. Geology, 2000, 28(7):627-630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2

    Siebel W, Schmitt A K, Danišík M, et al. Prolonged mantle resi-dence of zircon xenocrysts from the western Eger rift[J]. Nature Geoscience, 2009, 2(12):886-890. doi: 10.1038/ngeo695

    Siebel W, Schmitt A K, Danišík M, et al. Prolonged mantle resi-dence of zircon xenocrysts from the western Eger rift[J]. Nature Geoscience, 2009, 2(12):886-890. doi: 10.1038/ngeo695

    Scharer U, Berndt J, Deutsch A. The genesis of deep-mantle xeno-crystic zircon and baddeleyite megacrysts (Mbuji-Mayi kimberlite):trace-element patterns[J]. European Journal of Mineralogy, 2011, 23(2):241-255. doi: 10.1127/0935-1221/2011/0023-2088

    Scharer U, Berndt J, Deutsch A. The genesis of deep-mantle xeno-crystic zircon and baddeleyite megacrysts (Mbuji-Mayi kimberlite):trace-element patterns[J]. European Journal of Mineralogy, 2011, 23(2):241-255. doi: 10.1127/0935-1221/2011/0023-2088

    张拴宏, 赵越, 刘建民, 等.华北地块北缘晚古生代-早中生代岩浆活动期次, 特征及构造背景[J].岩石矿物学杂志, 2010, 29(6):824-842. http://d.wanfangdata.com.cn/Periodical/yskwxzz201006017
    吴翠华. 内蒙古太仆寺旗前庙地岩体地质地球化学特征及成矿预测[D].中南大学硕士学位论文, 2010.

    吴翠华.内蒙古太仆寺旗前庙地岩体地质地球化学特征及成矿预测[D].中南大学硕士学位论文, 2010.

    袁洪林, 吴福元, 高山, 等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报, 2003, 48(14):1511-1520. http://d.wanfangdata.com.cn/Periodical/kxtb200314008
    Yuan H, Gao S, Liu X, et al. Accurate U-Pb age and trace ele-ment determinations of zircon by laser ablation-inductively cou-pled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3

    Yuan H, Gao S, Liu X, et al. Accurate U-Pb age and trace ele-ment determinations of zircon by laser ablation-inductively cou-pled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3

    Ludwig K R. User's manual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel[M]. Berkeley Geochromological Cen-ter, Berkeley, calif, 2003.

    Ludwig K R. User's manual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel[M]. Berkeley Geochromological Center, Berkeley, calif, 2003.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    袁桂邦, 王惠初.内蒙古武川西北部早二叠世岩浆活动及其构造意义[J].地质调查与研究, 2006, 29(4):303-310. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200604009.htm
    范宏瑞, 胡芳芳, 杨奎锋, 等.内蒙古白云鄂博地区晚古生代闪长质-花岗质岩石年代学框架及其地质意义[J].岩石学报, 2009, 25(11):2933-2938. http://d.wanfangdata.com.cn/Periodical/ysxb98200911022
    罗红玲, 吴泰然, 赵磊.华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义[J].岩石学报, 2009(3):515-526. http://d.wanfangdata.com.cn/Periodical/ysxb98200903004
    章永梅, 张华峰, 刘文灿, 等.内蒙古中部四子王旗大庙岩体时代及成因[J].岩石学报, 2009, 25(12):3165-3181. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200912008.htm
    Zhang S H, Zhao Y, Kröner A, et al. Early Permian plutons from the northern North China Block:constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6):1441-1467. doi: 10.1007/s00531-008-0368-2

    Zhang S H, Zhao Y, Kröner A, et al. Early Permian plutons from the northern North China Block:constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6):1441-1467. doi: 10.1007/s00531-008-0368-2

    郝百武, 蒋杰.内蒙古镶黄旗哈达庙金矿杂岩体年代学, 地球化学及其形成机制[J].岩石矿物学杂志, 2010, 29(6):750-762. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006012.htm
    童英, 洪大卫, 王涛, 等.中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J].地球学报, 2010, 31(3):395-412. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003016.htm
    刑济麟.内蒙古温都尔庙隆起带花岗岩的地球化学特征及地球动力学意义[D].吉林大学硕士学位论文, 2010.

    刑济麟.内蒙古温都尔庙隆起带花岗岩的地球化学特征及地球动力学意义[D].吉林大学硕士学位论文, 2010.

    柳长峰.内蒙古四子王旗地区古生代-早中生代岩浆岩带及其构造意义[D]. 中国地质大学博士学位论文, 2010.

    柳长峰.内蒙古四子王旗地区古生代-早中生代岩浆岩带及其构造意义[D].中国地质大学博士学位论文, 2010.

    张建军, 王涛, 张招崇, 等.华北地块北缘西段巴音诺尔公-狼山地区牙马图岩体的岩浆混合成因——岩相学和元素地球化学证据[J].地质评论, 2012, 58(1):53-66. http://cdmd.cnki.com.cn/Article/CDMD-11415-1012364550.htm
    王挽琼, 徐仲元, 刘正宏, 等.华北板块北缘中段早中二叠世的构造属性:来自花岗岩类锆石U-Pb年代学及地球化学的制约[J].岩石学报, 2013, 29(9):2987-3003.
    刘军, 武广, 李铁刚, 等.内蒙古镶黄旗哈达庙地区晚古生代中酸性侵入岩的年代学, 地球化学, Sr-Nd同位素组成及其地质意义[J].岩石学报, 2014, 30(1):95-108. http://d.wanfangdata.com.cn/Periodical/ysxb98201401007
    曹花花, 许文良, 裴福萍, 等.华北板块北缘东段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J].岩石学报, 2012, 28(9):2733-2750.
    王芳, 陈福坤, 侯振辉, 等.华北陆块北缘崇礼-赤城地区晚古生代花岗岩类的锆石年龄和Sr-Nd-Hf同位素组成[J].岩石学报, 2009, 25(11):3057-3074. http://d.wanfangdata.com.cn/Periodical/ysxb98200911033
    Li X H, Liang X R, Sun M, et al. Geochronology and geochemis-try of single-grain zircons Simultaneous in-situ analysis of U-Pb age and trace elements by LA-ICP-MS[J]. European Journal of Mineralogy, 2000, 12(5):1015-1024. doi: 10.1127/0935-1221/2000/0012-1015

    Li X H, Liang X R, Sun M, et al. Geochronology and geochemis-try of single-grain zircons Simultaneous in-situ analysis of U-Pb age and trace elements by LA-ICP-MS[J]. European Journal of Mineralogy, 2000, 12(5):1015-1024. doi: 10.1127/0935-1221/2000/0012-1015

    Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723):841-844. doi: 10.1126/science.1110873

    Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723):841-844. doi: 10.1126/science.1110873

    Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrolo-gy, 2006, 151(4):413-433. doi: 10.1007/s00410-006-0068-5

    Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrolo-gy, 2006, 151(4):413-433. doi: 10.1007/s00410-006-0068-5

    Ferry J M, Watson E B. New thermodynamic models and revised cali-brations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4):429-437. doi: 10.1007/s00410-007-0201-0

    Ferry J M, Watson E B. New thermodynamic models and revised cali-brations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4):429-437. doi: 10.1007/s00410-007-0201-0

    Reid M R, Vazquez J A, Schmitt A K. Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, Califor-nia, with implications for the Ti-in-zircon geothermometer[J]. Contributions to Mineralogy and Petrology, 2011, 161(2):293-311. doi: 10.1007/s00410-010-0532-0

    Reid M R, Vazquez J A, Schmitt A K. Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, Califor-nia, with implications for the Ti-in-zircon geothermometer[J]. Contributions to Mineralogy and Petrology, 2011, 161(2):293-311. doi: 10.1007/s00410-010-0532-0

    Abbott S S, Harrison T M, Schmitt A K, et al. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zir-con Ti-U-Th-Pb depth profiles[J]. Proceedings of the National Academy of Sciences, 2012, 109(34):13486-13492. doi: 10.1073/pnas.1208006109

    Abbott S S, Harrison T M, Schmitt A K, et al. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zir-con Ti-U-Th-Pb depth profiles[J]. Proceedings of the National Academy of Sciences, 2012, 109(34):13486-13492. doi: 10.1073/pnas.1208006109

    Ewing T A, Hermann J, Rubatto D. The robustness of the Zr-inrutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy)[J]. Contribu-tions to Mineralogy and Petrology, 2013, 165(4):757-779. doi: 10.1007/s00410-012-0834-5

    Ewing T A, Hermann J, Rubatto D. The robustness of the Zr-inrutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy)[J]. Contribu-tions to Mineralogy and Petrology, 2013, 165(4):757-779. doi: 10.1007/s00410-012-0834-5

    Liu Y C, Deng L P, Gu X F, et al. Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain high-temperature meta-morphism in eclogites from the Dabie orogen, central China[J]. Gondwana Research, 2015, 27(1):410-423. doi: 10.1016/j.gr.2013.10.011

    Liu Y C, Deng L P, Gu X F, et al. Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain high-temperature meta-morphism in eclogites from the Dabie orogen, central China[J]. Gondwana Research, 2015, 27(1):410-423. doi: 10.1016/j.gr.2013.10.011

    MacDonald J M, Goodenough K M, Wheeler J, et al. Tempera-ture-time evolution of the Assynt Terrane of the Lewisian Gneiss Complex of Northwest Scotland from zircon U-Pb dating and Ti thermometry[J]. Precambrian Research, 2015, 260:55-75. doi: 10.1016/j.precamres.2015.01.009

    MacDonald J M, Goodenough K M, Wheeler J, et al. Tempera-ture-time evolution of the Assynt Terrane of the Lewisian Gneiss Complex of Northwest Scotland from zircon U-Pb dating and Ti thermometry[J]. Precambrian Research, 2015, 260:55-75. doi: 10.1016/j.precamres.2015.01.009

    Hayden L A, Watson E B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon[J]. Earth and Planetary Science Letters, 2007, 258(3):561-568. http://cn.bing.com/academic/profile?id=1972712810&encoded=0&v=paper_preview&mkt=zh-cn

    Hayden L A, Watson E B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon[J]. Earth and Planetary Science Letters, 2007, 258(3):561-568. http://cn.bing.com/academic/profile?id=1972712810&encoded=0&v=paper_preview&mkt=zh-cn

    Wark D A, Watson E B. Titani Q:a titanium-in-quartz geother-mometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6):743-754. doi: 10.1007/s00410-006-0132-1

    Wark D A, Watson E B. Titani Q:a titanium-in-quartz geother-mometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6):743-754. doi: 10.1007/s00410-006-0132-1

    Wark D A, Hildreth W, Spear F S, et al. Pre-eruption recharge of the Bishop magma system[J]. Geology, 2007, 35(3):235-238. doi: 10.1130/G23316A.1

    Wark D A, Hildreth W, Spear F S, et al. Pre-eruption recharge of the Bishop magma system[J]. Geology, 2007, 35(3):235-238. doi: 10.1130/G23316A.1

    Harrison T M, Watson E B, Aikman A B. Temperature spectra of zircon crystallization in pluto-nic rocks[J]. Geology, 2007, 35(7):635-638. doi: 10.1130/G23505A.1

    Harrison T M, Watson E B, Aikman A B. Temperature spectra of zircon crystallization in pluto-nic rocks[J]. Geology, 2007, 35(7):635-638. doi: 10.1130/G23505A.1

    Pei F P, Xu W L, Yang D B, et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin[J]. Chinese Science Bulletin, 2007, 52(7):942-948. doi: 10.1007/s11434-007-0107-2

    Pei F P, Xu W L, Yang D B, et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin[J]. Chinese Science Bulletin, 2007, 52(7):942-948. doi: 10.1007/s11434-007-0107-2

    Meng E, Xu W L, Yang D B, et al. Permian volcanisms in east-ern and southeastern margins of the Jiamusi Massif, northeastern China:zircon U-Pb chronology, geochemistry and its tectonic implications[J]. Chinese Science Bulletin, 2008, 53(8):1231-1245. http://cn.bing.com/academic/profile?id=2387920496&encoded=0&v=paper_preview&mkt=zh-cn

    Meng E, Xu W L, Yang D B, et al. Permian volcanisms in east-ern and southeastern margins of the Jiamusi Massif, northeastern China:zircon U-Pb chronology, geochemistry and its tectonic implications[J]. Chinese Science Bulletin, 2008, 53(8):1231-1245. http://cn.bing.com/academic/profile?id=2387920496&encoded=0&v=paper_preview&mkt=zh-cn

    孙德有, 吴福元, 张艳斌.西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J].吉林大学学报:地球科学版, 2004, 34(2):174-181.
    Jia D C, Hu R Z, Liu Y, et al. Collision belt between the Khanka block and the North China block in the Yanbian Region, North-east China[J]. Journal of Asian Earth Sciences, 2004, 23(2):211-219. doi: 10.1016/S1367-9120(03)00123-8

    Jia D C, Hu R Z, Liu Y, et al. Collision belt between the Khanka block and the North China block in the Yanbian Region, North-east China[J]. Journal of Asian Earth Sciences, 2004, 23(2):211-219. doi: 10.1016/S1367-9120(03)00123-8

    Li J Y. Permina geodynamic setting of northeast China and adjia-cent regions:Closure of the Paleo-Asian ocean and subduction of the Paleo-paccific palte[J].Journal of Asian Earth Sciences,2006,26(3/4):207-224

    Li J Y. Permina geodynamic setting of northeast China and adjia-cent regions:Closure of the Paleo-Asian ocean and subduction of the Paleo-paccific palte[J].Journal of Asian Earth Sciences, 2006, 26(3/4):207-224

    Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group:its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3):542-556. http://cn.bing.com/academic/profile?id=2126127241&encoded=0&v=paper_preview&mkt=zh-cn

    Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group:its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3):542-556. http://cn.bing.com/academic/profile?id=2126127241&encoded=0&v=paper_preview&mkt=zh-cn

    Meng E, Xu W L, Pei F P, et al. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt[J]. Tectonophysics, 2010, 485(1):42-51. http://cn.bing.com/academic/profile?id=1973675853&encoded=0&v=paper_preview&mkt=zh-cn

    Meng E, Xu W L, Pei F P, et al. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt[J]. Tectonophysics, 2010, 485(1):42-51. http://cn.bing.com/academic/profile?id=1973675853&encoded=0&v=paper_preview&mkt=zh-cn

    赵越, 陈斌, 张拴宏, 等.华北克拉通北缘及邻区前燕山期主要地质事件[J].中国地质, 2010, 37(4):900-915. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004009.htm
图(8)  /  表(3)
计量
  • 文章访问数:  2529
  • HTML全文浏览量:  327
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-30
  • 修回日期:  2015-12-04
  • 网络出版日期:  2023-08-16
  • 刊出日期:  2016-05-31

目录

/

返回文章
返回