Zircon geochronology and trace element characteristics of the Woniushan granites in Taibus Ban-ner, Inner Mongolia, and their geological significance
-
摘要:
内蒙古太仆寺旗卧牛山花岗岩位于华北板块北缘晚古生代-早中生代岩浆岩带中段。卧牛山岩体LA-ICP-MS锆石206Pb/238U年龄加权平均值为274.7±1.2Ma(MSWD=0.82), 非前人认为的侏罗纪。锆石稀土元素总量为362.67×10-6~1177.09×10-6, 平均为797.91×10-6, 各分析点的稀土元素球粒陨石标准化配分模式高度一致, 富集重稀土元素, 亏损轻稀土元素, 具明显的正Ce异常及负Eu异常。基于锆石的稀土元素特征, 通过构造背景及结晶环境判别图解、Ti温度计, 结合区域地质背景及岩浆岩特征分析, 认为卧牛山花岗岩为壳幔混源, 形成于古亚洲洋向华北板块俯冲的构造-岩浆活动中, 是活动大陆边缘的产物, 与华北板块北缘晚古生代-早中生代岩浆岩带东、西段二叠纪岩体的源区及构造背景一致。研究成果确认了华北板块北缘晚古生代-早中生代岩浆岩带中段与其东、西两段在海西晚期具有相同的成因联系。
-
关键词:
- 华北板块北缘 /
- 卧牛山 /
- 花岗岩 /
- 微量元素 /
- LA-ICP-MS锆石U-Pb定年
Abstract:The Woniushan granite in Taibus Banner of Inner Mongolia is located in the middle part of the Late Paleozoic-Early Me-sozoic magmatic belt on the northern margin of the North China plate. The weighted average age of 206Pb/238U by LA-ICP-MS of zircon from Woniushan pluton is 274.7±1.2Ma (MSWD=0.82), indicating that the pluton is not the Jurassic in age as previously con-sidered. TheΣREE values of zircon are 362.67×10-6~1177.09×10-6 with an average of 797.91×10-6. The REE patterns of all zircon grains are highly consistent, characterized by enrichment of HREE, depletion of LREE, and obvious positive Ce and negative Eu anomalies. Through the analysis of REE characteristics, diagrams of tectonic setting, crystallization environment, and Ti thermometer in zircon, combined with regional geological setting and magmatic characteristics, the authors hold that the Woniushan granite, as the mixture of crust and mantle, was formed during the tectonic-magmatic activities of paleo-Asian Ocean subducting to the Northern North China plate, being the product of active continental margin, and the source and tectonic setting of the Woniushan granite were similar to those of the Permian magmatite in eastern and western parts of the Late Paleozoic-Early Mesozoic magmatic belt on the northern margin of the North China plate. The results confirm that, in late Hercynian period, the genetic relationship of the mag-matite of the middle part of the Late Paleozoic-Early Mesozoic magmatic belt on the northern margin of North China plate was the same as that of the eastern and western parts.
-
金刚石是稀有、贵重的矿物资源,因其硬度、光学、电学等物理性能,在冶金、钻探、机械、光学仪器等领域被广泛应用,也是新能源、新材料、信息技术、空间技术等新兴产业的重要战略资源。
津巴布韦是非洲中南部的一个国家,中南部非洲是世界上金刚石资源最丰富的地区之一[1-3]。近年来,在津巴布韦东部边界的马朗奇地区发现了金刚石矿[4-5],而津巴布韦奇拉色卡地区在马朗奇地区范围内,处于金刚石古砂矿成矿的有利位置,因此奇拉色卡地区具有极大的金刚石找矿潜力。2010— 2014年,山东省第七地质矿产勘查院在津巴布韦奇拉色卡地区开展了金刚石古砂矿的勘查工作。笔者对津巴布韦奇拉色卡矿区金刚石古砂矿的地质特征和矿床成因及找矿意义进行了研究,希望对今后中国境内的金刚石古砂矿找矿具有启发和指导意义。
1. 地质特征
1.1 区域地质特征
奇拉色卡矿区位于津巴布韦东部,构造上处于太古宙津巴布韦克拉通东部边缘[6],西部紧邻林波波造山带、莫桑比克造山带(图 1)。该造山带是克拉通活动碰撞的产物。特殊的大地构造位置及演化历史使得林波波带成为重要的金刚石产地,其中较著名的有津巴布韦的River Ranch矿床、Murowa和Sese矿床,以及南非的Ventia矿床[7]。由于受北北西向和北北东向基底断裂制约,发育一系列断陷、凸起。断陷在南北方向上以横向隆起带形式各段错开[8],形成次级盆地。
区域内发育地层(图 2)由老至新为中元古代、三叠纪及第四纪地层,其他时代地层缺失。中元古代地层主要为乌肯多群,自下而上主要为砂砾岩组、灰岩组、泥页岩组、石英砂岩组及玄武岩组。三叠纪地层为卡鲁群,与下伏乌肯多群呈角度不整合接触。第四纪地层为全新世及更新世地层,全新世地层主要分布于东部的澳支河河床及近滩附近;更新世地层主要分布于该河的一级阶地。
区域内构造以断裂构造为主,按方向可分为北北东向、北北西向和北东东向3组断裂,其中北北西向与北北东向的断裂构成较小的断陷盆地,对古砂矿的保存有利。
区域内岩浆岩较发育,主要为太古宙花岗岩,燕山期的粗玄岩及细粒辉绿岩,分布面积较广。
1.2 矿区地质特征
矿区内出露地层自下而上为中元古代前寒武纪乌肯多群砂砾岩组、灰岩组、泥页岩组、石英砂岩组及玄武岩组。砂砾岩组岩性为灰黄色、灰白色薄层砂砾岩,厚度0.2~1.1m,平均厚0.66m;灰岩组岩性为灰白色、青灰色灰岩、泥灰岩,厚0~15.6m,上覆地层与该层呈整合接触;泥页岩组岩性为黄绿色泥质或粉砂质页岩、泥岩,厚度约30m;石英砂岩组为白色-灰白色石英砂岩、长石石英砂岩,厚度约621m;玄武岩组为黑色、暗绿色玄武岩,厚度178m,与下伏地层呈整合接触关系。三叠纪卡鲁群砂岩组岩性为肉红色长石石英砂岩,厚度203m,与下伏地层呈平行不整合接触关系;第四纪地层为残坡积层、冲积层褐黄色含碎石砂质粘土,粉砂质粘土、灰白色含粒砂层。其中乌肯多群砂砾岩组为矿区赋矿层位。矿床产状与地层产状一致,平行产出。矿层倾向较平缓,矿层产出受地层层位和断层控制。
区内构造以断层为主,按走向分为北北西、北北东走向2组。北北西向断层F1在矿区西部出露,出露长度约0.8km,走向335°~355°,倾向西,倾角为80°~85°,断裂带宽2.0~5.0m,断裂带内充填构造花岗质角砾岩,为张性正断层,东盘岩性大部分为花岗岩,局部为灰岩、泥灰岩,西盘岩性大部分为灰岩泥页岩,局部为花岗岩,东西两盘相对位移约200m。北北东向断层F2在矿区东部出露,出露长度约为0.45km,向北延伸出矿区,向南为隐伏断裂。走向35°,断面倾向东,倾角85°左右,断裂带宽0.5~3.0m,带内充填构造角砾岩及碎裂岩,钙质、泥质胶结,局部充填有石英脉。南东盘岩性主要为泥页岩,北西盘岩性北部主要为花岗岩。该断裂南东盘下降,北西盘上升,为逆断层,两盘相对错动约60m,该断裂对本区矿层影响较小。
断层为成矿后构造,对矿层造成错动,影响了矿层的连续性,对矿层起到破坏作用。
区内岩浆岩为太古宙花岗岩,构成结晶基底,分布面积较大,为矿层的底板。
1.3 矿层特征
金刚石古砂矿矿层赋存在中元古代乌肯多群砂砾岩组中,为滨海相沉积型矿床。
本区共圈定1个矿层,矿层厚度由8个探槽、7个浅井及25个钻孔控制,品位由15个选矿大样控制(图 3)。
矿层呈层状,上覆灰岩,矿层倾向146°,倾角3°~ 7°,埋藏较浅(图 4),一般小于50m,厚0.40~1.10m。矿层走向上控制长度1732m,倾向上控制宽度40~ 270m,赋存标高+508~+606m。矿层真厚度0.40~ 1.10m,平均真厚度0.66m,厚度变化系数23%,属于稳定类型。矿层品位7.88~47.16ct/m3,平均品位26.31ct/m3,品位变化系数为36%,属于稳定类型。
2. 矿床成因
矿层赋存于中元古代乌肯多群砂砾岩组沉积岩中,属滨海环境沉积建造[9]。矿床类型为沉积型金刚石古砂矿,该类型矿床赋存于太古宙花岗岩与前寒武纪石灰岩层之间的角度不整合面上,因此,金刚石古砂矿分布区的底砾岩是形成该类型砂矿的有利层位。中国山东、湖南、贵州等地的前寒武系地层中含有金刚石古砂矿[10-22]。由于古元古代—中元古代非洲开始了海相沉积,在海进的过程中,陆地局部含有金刚石原生矿的地段,经风化或河流冲洪积搬运后,在滨海地区沉积下来,并被后来沉积的灰岩覆盖,固结形成金刚石古砂矿床,经后期陆地抬升风化剥离后形成现在的地貌(图 5)。因此,奇拉色卡矿床为固结砂砾岩型和河流冲洪积砂砾层型金刚石砂矿床,河流冲洪积砂砾层型金刚石砂矿床是本区固结砂砾岩型金刚石矿体经过风化剥蚀、冲积沉积形成的现代河流砂砾层型矿床,两者之间具有承接关系。
3. 找矿意义
奇拉色卡矿区金刚石古砂矿主要控矿因素有以下3个方面:①地层:中元古代乌肯多群砂砾岩组是金刚石赋矿层位;②大地构造环境:地壳拉张减薄,地幔物质上涌,地壳横向增生,原始沉积盆地处于海侵时期,利于金刚石建造沉积;③构造:后期的断裂构造破坏矿层的连续性。
综合各种找矿标志建立奇拉色卡矿区金刚石古砂矿床勘查模型见表 1。
表 1 奇拉色卡矿区金刚石古砂矿床勘查模型Table 1. A list of exploration models of ancient diamond placer ores in the Cherokee mining area找矿要素 典型特征 大地构造环境 含有金刚石原生矿的稳定克拉通边缘滨海沉积区 含矿地层 中元古代乌肯多群 矿层位置 太古宙花岗岩系基底不整合面之上的底砾岩 含矿岩系和围岩 砂砾岩组、灰岩组、泥页岩组、石英砂岩组、玄武岩组 含矿原岩建造 滨浅海相碎屑岩、碳酸盐岩和火山岩建造 成矿时代 中元古代 矿石特征 矿石为砂砾岩,矿石结构为碎屑结构、砾状结构、砂状结构、颗粒支撑,矿石构造为块状构造、层状构造 含矿层顶板标志 矿层顶板为石灰岩层,底板为太古宙花岗岩,矿层与底板岩系为角度不整合接触 勘查技术体系 大比例尺填图、钻探、槽探、浅井、采样和选矿 4. 结论
(1)奇拉色卡矿区大地构造上处于太古宙津巴布韦克拉通东部边缘,西部紧邻林波波造山带、莫桑比克造山带,其中林波波带为重要的金刚石产地。奇拉色卡矿区处于金刚石古砂矿成矿的有利位置。
(2)矿层赋存于中元古代乌肯多群砂砾岩组沉积岩中,属滨海环境沉积建造,矿床类型为沉积型金刚石古砂矿。
致谢: 河北省廊坊市诚信地质服务公司在锆石分选中给予帮助,西北大学大陆动力学国家重点实验室的老师在锆石阴极发光图像采集、 LA-ICPMS 测试分析及数据处理过程中给予支持和帮助,审稿专家在文稿修改过程中提出宝贵的修改意见,在此一并表示感谢。 -
图 1 华北板块北缘晚古生代—早中生代岩浆岩带中二叠纪岩浆岩分布简图(据参考文献[20]修改)
Figure 1. Geological sketch map showing Permian magmatite of the Late Paleozoic-Early Mesozoic magmatic belt on the northern margin of the North China plate
图 6 花岗岩锆石稀土元素球粒陨石标准化配分模式(标准化数据据参考文献[25])
Figure 6. Chondrite-normalized REE patterns of zircon from Woniushan granite
图 7 不同构造背景下锆石的判别图解(底图据参考文献[1])
VAB—弧火山岩区域;WPB—板内玄武岩;N-MORB—正常洋脊玄武岩
Figure 7. Discrimination plots of different tectonic settings for the zircon
图 8 不同结晶环境锆石的判别图解(底图据参考文献[2])
Figure 8. Discrimination diagrams with different crystallization settings of zircon
表 1 卧牛山花岗岩LA-ICP-MS锆石U-Th-Pb分析结果
Table 1 Results of U-Th-Pb isotopic dating by LA-ICP-MS of the single-grain zircon from Woniushan granite
点号 232Th/10-6 238U/10-6 232Th/238U 同 位 素 比 值 年 龄/Ma 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 208Pb/232Th 1σ 1 172 280 0.61 0.05204 0.00192 0.31121 0.00981 0.04336 0.00044 274 3 275 8 267 4 2 214 397 0.54 0.05428 0.00170 0.28033 0.00699 0.03745 0.00034 237 2 251 6 224 3 3 217 393 0.55 0.05032 0.00154 0.30325 0.00732 0.04370 0.00039 276 2 269 6 270 4 4 153 373 0.41 0.04961 0.00156 0.29885 0.00750 0.04368 0.00039 276 2 266 6 276 4 5 401 492 0.81 0.05177 0.00150 0.31035 0.00681 0.04347 0.00038 274 2 274 5 274 3 6 467 457 1.02 0.05475 0.00171 0.32402 0.00802 0.04291 0.00040 271 2 285 6 265 3 7 259 433 0.60 0.05253 0.00150 0.31407 0.00674 0.04336 0.00038 274 2 277 5 279 3 8 239 272 0.88 0.05004 0.00171 0.29983 0.00851 0.04344 0.00042 274 3 266 7 275 3 9 271 454 0.60 0.05221 0.00187 0.30978 0.01074 0.04304 0.00040 272 2 274 8 271 2 10 193 401 0.48 0.05115 0.00151 0.30701 0.00694 0.04352 0.00038 275 2 272 5 269 4 11 310 444 0.70 0.05248 0.00421 0.29184 0.02319 0.04034 0.00047 255 3 260 18 254 3 12 196 354 0.56 0.05307 0.00182 0.31678 0.00904 0.04328 0.00043 273 3 279 7 268 4 13 127 256 0.49 0.05041 0.00191 0.30325 0.00992 0.04362 0.00044 275 3 269 8 275 5 14 54 150 0.36 0.05489 0.00251 0.32888 0.01357 0.04344 0.00050 274 3 289 10 281 7 15 122 235 0.52 0.05139 0.00240 0.31349 0.01323 0.04423 0.00052 279 3 277 10 279 6 16 144 367 0.39 0.05029 0.00163 0.30544 0.00801 0.04404 0.00040 278 2 271 6 268 4 17 434 568 0.76 0.05812 0.00164 0.31924 0.00669 0.03983 0.00035 252 2 281 5 210 3 18 115 237 0.48 0.05668 0.00222 0.33952 0.01150 0.04343 0.00048 274 3 297 9 273 6 19 154 338 0.46 0.05342 0.00197 0.32293 0.01012 0.04383 0.00044 277 3 284 8 284 5 表 2 卧牛山花岗岩锆石微量元素分析结果
Table 2 Results of trace element analyses of the single-grain zircon from Woniushan granite
元素 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 La 0.058 0.399 0.041 0.075 0.859 6.060 0.278 0.571 3.030 0.775 1.041 0.108 0.654 0.037 0.048 1.763 3.570 1.398 0.050 Ce 14.17 21.62 12.27 11.45 23.02 37.28 18.20 17.72 23.74 14.30 21.18 12.59 12.37 5.68 9.47 14.79 34.63 13.59 11.31 Pr 0.064 0.680 0.046 0.059 0.387 2.048 0.108 0.282 1.125 0.362 0.813 0.051 0.170 0.051 0.083 0.599 2.460 0.456 0.073 Nd 1.098 3.750 1.049 0.830 2.890 11.170 1.860 2.530 6.220 2.280 7.620 1.20 1.170 0.494 0.995 3.100 13.380 2.730 0.950 Sm 2.33 4.43 2.30 2.26 3.69 8.19 3.54 3.65 4.36 2.52 8.48 1.82 1.93 1.07 2.31 2.29 11.14 2.09 2.03 Eu 0.527 0.366 0.344 0.300 0.668 1.236 0.619 0.810 0.660 0.391 1.313 0.353 0.326 0.296 0.433 0.311 0.529 0.370 0.235 Gd 14.03 16.15 13.23 12.88 22.24 33.95 22.01 21.04 19.77 13.65 38.56 13.41 8.24 6.60 11.88 11.93 32.00 13.24 11.78 Tb 5.37 6.43 5.27 5.65 7.97 11.70 8.65 7.23 7.78 5.43 13.48 5.25 3.30 2.66 4.60 4.84 12.35 4.60 4.87 Dy 69.32 79.79 68.79 75.51 98.20 137.63 113.84 89.17 101.88 69.95 158.79 67.03 43.07 31.17 61.88 64.49 142.65 61.93 63.86 Ho 28.52 31.35 28.64 32.03 38.99 53.66 47.18 35.34 42.53 29.66 61.09 28.25 18.16 13.58 25.40 27.93 51.40 25.27 26.84 Er 139.90 149.58 138.17 158.30 182.07 241.36 227.80 159.10 205.76 146.56 275.62 134.40 91.26 68.56 124.80 139.18 233.84 125.28 131.23 Tm 31.02 33.04 30.13 36.47 39.17 51.04 50.28 33.21 46.03 32.88 57.67 29.84 21.36 16.44 28.05 32.30 50.78 27.85 30.31 Yb 319.70 337.52 302.75 382.00 383.39 484.57 503.88 318.20 463.59 335.82 552.67 298.30 231.20 177.40 290.10 335.59 493.47 283.98 309.50 Lu 66.63 68.28 62.44 79.82 77.86 95.85 102.86 63.15 94.70 69.55 109.37 61.64 50.50 38.65 60.72 70.74 94.89 59.25 64.40 Ti 2.27 25.56 1.09 0.96 1.39 21.05 3.59 4.10 1.20 2.32 10.17 2.04 3.81 5.92 2.53 1.81 34.88 1.15 2.02 Y 853.9 912.2 846.1 985.9 1160.5 1591.4 1430.2 1027.0 1291.9 907.3 1839.3 831.8 578.2 430.6 771.8 858.2 1487.9 772.4 813.7 Hf 9124 9739 9692 9694 8849 7777 8890 7830 9372 9874 8676 10092 9313 8285 8934 9802 9638 9014 9448 ∑REE 692.68 753.39 665.47 797.65 881.40 1175.74 1101.11 752.02 1021.18 724.13 1307.70 654.23 483.68 362.67 620.83 709.85 1177.09 622.03 657.44 LREE 18.25 31.25 16.05 14.97 31.51 65.98 24.61 25.56 39.14 20.63 40.45 16.12 16.62 7.63 13.34 22.85 65.71 20.63 14.65 HREE 674.43 722.14 649.42 782.68 849.89 1109.76 1076.50 726.46 982.04 703.50 1267.25 638.11 467.06 355.04 607.49 687.00 1111.38 601.40 642.79 LR/HR 0.03 0.04 0.02 0.02 0.04 0.06 0.02 0.04 0.04 0.03 0.03 0.03 0.04 0.02 0.02 0.03 0.06 0.03 0.02 δEu 0.22 0.12 0.15 0.13 0.17 0.19 0.16 0.22 0.18 0.16 0.19 0.16 0.21 0.26 0.20 0.15 0.08 0.16 0.11 δCe 50.42 7.99 61.01 39.91 9.77 2.59 25.75 10.77 3.15 6.60 5.34 41.45 8.89 26.79 28.76 3.52 2.76 4.15 37.74 注:微量元素单位为10-6 表 3 卧牛山花岗岩锆石 Ti温度计算结果
Table 3 Calculation results of crystallization temperature of zircon from Woniushan granite
测点 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T/℃ 662 903 607 599 635 879 700 711 614 664 798 654 705 745 671 645 943 611 653 -
Schulz B, Klemd R, Brätz H. Host rock compositional controls on zircon trace element signa-tures in metabasites from the Austroal-pine basement[J]. Geochimica et Cosmochimica Acta, 2006, 70(3):697-710. doi: 10.1016/j.gca.2005.10.001 Schulz B, Klemd R, Brätz H. Host rock compositional controls on zircon trace element signa-tures in metabasites from the Austroal-pine basement[J]. Geochimica et Cosmochimica Acta, 2006, 70(3):697-710. doi: 10.1016/j.gca.2005.10.001
Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust:a method for distinguishing detrital zir-con provenance[J]. Geology, 2007, 35(7):643-646. doi: 10.1130/G23603A.1 Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust:a method for distinguishing detrital zir-con provenance[J]. Geology, 2007, 35(7):643-646. doi: 10.1130/G23603A.1
Li N, Chen Y J, Pirajno F, et al. LA-ICP-MS zircon U-Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China:implications for Mesozoic tectono-magmatic evolution[J]. Lithos, 2012, 142:34-47. http://cn.bing.com/academic/profile?id=2094636417&encoded=0&v=paper_preview&mkt=zh-cn Li N, Chen Y J, Pirajno F, et al. LA-ICP-MS zircon U-Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China:implications for Mesozoic tectono-magmatic evolution[J]. Lithos, 2012, 142:34-47. http://cn.bing.com/academic/profile?id=2094636417&encoded=0&v=paper_preview&mkt=zh-cn
周金胜, 孟祥金, 臧文栓, 等.西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学, 微量元素地球化学及地质意义[J].岩石学报, 2013, 29(11):3755-3766. http://d.wanfangdata.com.cn/Periodical/ysxb98201311009 Hinton R W, Upton B G J. The chemistry of zircon:variations within and between large crystals from syenite and alkali basalt xeno-liths[J]. Geochimica et Cosmochimica Acta, 1991, 55(11):3287-3302. doi: 10.1016/0016-7037(91)90489-R Hinton R W, Upton B G J. The chemistry of zircon:variations within and between large crystals from syenite and alkali basalt xeno-liths[J]. Geochimica et Cosmochimica Acta, 1991, 55(11):3287-3302. doi: 10.1016/0016-7037(91)90489-R
Rubatto D. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1):123-138. http://cn.bing.com/academic/profile?id=2020139762&encoded=0&v=paper_preview&mkt=zh-cn Rubatto D. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1):123-138. http://cn.bing.com/academic/profile?id=2020139762&encoded=0&v=paper_preview&mkt=zh-cn
Hoskin P W O, Schaltegger U. The composition of zircon and igne-ous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27-62. doi: 10.2113/0530027 Hoskin P W O, Schaltegger U. The composition of zircon and igne-ous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27-62. doi: 10.2113/0530027
Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology, 2006, 231(1):135-158. http://cn.bing.com/academic/profile?id=2075149957&encoded=0&v=paper_preview&mkt=zh-cn Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology, 2006, 231(1):135-158. http://cn.bing.com/academic/profile?id=2075149957&encoded=0&v=paper_preview&mkt=zh-cn
Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1):127-150. http://cn.bing.com/academic/profile?id=2090080717&encoded=0&v=paper_preview&mkt=zh-cn Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1):127-150. http://cn.bing.com/academic/profile?id=2090080717&encoded=0&v=paper_preview&mkt=zh-cn
Dong C Y, Liu D Y, Li J J, et al. Palaeoproterozoic Khondalite Belt in the western North China Craton:new evidence from SHRIMP dating and Hf isotope composition of zircons from meta-morphic rocks in the Bayan Ul-Helan Mountains area[J]. Chinese Science Bulletin, 2007, 52(21):2984-2994. doi: 10.1007/s11434-007-0404-9 Dong C Y, Liu D Y, Li J J, et al. Palaeoproterozoic Khondalite Belt in the western North China Craton:new evidence from SHRIMP dating and Hf isotope composition of zircons from meta-morphic rocks in the Bayan Ul-Helan Mountains area[J]. Chinese Science Bulletin, 2007, 52(21):2984-2994. doi: 10.1007/s11434-007-0404-9
Mori Y, Orihashi Y, Miyamoto T,et al.Origin of zircon in jadeitite from the Nishisonogi metamorphic rocks,Kyushu,Japan[J].Journal of Metamorphic Geology,2011,29:673-684. doi: 10.1111/jmg.2011.29.issue-6 Mori Y, Orihashi Y, Miyamoto T, et al.Origin of zircon in jadeitite from the Nishisonogi metamorphic rocks, Kyushu, Japan[J].Journal of Metamorphic Geology, 2011, 29:673-684. doi: 10.1111/jmg.2011.29.issue-6
Munoz M, Charrier R, Fanning C M, et al. Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El Teni-ente ore deposit, Chilean Andes:constraints on the source and mag-matic evolution of porphyry Cu-Mo related magmas[J]. Journal of Petrology, 2012:egs010. Munoz M, Charrier R, Fanning C M, et al. Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El Teni-ente ore deposit, Chilean Andes:constraints on the source and mag-matic evolution of porphyry Cu-Mo related magmas[J]. Journal of Petrology, 2012:egs010.
Storm S, Schmitt A K, Shane P, et al. Zircon trace element chemis-try at sub-micrometer resolution for Tarawera volcano, New Zea-land, and implications for rhyolite magma evolution[J]. Contribu-tions to Mineralogy and Petrology, 2014, 167(4):1-19. Storm S, Schmitt A K, Shane P, et al. Zircon trace element chemis-try at sub-micrometer resolution for Tarawera volcano, New Zea-land, and implications for rhyolite magma evolution[J]. Contribu-tions to Mineralogy and Petrology, 2014, 167(4):1-19.
从峰, 林仕量, 邹光富, 等.梁河花岗岩岩浆混合作用:锆石微量元素、U-Pb和Hf同位素示踪[J].中国科学(D辑), 2011, 41(4):468-481. 唐勇, 张辉, 吕正航.不同成因告示阴极发光及微量元素特征:以新疆阿尔泰地区花岗岩和伟晶岩为例[J].矿物岩石, 2012, 32(1):8-15. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201201002.htm Belousova E A, Griffin W L, Pearson N J. Trace element composi-tion and cathodoluminescence properties of southern African kim-berlitic zircons[J]. Mineralogical Magazine, 1998, 62(3):355-366. doi: 10.1180/002646198547747 Belousova E A, Griffin W L, Pearson N J. Trace element composi-tion and cathodoluminescence properties of southern African kim-berlitic zircons[J]. Mineralogical Magazine, 1998, 62(3):355-366. doi: 10.1180/002646198547747
Hoskin P W O, Ireland T R. Rare earth element chemistry of zir-con and its use as a prove-nance indicator[J]. Geology, 2000, 28(7):627-630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2 Hoskin P W O, Ireland T R. Rare earth element chemistry of zir-con and its use as a prove-nance indicator[J]. Geology, 2000, 28(7):627-630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
Siebel W, Schmitt A K, Danišík M, et al. Prolonged mantle resi-dence of zircon xenocrysts from the western Eger rift[J]. Nature Geoscience, 2009, 2(12):886-890. doi: 10.1038/ngeo695 Siebel W, Schmitt A K, Danišík M, et al. Prolonged mantle resi-dence of zircon xenocrysts from the western Eger rift[J]. Nature Geoscience, 2009, 2(12):886-890. doi: 10.1038/ngeo695
Scharer U, Berndt J, Deutsch A. The genesis of deep-mantle xeno-crystic zircon and baddeleyite megacrysts (Mbuji-Mayi kimberlite):trace-element patterns[J]. European Journal of Mineralogy, 2011, 23(2):241-255. doi: 10.1127/0935-1221/2011/0023-2088 Scharer U, Berndt J, Deutsch A. The genesis of deep-mantle xeno-crystic zircon and baddeleyite megacrysts (Mbuji-Mayi kimberlite):trace-element patterns[J]. European Journal of Mineralogy, 2011, 23(2):241-255. doi: 10.1127/0935-1221/2011/0023-2088
张拴宏, 赵越, 刘建民, 等.华北地块北缘晚古生代-早中生代岩浆活动期次, 特征及构造背景[J].岩石矿物学杂志, 2010, 29(6):824-842. http://d.wanfangdata.com.cn/Periodical/yskwxzz201006017 吴翠华. 内蒙古太仆寺旗前庙地岩体地质地球化学特征及成矿预测[D].中南大学硕士学位论文, 2010. 吴翠华.内蒙古太仆寺旗前庙地岩体地质地球化学特征及成矿预测[D].中南大学硕士学位论文, 2010.
袁洪林, 吴福元, 高山, 等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报, 2003, 48(14):1511-1520. http://d.wanfangdata.com.cn/Periodical/kxtb200314008 Yuan H, Gao S, Liu X, et al. Accurate U-Pb age and trace ele-ment determinations of zircon by laser ablation-inductively cou-pled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3 Yuan H, Gao S, Liu X, et al. Accurate U-Pb age and trace ele-ment determinations of zircon by laser ablation-inductively cou-pled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3
Ludwig K R. User's manual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel[M]. Berkeley Geochromological Cen-ter, Berkeley, calif, 2003. Ludwig K R. User's manual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel[M]. Berkeley Geochromological Center, Berkeley, calif, 2003.
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
袁桂邦, 王惠初.内蒙古武川西北部早二叠世岩浆活动及其构造意义[J].地质调查与研究, 2006, 29(4):303-310. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200604009.htm 范宏瑞, 胡芳芳, 杨奎锋, 等.内蒙古白云鄂博地区晚古生代闪长质-花岗质岩石年代学框架及其地质意义[J].岩石学报, 2009, 25(11):2933-2938. http://d.wanfangdata.com.cn/Periodical/ysxb98200911022 罗红玲, 吴泰然, 赵磊.华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义[J].岩石学报, 2009(3):515-526. http://d.wanfangdata.com.cn/Periodical/ysxb98200903004 章永梅, 张华峰, 刘文灿, 等.内蒙古中部四子王旗大庙岩体时代及成因[J].岩石学报, 2009, 25(12):3165-3181. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200912008.htm Zhang S H, Zhao Y, Kröner A, et al. Early Permian plutons from the northern North China Block:constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6):1441-1467. doi: 10.1007/s00531-008-0368-2 Zhang S H, Zhao Y, Kröner A, et al. Early Permian plutons from the northern North China Block:constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6):1441-1467. doi: 10.1007/s00531-008-0368-2
郝百武, 蒋杰.内蒙古镶黄旗哈达庙金矿杂岩体年代学, 地球化学及其形成机制[J].岩石矿物学杂志, 2010, 29(6):750-762. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006012.htm 童英, 洪大卫, 王涛, 等.中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J].地球学报, 2010, 31(3):395-412. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003016.htm 刑济麟.内蒙古温都尔庙隆起带花岗岩的地球化学特征及地球动力学意义[D].吉林大学硕士学位论文, 2010. 刑济麟.内蒙古温都尔庙隆起带花岗岩的地球化学特征及地球动力学意义[D].吉林大学硕士学位论文, 2010.
柳长峰.内蒙古四子王旗地区古生代-早中生代岩浆岩带及其构造意义[D]. 中国地质大学博士学位论文, 2010. 柳长峰.内蒙古四子王旗地区古生代-早中生代岩浆岩带及其构造意义[D].中国地质大学博士学位论文, 2010.
张建军, 王涛, 张招崇, 等.华北地块北缘西段巴音诺尔公-狼山地区牙马图岩体的岩浆混合成因——岩相学和元素地球化学证据[J].地质评论, 2012, 58(1):53-66. http://cdmd.cnki.com.cn/Article/CDMD-11415-1012364550.htm 王挽琼, 徐仲元, 刘正宏, 等.华北板块北缘中段早中二叠世的构造属性:来自花岗岩类锆石U-Pb年代学及地球化学的制约[J].岩石学报, 2013, 29(9):2987-3003. 刘军, 武广, 李铁刚, 等.内蒙古镶黄旗哈达庙地区晚古生代中酸性侵入岩的年代学, 地球化学, Sr-Nd同位素组成及其地质意义[J].岩石学报, 2014, 30(1):95-108. http://d.wanfangdata.com.cn/Periodical/ysxb98201401007 曹花花, 许文良, 裴福萍, 等.华北板块北缘东段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J].岩石学报, 2012, 28(9):2733-2750. 王芳, 陈福坤, 侯振辉, 等.华北陆块北缘崇礼-赤城地区晚古生代花岗岩类的锆石年龄和Sr-Nd-Hf同位素组成[J].岩石学报, 2009, 25(11):3057-3074. http://d.wanfangdata.com.cn/Periodical/ysxb98200911033 Li X H, Liang X R, Sun M, et al. Geochronology and geochemis-try of single-grain zircons Simultaneous in-situ analysis of U-Pb age and trace elements by LA-ICP-MS[J]. European Journal of Mineralogy, 2000, 12(5):1015-1024. doi: 10.1127/0935-1221/2000/0012-1015 Li X H, Liang X R, Sun M, et al. Geochronology and geochemis-try of single-grain zircons Simultaneous in-situ analysis of U-Pb age and trace elements by LA-ICP-MS[J]. European Journal of Mineralogy, 2000, 12(5):1015-1024. doi: 10.1127/0935-1221/2000/0012-1015
Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723):841-844. doi: 10.1126/science.1110873 Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723):841-844. doi: 10.1126/science.1110873
Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrolo-gy, 2006, 151(4):413-433. doi: 10.1007/s00410-006-0068-5 Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrolo-gy, 2006, 151(4):413-433. doi: 10.1007/s00410-006-0068-5
Ferry J M, Watson E B. New thermodynamic models and revised cali-brations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4):429-437. doi: 10.1007/s00410-007-0201-0 Ferry J M, Watson E B. New thermodynamic models and revised cali-brations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4):429-437. doi: 10.1007/s00410-007-0201-0
Reid M R, Vazquez J A, Schmitt A K. Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, Califor-nia, with implications for the Ti-in-zircon geothermometer[J]. Contributions to Mineralogy and Petrology, 2011, 161(2):293-311. doi: 10.1007/s00410-010-0532-0 Reid M R, Vazquez J A, Schmitt A K. Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, Califor-nia, with implications for the Ti-in-zircon geothermometer[J]. Contributions to Mineralogy and Petrology, 2011, 161(2):293-311. doi: 10.1007/s00410-010-0532-0
Abbott S S, Harrison T M, Schmitt A K, et al. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zir-con Ti-U-Th-Pb depth profiles[J]. Proceedings of the National Academy of Sciences, 2012, 109(34):13486-13492. doi: 10.1073/pnas.1208006109 Abbott S S, Harrison T M, Schmitt A K, et al. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zir-con Ti-U-Th-Pb depth profiles[J]. Proceedings of the National Academy of Sciences, 2012, 109(34):13486-13492. doi: 10.1073/pnas.1208006109
Ewing T A, Hermann J, Rubatto D. The robustness of the Zr-inrutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy)[J]. Contribu-tions to Mineralogy and Petrology, 2013, 165(4):757-779. doi: 10.1007/s00410-012-0834-5 Ewing T A, Hermann J, Rubatto D. The robustness of the Zr-inrutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy)[J]. Contribu-tions to Mineralogy and Petrology, 2013, 165(4):757-779. doi: 10.1007/s00410-012-0834-5
Liu Y C, Deng L P, Gu X F, et al. Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain high-temperature meta-morphism in eclogites from the Dabie orogen, central China[J]. Gondwana Research, 2015, 27(1):410-423. doi: 10.1016/j.gr.2013.10.011 Liu Y C, Deng L P, Gu X F, et al. Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain high-temperature meta-morphism in eclogites from the Dabie orogen, central China[J]. Gondwana Research, 2015, 27(1):410-423. doi: 10.1016/j.gr.2013.10.011
MacDonald J M, Goodenough K M, Wheeler J, et al. Tempera-ture-time evolution of the Assynt Terrane of the Lewisian Gneiss Complex of Northwest Scotland from zircon U-Pb dating and Ti thermometry[J]. Precambrian Research, 2015, 260:55-75. doi: 10.1016/j.precamres.2015.01.009 MacDonald J M, Goodenough K M, Wheeler J, et al. Tempera-ture-time evolution of the Assynt Terrane of the Lewisian Gneiss Complex of Northwest Scotland from zircon U-Pb dating and Ti thermometry[J]. Precambrian Research, 2015, 260:55-75. doi: 10.1016/j.precamres.2015.01.009
Hayden L A, Watson E B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon[J]. Earth and Planetary Science Letters, 2007, 258(3):561-568. http://cn.bing.com/academic/profile?id=1972712810&encoded=0&v=paper_preview&mkt=zh-cn Hayden L A, Watson E B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon[J]. Earth and Planetary Science Letters, 2007, 258(3):561-568. http://cn.bing.com/academic/profile?id=1972712810&encoded=0&v=paper_preview&mkt=zh-cn
Wark D A, Watson E B. Titani Q:a titanium-in-quartz geother-mometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6):743-754. doi: 10.1007/s00410-006-0132-1 Wark D A, Watson E B. Titani Q:a titanium-in-quartz geother-mometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6):743-754. doi: 10.1007/s00410-006-0132-1
Wark D A, Hildreth W, Spear F S, et al. Pre-eruption recharge of the Bishop magma system[J]. Geology, 2007, 35(3):235-238. doi: 10.1130/G23316A.1 Wark D A, Hildreth W, Spear F S, et al. Pre-eruption recharge of the Bishop magma system[J]. Geology, 2007, 35(3):235-238. doi: 10.1130/G23316A.1
Harrison T M, Watson E B, Aikman A B. Temperature spectra of zircon crystallization in pluto-nic rocks[J]. Geology, 2007, 35(7):635-638. doi: 10.1130/G23505A.1 Harrison T M, Watson E B, Aikman A B. Temperature spectra of zircon crystallization in pluto-nic rocks[J]. Geology, 2007, 35(7):635-638. doi: 10.1130/G23505A.1
Pei F P, Xu W L, Yang D B, et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin[J]. Chinese Science Bulletin, 2007, 52(7):942-948. doi: 10.1007/s11434-007-0107-2 Pei F P, Xu W L, Yang D B, et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin[J]. Chinese Science Bulletin, 2007, 52(7):942-948. doi: 10.1007/s11434-007-0107-2
Meng E, Xu W L, Yang D B, et al. Permian volcanisms in east-ern and southeastern margins of the Jiamusi Massif, northeastern China:zircon U-Pb chronology, geochemistry and its tectonic implications[J]. Chinese Science Bulletin, 2008, 53(8):1231-1245. http://cn.bing.com/academic/profile?id=2387920496&encoded=0&v=paper_preview&mkt=zh-cn Meng E, Xu W L, Yang D B, et al. Permian volcanisms in east-ern and southeastern margins of the Jiamusi Massif, northeastern China:zircon U-Pb chronology, geochemistry and its tectonic implications[J]. Chinese Science Bulletin, 2008, 53(8):1231-1245. http://cn.bing.com/academic/profile?id=2387920496&encoded=0&v=paper_preview&mkt=zh-cn
孙德有, 吴福元, 张艳斌.西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J].吉林大学学报:地球科学版, 2004, 34(2):174-181. Jia D C, Hu R Z, Liu Y, et al. Collision belt between the Khanka block and the North China block in the Yanbian Region, North-east China[J]. Journal of Asian Earth Sciences, 2004, 23(2):211-219. doi: 10.1016/S1367-9120(03)00123-8 Jia D C, Hu R Z, Liu Y, et al. Collision belt between the Khanka block and the North China block in the Yanbian Region, North-east China[J]. Journal of Asian Earth Sciences, 2004, 23(2):211-219. doi: 10.1016/S1367-9120(03)00123-8
Li J Y. Permina geodynamic setting of northeast China and adjia-cent regions:Closure of the Paleo-Asian ocean and subduction of the Paleo-paccific palte[J].Journal of Asian Earth Sciences,2006,26(3/4):207-224 Li J Y. Permina geodynamic setting of northeast China and adjia-cent regions:Closure of the Paleo-Asian ocean and subduction of the Paleo-paccific palte[J].Journal of Asian Earth Sciences, 2006, 26(3/4):207-224
Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group:its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3):542-556. http://cn.bing.com/academic/profile?id=2126127241&encoded=0&v=paper_preview&mkt=zh-cn Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group:its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3):542-556. http://cn.bing.com/academic/profile?id=2126127241&encoded=0&v=paper_preview&mkt=zh-cn
Meng E, Xu W L, Pei F P, et al. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt[J]. Tectonophysics, 2010, 485(1):42-51. http://cn.bing.com/academic/profile?id=1973675853&encoded=0&v=paper_preview&mkt=zh-cn Meng E, Xu W L, Pei F P, et al. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt[J]. Tectonophysics, 2010, 485(1):42-51. http://cn.bing.com/academic/profile?id=1973675853&encoded=0&v=paper_preview&mkt=zh-cn
赵越, 陈斌, 张拴宏, 等.华北克拉通北缘及邻区前燕山期主要地质事件[J].中国地质, 2010, 37(4):900-915. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004009.htm -
期刊类型引用(1)
1. 亓利剑,周征宇,招博文,曾春光,向长金. 天然与人工辐射绿色钻石中晶格辐射损伤的差异性及其光谱学表征. 宝石和宝石学杂志(中英文). 2022(05): 1-10 . 百度学术
其他类型引用(1)